STARTING OUT WITH

C++

From Control Structures
through Objects

Chapter 11:

seventh edition

Structured Data

TONY GADDIS

Addison-Wesley
oy

[ZXSIONW Copyright © 2012 Pearson Education, Inc.

11.1

Abstract Data Types

Copyright © 2012 Pearson Education, Inc.

Abstract Data Types

A data type that specifies
— values that can be stored
— operations that can be done on the values
» User of an abstract data type does not
need to know the implementation of the
data type, e.g., how the data is stored

» ADTs are created by programmers

Copyright © 2012 Pearson Education, Inc.

Abstraction and Data Types

» Abstraction: a definition that captures
general characteristics without details
— Ex: An abstract triangle is a 3-sided polygon.
A specific triangle may be scalene, isosceles,
or equilateral
» Data Type defines the values that can be
stored in a variable and the operations that
can be performed on it

Copyright © 2012 Pearson Education, Inc.

Combining Data into Structures

Copyright © 2012 Pearson Education, Inc.

Combining Data into Structures

 Structure: C++ construct that allows multiple
variables to be grouped together

» General Format:
struct <structName>
{
typel fieldl;
type2 field2;

}i

Copyright © 2012 Pearson Education, Inc.

Example struct Declaration

struct Student

{ \
structure tag

int studentID;
string name; structure members
short yearInSchool;

double gpa;

i

Copyright © 2012 Pearson Education, Inc.

struct Declaration Notes

* Must have ; after closing }
* struct names commonly begin with
uppercase letter
* Multiple fields of same type can be in
comma-separated list:
string name,
address;

Copyright © 2012 Pearson Education, Inc.

Defining Variables

» struct declaration does not allocate
memory or create variables
» To define variables, use structure tag as
type name:
q bill
Student bill; studentid []

yearInSchool l:l

gpal]

Copyright © 2012 Pearson Education, Inc.

Accessing Structure Members

Copyright © 2012 Pearson Education, Inc.

Accessing Structure Members

* Use the dot (.) operator to refer to members of
struct variables:
cin >> stul.studentID;
getline(cin, stul.name);
stul.gpa = 3.75;

* Member variables can be used in any manner
appropriate for their data type

1-11
Copyright © 2012 Pearson Education, Inc.

Program 11-1

// This program demonstrates the use of structures.
#include <iostream>

#include <string>

#include <iomanip>

using namespace std;

struct PayRoll

{
int empNumber; // Employee number
string name; // Employee's name
double hours; // Bours worked
double payRate; // Hourly payRate
double grossPay; // Gross pay

i

int main()
{
PayRoll employee; // employee is a PayRoll structure.

// Get the employee's number.
cout << "Enter the employee's number: ";

cin >> employee.empNumber;

// Get the employee's name.
cout << "Enter the employee's name: ";

Copyright © 2012 Pearson Education, Inc.

cin.ignore(); // To skip the remaining '\n' character
getline(cin, employee.name);

// Get the hours worked by the employee.
cout << "How many hours did the employee work? ";
cin >> employee.hours;

// Get the employee's hourly pay rate.
cout << "What is the employee's hourly payRate? ";
cin >> employee.payRate;

// calculate the employee's gross pay.
employee.grossPay = employee.hours * employee.payRate;

// Display the employee data.
cout << "Here is the employee's payroll data:\n";

cout << "Name: " << employee.name << endl;

cout << "Number: " << employee.empNumber << endl;

cout << "Hours worked: " << employee.hours << endl;
cout << "Hourly payRate: " << employee.payRate << endl;

cout << fixed << showpoint << setprecision(2);
cout << "Gross Pay: §" << employee.grossPay << endl;
return 0;

Copyright © 2012 Pearson Education, Inc.

Program Output with Example Input Shown in Bold
Enter the employee's number: 489 [Enter]

Enter the employee's name: Jill Smith [Enter]

How many hours did the employee work? 40 [Enter]

What is
Here is

the employee's hourly pay rate? 20 [Enter]
the employee's payroll data:

Name: Jill sSmith

Number :

489

Hours worked: 40
Hourly pay rate: 20
Gross pay: $800.00

Copyright © 2012 Pearson Education, Inc.

Displaying a struct Variable

» To display the contents of a struct
variable, must display each field
separately, using the dot operator:

cout
cout
cout
cout
cout

<< bill; // won’t work

<< bill.studentID << endl;
<< bill.name << endl;

<< bill.yearInSchool;

<< " " << bill.gpa;

Copyright © 2012 Pearson Education, Inc.

Comparing struct Variables

» Cannot compare struct variables
directly:

if (bill == william) // won't work

* Instead, must compare on a field basis:
if (bill.studentID ==
william.studentID)

Copyright © 2012 Pearson Education, Inc.

Initializing a Structure

Copyright © 2012 Pearson Education, Inc.

Initializing a Structure

» struct variable can be initialized when
defined:

Student s = {11465, "Joan", 2, 3.75};

+ Can also be initialized member-by-
member after definition:
s.name = "Joan";
s.gpa = 3.75;

Copyright © 2012 Pearson Education, Inc.

More on Initializing a Structure

* May initialize only some members:
Student bill = {14579};
» Cannot skip over members:
Student s = {1234, "John", ,
2.83}; // illegal
« Cannot initialize in the structure
declaration, since this does not allocate
memory

Copyright © 2012 Pearson Education, Inc.

Excerpts From Program 11-3

struct EmployeePay
{

string name; // Employee name
int empNum; // Employee number
double payRate; // Hourly pay rate
double hours; // Hours worked
double grossPay; // Gross pay

EmployeePay employeel = {"Betty Ross", 141, 18.75};
EmployeePay employee2 = {"Jill Sandburg", 142, 17.50};

Copyright © 2012 Pearson Education, Inc.

Arrays of Structures

Copyright © 2012 Pearson Education, Inc.

Arrays of Structures

« Structures can be defined in arrays

» Can be used in place of parallel arrays
const int NUM STUDENTS = 20;
Student stuList[NUM_STUDENTS];

* Individual structures accessible using subscript
notation

+ Fields within structures accessible using dot
notation:
cout << stulList[5].studentID;

Copyright © 2012 Pearson Education, Inc.

Program 11-4

// This program uses an array of structures.
#include <iostream>

#include <iomanip>

using namespace std;

struct PayInfo

{
int hours; // Bours worked
double payRate; // Hourly pay rate

i

int main()

{
const int NUM_WORKERS = 3; // Number of workers
PayInfo workers[NUM_WORKERS]; // Array of structures
int index; // Loop counter

Copyright © 2012 Pearson Education, Inc.

// Get employee pay data.
cout << "Enter the hours worked by " << NUM_WORKERS
<< " employees and their hourly rates.\n";

for (index = 0; index < NUM_WORKERS; index++)
{
/! Get the hours worked by an employee.
cout << "Hours worked by employee §" << (index + 1);
cout << ": v
cin >> workers[index].hours;

// Get the employee's hourly pay rate.
cout << "Hourly pay rate for employee ";
cout << (index + 1) << ": ";
cin >> workers[index].payRate;
cout << endl;

// Display each employee's gross pay.

cout << "Here is the gross pay for each employee:\n";
cout << fixed << showpoint << setprecision(2);

for (index - 0; index < NUM WORKERS; Index+)

double gross;

gross - workers[index].hours * vworkers[index].payRate;
cout << "Employee #" << (index + 1);

cout << ": §" << gross << endl;

¥
return 0;
¥

Copyright © 2012 Pearson Education, Inc.

Program Output with Example Input Shown in Bold

Enter the hours worked by 3 employees and their hourly rates.
Hours worked by employee #1: 10 [Enter]

Hourly pay rate for employee #1: 9.75 [Enter]

Hours worked by employee #2: 20 [Enter]
Hourly pay rate for employee #2: 10.00 [Enter]

Hours worked by employee #3: 40 [Enter]
Hourly pay rate for employee #3: 20.00 [Enter]

Here is the gross pay for each employee:
Employee #1: $97.50
Employee #2: $200.00
Employee #3: $800.00

Copyright © 2012 Pearson Education, Inc.

From ContolSucturos
‘hrough O

Nested Structures

Copyright © 2012 Pearson Education, Inc.

Nested Structures

A structure can contain another structure as a

member:
struct PersonInfo
{ string name,
address,
city;

bi

struct Student

{ int studentID;
PersonInfo pData;
short yearInSchool;
double gpa;

Copyright © 2012 Pearson Education, Inc.

Members of Nested Structures

+ Use the dot operator multiple times to refer
to fields of nested structures:

Student s;
s.pData.name = "Joanne";
s.pbhata.city = "Tulsa";

Copyright © 2012 Pearson Education, Inc.

Structures as Function Arguments

Copyright © 2012 Pearson Education, Inc.

Structures as Function
Arguments

* May pass members of struct variables to
functions:
computeGPA (stu.gpa) ;
* May pass entire struct variables to functions:
showData (stu) ;

» Can use reference parameter if function needs
to modify contents of structure variable

Copyright © 2012 Pearson Education, Inc.

Excerpts from Program 11-6

struct InventoryItem

int partNum; // Part number
string description; // Item description
int onHand; // Units on hand
double price; // Unit price

void showItem(InventoryItem p)

cout << fixed << showpoint << setprecision(2);
cout << "Part Number: " << p.partNum << endl;
cout << "Description: " << p.description << endl;
cout << "Units On Hand: " << p.onHand << endl;
cout << "Price: §" << p.price << endl;

Copyright © 2012 Pearson Education, Inc.

Structures as Function

Arguments - Notes

» Using value parameter for structure can
slow down a program, waste space

» Using a reference parameter will speed up
program, but function may change data in
structure

» Using a const reference parameter
allows read-only access to reference
parameter, does not waste space, speed

Copyright © 2012 Pearson Education, Inc.

Revised showItem Function

void showItem{const InventoryIltem &p)

{
cout << fixed << showpolnt << setprecision(2);
cout << "Part Number: " << p.partlum << endl;
cout << "Description: " << p.description << endl;
cout << "Units On Hand: " << p.conHand << endl;
cout << "Price: 5" << p.price << endl;

Copyright © 2012 Pearson Education, Inc.

Returning a Structure from a
Function

Copyright © 2012 Pearson Education, Inc.

Returning a Structure from a

Function

» Function can return a struct:
Student getStudentData(); // prototype
stul = getStudentData(); // call

» Function must define a local structure

—for internal use
—for use with return statement

Copyright © 2012 Pearson Education, Inc.

Returning a Structure from a
Function - Example

Student getStudentData ()

{ Student tempStu;
cin >> tempStu.studentID;
getline (cin, tempStu.pData.name) ;
getline(cin, tempStu.pData.address);
getline(cin, tempStu.pData.city):;
cin >> tempStu.yearInSchool;
cin >> tempStu.gpa;
return tempStu;

Copyright © 2012 Pearson Education, Inc.

Program 11-7

// This program uses a function to return a structure. This
// is a modification of Program 11-2.

#include <iostream>

#include <iomanip>

#include <cmath> // For the pow function

using namespace std;

// constant for pi.
const double PI = 3.14159;

// structure declaration
struct Circle

{
double radius; // A circle's radius
double diameter; // A circle's diameter
double area; // A circle's area

i

// Function prototype
circle getInfo();

int main()

{
circle c; // Define a structure variable

Copyright © 2012 Pearson Education, Inc.

// Get data about the circle.
c = getInfo();

// calculate the circle's area.
c.area = PI * pow(c.radius, 2.0);

// Display the circle data.
cout << "The radius and area of the circle are:\n";
cout << fixed << setprecision(2);

cout << "Radius: " << c.radius << endl;

cout << "Area: " << c.area << endl;

return 0;

Copyright © 2012 Pearson Education, Inc.

7/ PR

// Definition of function getInfo. This function uses a local *
// variable, tempCircle, which is a circle structure. The user *
// enters the diameter of the circle, which is stored in *
// tempCircle.diameter. The function then calculates the radius *
// which is stored in tempCircle.radius. tempCircle is then *

*

*

// returned from the function.
7/ .

circle getInfo()
circle tempCircle; // Temporary structure variable

// store circle data in the temporary variable.
cout << "Enter the diameter of a circle: ";
cin >> tempcircle.diameter;

tempCircle.radius = tempCircle.diameter / 2.

// Return the temporary variable.
return tempCircle;

Program Output with Example Input Shown in Bold
Enter the diameter of a circle: 10 [Enter]
The radius and area of the circle are:
Radius: 5.00

Area: 78.54

Copyright © 2012 Pearson Education, Inc.

Pointers to Structures

Copyright © 2012 Pearson Education, Inc.

Pointers to Structures

» A structure variable has an address

» Pointers to structures are variables that
can hold the address of a structure:
Student *stuPtr;

» Can use & operator to assign address:
stuPtr = & stul;

» Structure pointer can be a function
parameter

11-41
Copyright © 2012 Pearson Education, Inc.

Accessing Structure Members
via Pointer Variables

* Must use () to dereference pointer
variable, not field within structure:
cout << (*stuPtr).studentID;

» Can use structure pointer operator to
eliminate () and use clearer notation:

cout << stuPtr->studentID;

11-42
Copyright © 2012 Pearson Education, Inc.

From Program 11-8

void getData(Student *s)

{
// Get the student name.
cout << "Student name: ";
getline(cin, s->name);

// Get the student ID number.
cout << "Student ID Number: ";
cin >> s=->idNum;

// Get the credit hours enrolled.
cout << "Credit Hours Enrolled: ";
cin >> s->creditHours;

// Get the GPA.
cout << "Current GPA: ";
cin >> s->gpa;

Copyright © 2012 Pearson Education, Inc.

11.11

Unions

Copyright © 2012 Pearson Education, Inc.

Unions

e Similar to a struct, but
— all members share a single memory location, and
— only one member of the union can be used at a time

» Declared using union, otherwise the same as
struct

» Variables defined as for struct variables

Copyright © 2012 Pearson Education, Inc.

Anonymous Union

* A union without a union tag:
union { ... };

* Must use static if declared outside of a function
« Allocates memory at declaration time
« Can refer to members directly without dot operator

« Uses only one memory location, saves space

Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

* An enumerated data type is a programmer-
defined data type. It consists of values
known as enumerators, which represent
integer constants.

Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

+ Example:

enum Day { MONDAY, TUESDAY,
WEDNESDAY, THURSDAY,
FRIDAY };

* The identifiers MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, and FRIDAY,
which are listed inside the braces, are
enumerators. They represent the values
that belong to the Day data type.

Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

enum Day { MONDAY, TUESDAY,
WEDNESDAY, THURSDAY,
FRIDAY };

Note that the enumerators are not strings,
so they aren’t enclosed in quotes.
They are identifiers.

Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

» Once you have created an enumerated
data type in your program, you can define
variables of that type. Example:

Day workDay;

* This statement defines workDay as a
variable of the Day type.

Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

+ We may assign any of the enumerators
MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, or FRIDAY to a variable of the
Day type. Example:

workDay = WEDNESDAY;

Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

» So, what is an enumerator?
» Think of it as an integer named constant

+ Internally, the compiler assigns integer
values to the enumerators, beginning at 0.

Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

enum Day { MONDAY, TUESDAY,
WEDNESDAY, THURSDAY,
FRIDAY };

In memory...

MONDAY =0
TUESDAY =1
WEDNESDAY =2
THURSDAY =3
FRIDAY =4

Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

+ Using the Day declaration, the following
code...
cout << MONDAY << " "
<< WEDNESDAY << " ¢
<< FRIDAY << endl;

...will produce this output:

02 4

Copyright © 2012 Pearson Education, Inc.

Assigning an integer to an enum
Variable

* You cannot directly assign an integer value
to an enum variable. This will not work:

workDay = 3; // Error!
* Instead, you must cast the integer:

workDay = static_cast<Day>(3);

Copyright © 2012 Pearson Education, Inc.

Assigning an Enumerator to an int
Variable

* You CAN assign an enumerator to an int
variable. For example:

int x;
x = THURSDAY;

» This code assigns 3 to x.

Copyright © 2012 Pearson Education, Inc.

Comparing Enumerator Values

* Enumerator values can be compared using
the relational operators. For example, using
the Day data type the following code will
display the message "Friday is greater than
Monday.*

if (FRIDAY > MONDAY)
{
cout << "Friday is greater "
<< "than Monday.\n";

Copyright © 2012 Pearson Education, Inc.

Program 11-12

// This program demonstrates an enumerated data type.
#include <iostream>

#include <iomanip>

using namespace std;

enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };

int main()
1{
const int NUM DAYS = 53 // The number of days
double sales[NUM_DAYS]; // To hold sales for each day
double total = 0.0z // Bccumulator
int index; // Loop counter

// Get the sales for each day.
for (index = MONDAY; index <= FRIDAY; index-++)
{
cout << "Enter the sales for day "
<< index << ": ";
cin >> sales[index];
}

Copyright © 2012 Pearson Education, Inc.

Program 11-12 (Continued)

// Caleculate the total sales.
for (index = MONDAY; index <= FRIDAY; index++)
total += sales[index];

// Display the total.
cout << "The total sales are §" << setprecision(2)

<< fixed << total << endl;

return 0;

L] Qutput with Input Shown in Bold
Enter the sales for day 0: 1525.00 [Enter]
Enter the sales for day l: 1896.50 [Enter]
Enter the sales for day 2: 1975.63 [Enter]
Enter the sales for day 3: 1678.33 [Enter]
Enter the sales for day 4: 1498.52 [Enter]
The total sales are $8573.98

Copyright © 2012 Pearson Education, Inc.

Enumerated Data Types

* Program 11-12 shows enumerators used to
control a loop:

// Get the sales for each day.
for (index = MONDAY; index <= FRIDAY;
index++)
{
cout << "Enter the sales for day "
<< index << ": ";
cin >> sales[index];

11-61
Copyright © 2012 Pearson Education, Inc.

Anonymous Enumerated Types

* An anonymous enumerated type is simply
one that does not have a name. For
example, in Program 11-13 we could have
declared the enumerated type as:

enum { MONDAY, TUESDAY,

WEDNESDAY, THURSDAY,
FRIDAY };

Copyright © 2012 Pearson Education, Inc.

Using Math Operators with enum
Variables

* You can run into problems when trying to perform math
operations with enum variables. For example:

Day dayl, day2; // Define two Day variables.
dayl = TUESDAY; // Assign TUESDAY to dayl.
day2 = dayl + 1;// ERROR! Will not work!

« The third statement will not work because the expression
dayl + 1 resultsin the integer value 2, and you cannot
store an int in an enum variable.

Copyright © 2012 Pearson Education, Inc.

Using Math Operators with enum
Variables

* You can fix this by using a cast to explicitly
convert the result to Day, as shown here:

// This will work.
day2 = static cast<Day>(dayl + 1);

Copyright © 2012 Pearson Education, Inc.

Using an enum Variable to Step
through an Array's Elements

» Because enumerators are stored in memory as
integers, you can use them as array subscripts.
For example:

enum Day { MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY };

const int NUM DAYS = 5;

double sales[NUM DAYS];

sales [MONDAY] = 1525.0;

sales[TUESDAY] = 1896.5;

sales [WEDNESDAY] = 1975.63;

sales [THURSDAY] = 1678.33;

sales[FRIDAY] = 1498.52;

Copyright © 2012 Pearson Education, Inc.

Using an enum Variable to Step
through an Array's Elements

* Remember, though, you cannot use the ++
operator on an enum variable. So, the

following loop will NOT work.

Day workDay; // Define a Day variable
// ERROR!!! This code will NOT work.
for (workDay = MONDAY; workDay <= FRIDAY; workDay++)
{
cout << "Enter the sales for day "
<< workDay << ": ";
cin >> sales[workDay];

Copyright © 2012 Pearson Education, Inc.

Using an enum Variable to Step
through an Array's Elements

* You must rewrite the loop’s update
expression using a cast instead of ++:

for (workDay = MONDAY; workDay <= FRIDAY;
workDay = static_cast<Day>(workDay + 1))

cout << "Enter the sales for day "

<< workDay << ": ";
cin >> sales([workDay];

Copyright © 2012 Pearson Education, Inc.

Program 11-13

// This program demonstrates an enumerated data type.
tinclude <iostream>

tinclude <iomanip>

using namespace std;

enum Day { MONDAY, TUESDAY, WEDMESDRY, THURSDAY, FRIDAY };

int main()

1
// The number of days

B // To hold sales for each day
/{ Rccumulator
// Loop counter

const int NUM DAYS = 5
double sales[NUM _DAYS]
double total =
Day workDay;

Copyright © 2012 Pearson Education, Inc.

Program 11-13 (continued)

// Get the sales for each day.
for (workDay = MONDAY; workDay <= FRIDAY;
workDay = static_cast<Day>(workDay + 1))

cout << "Enter the sales for day
<< workDay << ": ";
cin >> sales[workbDay];

// calculate the total sales.
for (workDay = MONDAY; workDay <= FRIDAY;
workDay = static_cast<Day>(workDay + 1))

total += sales[workDay];

// Display the total.
cout << "The total sales are §" << setprecision(2)
<< fixed << total << endl;

return 0;
¥

Program Output with Example Input Shown In Bold
Enter the sales for day 0: 1525.00 [Enter]
Enter the sales for day 1: 1896.50 [Enter]
Enter the sales for day 2: 1975.63 [Enter]
Enter the sales for day 3: 1678.33 [Enter]
Enter the sales for day 4: 1498.52 [Enter]
The total sales are $8573.98

Copyright © 2012 Pearson Education, Inc.

Enumerators Must Be Unique

Within the same Scope

* Enumerators must be unique within the same
scope. For example, an error will result if both

of the following enumerated types are
declared within the same scope:

enum Presidents { MCKINLEY, ROOSEVELT, TAFT };

enum VicePresidents { ROOSEVELT, FAIRBANKS,
SHERMAN };

ROOSEVELT is declared twice.

Copyright © 2012 Pearson Education, Inc.

Declaring the Type and Defining
the Variables in One Statement

* You can declare an enumerated data type
and define one or more variables of the
type in the same statement. For example:

enum Car { PORSCHE, FERRARI, JAGUAR } sportsCar;

This code declares the Car data type and defines a
variable named sportsCar.

Copyright © 2012 Pearson Education, Inc.

