
Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Chapter 11:

Structured Data

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

11.1

Abstract Data Types

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Abstract Data Types

• A data type that specifies

– values that can be stored

– operations that can be done on the values

• User of an abstract data type does not 
need to know the implementation of the 
data type, e.g., how the data is stored

• ADTs are created by programmers



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Abstraction and Data Types

• Abstraction: a definition that captures 

general characteristics without details

– Ex: An abstract triangle is a 3-sided polygon.  

A specific triangle may be scalene, isosceles, 

or equilateral

• Data Type defines the values that can be 

stored in a variable and the operations that 

can be performed on it 

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

11.2

Combining Data into Structures

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Combining Data into Structures

• Structure: C++ construct that allows multiple 

variables to be grouped together

• General Format:  

struct <structName>

{

type1 field1;

type2 field2;

. . .

};



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Example struct Declaration

struct Student

{

int studentID;

string name;

short yearInSchool;

double gpa;

};

structure tag

structure members

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

struct Declaration Notes

• Must have ; after closing }

• struct names commonly begin with 

uppercase letter

• Multiple fields of same type can be in 

comma-separated list:

string name, 

address; 

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Defining Variables

• struct declaration does not allocate 

memory or create variables

• To define variables, use structure tag as 

type name:

Student bill;
studentID

name

yearInSchool

gpa

bill



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

11.3

Accessing Structure Members

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Accessing Structure Members

• Use the dot (.) operator to refer to members of 

struct variables:

cin >> stu1.studentID;

getline(cin, stu1.name);

stu1.gpa = 3.75;

• Member variables can be used in any manner 

appropriate for their data type

11-11

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Displaying a struct Variable

• To display the contents of a struct
variable, must display each field 
separately, using the dot operator:
cout << bill; // won’t work

cout << bill.studentID << endl;

cout << bill.name << endl;

cout << bill.yearInSchool;

cout << " " << bill.gpa;



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Comparing struct Variables

• Cannot compare struct variables 
directly:
if (bill == william) // won’t work

• Instead, must compare on a field basis:
if (bill.studentID == 

william.studentID) ...

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

11.4

Initializing a Structure

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Initializing a Structure

• struct variable can be initialized when 

defined:
Student s = {11465, "Joan", 2, 3.75};

• Can also be initialized member-by-
member after definition:

s.name = "Joan";

s.gpa = 3.75;



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

More on Initializing a Structure

• May initialize only some members:
Student bill = {14579};

• Cannot skip over members:
Student s = {1234, "John", ,

2.83}; // illegal

• Cannot initialize in the structure 
declaration, since this does not allocate 
memory

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Excerpts From Program 11-3

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

11.5

Arrays of Structures



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Arrays of Structures

• Structures can be defined in arrays

• Can be used in place of parallel arrays
const int NUM_STUDENTS = 20;

Student stuList[NUM_STUDENTS];

• Individual structures accessible using subscript 

notation

• Fields within structures accessible using dot 

notation:

cout << stuList[5].studentID;

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

11.6

Nested Structures

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Nested Structures

A structure can contain another structure as a 
member:

struct PersonInfo
{   string name, 

address, 
city;

};
struct Student
{ int studentID;

PersonInfo pData;
short yearInSchool;
double gpa;

};



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Members of Nested Structures

• Use the dot operator multiple times to refer 

to fields of nested structures:

Student s;

s.pData.name = "Joanne";

s.pData.city = "Tulsa";

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

11.7

Structures as Function Arguments

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Structures as Function 

Arguments

• May pass members of  struct variables to 
functions:

computeGPA(stu.gpa);

• May pass entire struct variables to functions:
showData(stu);

• Can use reference parameter if function needs 
to modify contents of structure variable



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Excerpts from Program 11-6

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Structures as Function 

Arguments - Notes

• Using value parameter for structure can 
slow down a program, waste space

• Using a reference parameter will speed up 
program, but function may change data in 
structure

• Using a const reference parameter 
allows read-only access to reference 
parameter, does not waste space, speed

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Revised showItem Function



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

11.8

Returning a Structure from a 

Function

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Returning a Structure from a 

Function
• Function can return a struct:

Student getStudentData();  // prototype

stu1 = getStudentData();   // call

• Function must define a local structure 

– for internal use 

– for use with return statement

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Returning a Structure from a 

Function - Example

Student getStudentData()

{ Student tempStu;

cin >> tempStu.studentID;

getline(cin, tempStu.pData.name);

getline(cin, tempStu.pData.address);

getline(cin, tempStu.pData.city);

cin >> tempStu.yearInSchool;

cin >> tempStu.gpa;

return tempStu;

}



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

11.9

Pointers to Structures

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointers to Structures

• A structure variable has an address

• Pointers to structures are variables that 
can hold the address of a structure:
Student *stuPtr;

• Can use & operator to assign address:

stuPtr = & stu1;

• Structure pointer can be a function 
parameter

11-41

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Accessing Structure Members 

via Pointer Variables
• Must use () to dereference pointer 

variable, not field within structure:

cout << (*stuPtr).studentID;

• Can use structure pointer operator to 
eliminate () and use clearer notation:

cout << stuPtr->studentID;

11-42



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

From Program 11-8

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

11.11

Unions

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Unions

• Similar to a struct, but
– all members share a single memory location, and

– only one member of the union can be used at a time

• Declared using union, otherwise the same as 
struct

• Variables defined as for struct variables



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Anonymous  Union

• A union without a union tag:
union { ... };

• Must use static if declared outside of a function

• Allocates memory at declaration time

• Can refer to members directly without dot operator

• Uses only one memory location, saves space

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

11.12

Enumerated Data Types

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

• An enumerated data type is a programmer-

defined data type. It consists of values 

known as enumerators, which represent 

integer constants. 



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

• Example:

enum Day { MONDAY, TUESDAY,
WEDNESDAY, THURSDAY,
FRIDAY };

• The identifiers MONDAY, TUESDAY, 
WEDNESDAY, THURSDAY, and FRIDAY, 
which are listed inside the braces, are 
enumerators. They represent the values 
that belong to the Day data type. 

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

enum Day { MONDAY, TUESDAY,

WEDNESDAY, THURSDAY,

FRIDAY };

Note that the enumerators are not strings,                 

so they aren’t enclosed in quotes.                               

They are identifiers.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

• Once you have created an enumerated 

data type in your program, you can define 

variables of that type. Example:

Day workDay;

• This statement defines workDay as a 

variable of the Day type.



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

• We may assign any of the enumerators 
MONDAY, TUESDAY, WEDNESDAY, 

THURSDAY, or FRIDAY to a variable of the 

Day type. Example:

workDay = WEDNESDAY; 

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

• So, what is an enumerator?

• Think of it as an integer named constant

• Internally, the compiler assigns integer 

values to the enumerators, beginning at 0.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

enum Day { MONDAY, TUESDAY,

WEDNESDAY, THURSDAY,

FRIDAY };

In memory...

MONDAY = 0

TUESDAY = 1

WEDNESDAY = 2

THURSDAY = 3

FRIDAY = 4



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

• Using the Day declaration, the following 

code...
cout << MONDAY << "  " 

<< WEDNESDAY << "  “

<< FRIDAY << endl;

...will produce this output:

0 2 4

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Assigning an integer to an enum

Variable

• You cannot directly assign an integer value 
to an enum variable. This will not work:

workDay = 3; // Error!

• Instead, you must cast the integer:

workDay = static_cast<Day>(3); 

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Assigning an Enumerator to an int

Variable

• You CAN assign an enumerator to an int

variable. For example:

int x;

x = THURSDAY;

• This code assigns 3 to x.



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Comparing Enumerator Values

• Enumerator values can be compared using 
the relational operators. For example, using 
the Day data type the following code will 
display the message "Friday is greater than 
Monday.“

if (FRIDAY > MONDAY)
{

cout << "Friday is greater "
<< "than Monday.\n";

}

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Program 11-12 (Continued)



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

• Program 11-12 shows enumerators used to 

control a loop:

// Get the sales for each day.
for (index = MONDAY; index <= FRIDAY; 

index++)

{

cout << "Enter the sales for day " 

<< index << ": ";

cin >> sales[index];

}
11-61

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Anonymous Enumerated Types

• An anonymous enumerated type is simply 

one that does not have a name. For 

example, in Program 11-13 we could have 

declared the enumerated type as:

enum { MONDAY, TUESDAY,

WEDNESDAY, THURSDAY,

FRIDAY };

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Using Math Operators with enum

Variables

• You can run into problems when trying to perform math 
operations with enum variables. For example: 

Day day1, day2; // Define two Day variables.
day1 = TUESDAY; // Assign TUESDAY to day1.
day2 = day1 + 1;// ERROR! Will not work!

• The third statement will not work because the expression 
day1 + 1 results in the integer value 2, and you cannot 
store an int in an enum variable.



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Using Math Operators with enum

Variables

• You can fix this by using a cast to explicitly 
convert the result to Day, as shown here:

// This will work.

day2 = static_cast<Day>(day1 + 1); 

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Using an enum Variable to Step 

through an Array's Elements

• Because enumerators are stored in memory as 
integers, you can use them as array subscripts. 
For example:

enum Day { MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY };
const int NUM_DAYS = 5;
double sales[NUM_DAYS];

sales[MONDAY] = 1525.0; 
sales[TUESDAY] = 1896.5; 

sales[WEDNESDAY] = 1975.63; 
sales[THURSDAY] = 1678.33; 

sales[FRIDAY] = 1498.52;

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Using an enum Variable to Step 

through an Array's Elements

• Remember, though, you cannot use the ++ 
operator on an enum variable. So, the 

following loop will NOT work.

Day workDay;  // Define a Day variable

// ERROR!!! This code will NOT work.

for (workDay = MONDAY; workDay <= FRIDAY; workDay++)

{

cout << "Enter the sales for day " 

<< workDay << ": ";

cin >> sales[workDay];

}



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Using an enum Variable to Step 

through an Array's Elements

• You must rewrite the loop’s update 
expression using a cast instead of ++:

for (workDay = MONDAY; workDay <= FRIDAY;

workDay = static_cast<Day>(workDay + 1))

{

cout << "Enter the sales for day " 

<< workDay << ": ";

cin >> sales[workDay];

}

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Enumerators Must Be Unique 

Within the same Scope

• Enumerators must be unique within the same 

scope. For example, an error will result if both 

of the following enumerated types are 

declared within the same scope:

enum Presidents { MCKINLEY, ROOSEVELT, TAFT };

enum VicePresidents { ROOSEVELT, FAIRBANKS,

SHERMAN };

ROOSEVELT is declared twice. 

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Declaring the Type and Defining 

the Variables in One Statement

• You can declare an enumerated data type 

and define one or more variables of the 

type in the same statement. For example:

enum Car { PORSCHE, FERRARI, JAGUAR } sportsCar;

This code declares the Car data type and defines a 

variable named sportsCar.


