
Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Chapter 9:

Pointers

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

9.1

Getting the Address of a Variable

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Getting the Address of a

Variable
• Each variable in program is stored at a

unique address

• Use address operator & to get address of

a variable:

int num = -99;

cout << # // prints address

// in hexadecimal

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

9.2

Pointer Variables

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointer Variables

• Pointer variable : Often just called a
pointer, it's a variable that holds an
address

• Because a pointer variable holds the
address of another piece of data, it "points"
to the data

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Something Like Pointers: Arrays

• We have already worked with something similar
to pointers, when we learned to pass arrays as
arguments to functions.

• For example, suppose we use this statement to
pass the array numbers to the showValues
function:

showValues(numbers, SIZE);

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Something Like Pointers : Arrays

The values parameter, in the showValues

function, points to the numbers array.

C++ automatically stores
the address of numbers in

the values parameter.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Something Like Pointers:

Reference Variables

• We have also worked with something like pointers
when we learned to use reference variables.
Suppose we have this function:

void getOrder(int &donuts)

{
cout << "How many doughnuts do you want? ";
cin >> donuts;

}

• And we call it with this code:
int jellyDonuts;
getOrder(jellyDonuts);

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Something Like Pointers:

Reference Variables

The donuts parameter, in the getOrder function,

points to the jellyDonuts variable.

C++ automatically stores

the address of
jellyDonuts in the

donuts parameter.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointer Variables

• Pointer variables are yet another way using a

memory address to work with a piece of data.

• Pointers are more "low-level" than arrays and

reference variables.

• This means you are responsible for finding the

address you want to store in the pointer and

correctly using it.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointer Variables

• Definition:

int *intptr;

• Read as:

“intptr can hold the address of an int”

• Spacing in definition does not matter:

int * intptr; // same as above

int* intptr; // same as above

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointer Variables

• Assigning an address to a pointer variable:
int *intptr;

intptr = #

• Memory layout:

num intptr

25 0x4a00

address of num: 0x4a00

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The Indirection Operator

• The indirection operator (*) dereferences

a pointer.

• It allows you to access the item that the

pointer points to.

int x = 25;

int *intptr = &x;

cout << *intptr << endl;

This prints 25.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

9-16

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

9.3

The Relationship Between Arrays

and Pointers

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The Relationship Between

Arrays and Pointers

• Array name is starting address of array

int vals[] = {4, 7, 11};

cout << vals; // displays

// 0x4a00

cout << vals[0]; // displays 4

4 7 11

starting address of vals: 0x4a00

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The Relationship Between

Arrays and Pointers
• Array name can be used as a pointer

constant:

int vals[] = {4, 7, 11};

cout << *vals; // displays 4

• Pointer can be used as an array name:

int *valptr = vals;

cout << valptr[1]; // displays 7

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

9-20

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointers in Expressions

Given:
int vals[]={4,7,11}, *valptr;

valptr = vals;

What is valptr + 1? It means (address in

valptr) + (1 * size of an int)

cout << *(valptr+1); //displays 7

cout << *(valptr+2); //displays 11

Must use () as shown in the expressions

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Array Access

• Array elements can be accessed in many ways:

Array access method Example

array name and [] vals[2] = 17;

pointer to array and [] valptr[2] = 17;

array name and subscript

arithmetic

*(vals + 2) = 17;

pointer to array and

subscript arithmetic

*(valptr + 2) = 17;

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Array Access

• Conversion: vals[i] is equivalent to

*(vals + i)

• No bounds checking performed on array

access, whether using array name or a

pointer

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

From Program 9-7

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

9.4

Pointer Arithmetic

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointer Arithmetic

• Operations on pointer variables:

9-26

Operation Example
int vals[]={4,7,11};
int *valptr = vals;

++, -- valptr++; // points at 7
valptr--; // now points at 4

+, - (pointer and int) cout << *(valptr + 2); // 11

+=, -= (pointer
and int)

valptr = vals; // points at 4
valptr += 2; // points at 11

- (pointer from pointer) cout << valptr–val; // difference
//(number of ints) between valptr
// and val

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

From Program 9-9

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

9.5

Initializing Pointers

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Initializing Pointers

• Can initialize at definition time:
int num, *numptr = #

int val[3], *valptr = val;

• Cannot mix data types:
double cost;

int *ptr = &cost; // won’t work

• Can test for an invalid address for ptr with:

if (!ptr) ...

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

9.6

Comparing Pointers

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Comparing Pointers

• Relational operators (<, >=, etc.) can be
used to compare addresses in pointers

• Comparing addresses in pointers is not
the same as comparing contents pointed
at by pointers:
if (ptr1 == ptr2) // compares

// addresses

if (*ptr1 == *ptr2) // compares

// contents

9-31

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

9.7

Pointers as Function Parameters

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointers as Function

Parameters

• A pointer can be a parameter

• Works like reference variable to allow change to
argument from within function

• Requires:
1) asterisk * on parameter in prototype and heading
void getNum(int *ptr); // ptr is pointer to an int

2) asterisk * in body to dereference the pointer

cin >> *ptr;

3) address as argument to the function
getNum(&num); // pass address of num to getNum

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Example

void swap(int *x, int *y)

{ int temp;

temp = *x;

*x = *y;

*y = temp;

}

int num1 = 2, num2 = -3;

swap(&num1, &num2);

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

(Program Continues)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointers to Constants

• If we want to store the address of a

constant in a pointer, then we need to

store it in a pointer-to-const.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointers to Constants

• Example: Suppose we have the following
definitions:

const int SIZE = 6;
const double payRates[SIZE] =

{ 18.55, 17.45, 12.85,

14.97, 10.35, 18.89 };

• In this code, payRates is an array of
constant doubles.

9-38

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointers to Constants

• Suppose we wish to pass the payRates array to
a function? Here's an example of how we can do
it.

void displayPayRates(const double *rates, int size)
{

for (int count = 0; count < size; count++)
{

cout << "Pay rate for employee " << (count + 1)
<< " is $" << *(rates + count) << endl;

}
}

The parameter, rates, is a pointer to const double.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Declaration of a Pointer to

Constant

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Constant Pointers

• A constant pointer is a pointer that is

initialized with an address, and cannot

point to anything else.

• Example

int value = 22;

int * const ptr = &value;

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Constant Pointers

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Constant Pointers to Constants

• A constant pointer to a constant is:

– a pointer that points to a constant

– a pointer that cannot point to anything except
what it is pointing to

• Example:
int value = 22;

const int * const ptr = &value;

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Constant Pointers to Constants

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

9.8

Dynamic Memory Allocation

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Dynamic Memory Allocation

• Can allocate storage for a variable while
program is running

• Computer returns address of newly
allocated variable

• Uses new operator to allocate memory:

double *dptr;

dptr = new double;

• new returns address of memory location

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Dynamic Memory Allocation

• Can also use new to allocate array:
const int SIZE = 25;
arrayPtr = new double[SIZE];

• Can then use [] or pointer arithmetic to access array:
for(i = 0; i < SIZE; i++)

*arrayptr[i] = i * i;

or
for(i = 0; i < SIZE; i++)

*(arrayptr + i) = i * i;

• Program will terminate if not enough memory available to
allocate

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Releasing Dynamic Memory

• Use delete to free dynamic memory:

delete fptr;

• Use [] to free dynamic array:

delete [] arrayptr;

• Only use delete with dynamic memory!

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Program 9-14 (Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Notice that in line 49 the value 0 is assigned to the sales pointer. It is a

good practice to store 0 in a pointer variable after using delete on it. First,

it prevents code from inadvertently using the pointer to access the area of

memory that was freed. Second, it prevents errors from occurring if
delete is accidentally called on the pointer again. The delete operator

is designed to have no effect when used on a null pointer.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

9.9

Returning Pointers from Functions

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Returning Pointers from

Functions
• Pointer can be the return type of a function:

int* newNum();

• The function must not return a pointer to a local
variable in the function.

• A function should only return a pointer:
– to data that was passed to the function as an

argument, or

– to dynamically allocated memory

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

From Program 9-15

