
Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Chapter 8:

Searching and

Sorting Arrays

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

8.1

Introduction to Search Algorithms

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Introduction to Search

Algorithms

• Search: locate an item in a list of

information

• Two algorithms we will examine:

– Linear search

– Binary search

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Linear Search

• Also called the sequential search

• Starting at the first element, this algorithm

sequentially steps through an array

examining each element until it locates the

value it is searching for.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Linear Search - Example

• Array numlist contains:

• Searching for the the value 11, linear search
examines 17, 23, 5, and 11

• Searching for the the value 7, linear search
examines 17, 23, 5, 11, 2, 29, and 3

17 23 5 11 2 29 3

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Linear Search

• Algorithm:
set found to false; set position to –1; set index to 0

while index < number of elts. and found is false

if list[index] is equal to search value

found = true

position = index

end if

add 1 to index

end while

return position

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

A Linear Search Function

int searchList(int list[], int numElems, int value)

{

int index = 0; // Used as a subscript to search array

int position = -1; // To record position of search value

bool found = false; // Flag to indicate if value was found

while (index < numElems && !found)

{

if (list[index] == value) // If the value is found

{

found = true; // Set the flag

position = index; // Record the value's subscript

}

index++; // Go to the next element

}

return position; // Return the position, or -1

}

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Linear Search - Tradeoffs

• Benefits:

– Easy algorithm to understand

– Array can be in any order

• Disadvantages:

– Inefficient (slow): for array of N elements,

examines N/2 elements on average for value

in array, N elements for value not in array

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Binary Search

Requires array elements to be in order

1. Divides the array into three sections:
– middle element

– elements on one side of the middle element

– elements on the other side of the middle element

2. If the middle element is the correct value, done.
Otherwise, go to step 1. using only the half of the
array that may contain the correct value.

3. Continue steps 1. and 2. until either the value is
found or there are no more elements to examine

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Binary Search - Example

• Array numlist2 contains:

• Searching for the the value 11, binary
search examines 11 and stops

• Searching for the the value 7, linear
search examines 11, 3, 5, and stops

2 3 5 11 17 23 29

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Binary Search

Set first index to 0.

Set last index to the last subscript in the array.

Set found to false.

Set position to -1.

While found is not true and first is less than or equal to last

Set middle to the subscript half-way between array[first] and array[last].

If array[middle] equals the desired value

Set found to true.

Set position to middle.

Else If array[middle] is greater than the desired value

Set last to middle - 1.

Else

Set first to middle + 1.

End If.

End While.

Return position.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

A Binary Search Function

int binarySearch(int array[], int size, int value)

{

int first = 0, // First array element

last = size - 1, // Last array element

middle, // Mid point of search

position = -1; // Position of search value

bool found = false; // Flag

while (!found && first <= last)

{

middle = (first + last) / 2; // Calculate mid point

if (array[middle] == value) // If value is found at mid

{

found = true;

position = middle;

}

else if (array[middle] > value) // If value is in lower half

last = middle - 1;

else

first = middle + 1; // If value is in upper half

}

return position;

}

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Binary Search - Tradeoffs

• Benefits:

– Much more efficient than linear search. For

array of N elements, performs at most log2N

comparisons

• Disadvantages:

– Requires that array elements be sorted

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

8.3

Introduction to Sorting Algorithms

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Introduction to Sorting

Algorithms
• Sort: arrange values into an order:

– Alphabetical

– Ascending numeric

– Descending numeric

• Two algorithms considered here:

– Bubble sort

– Selection sort

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Bubble Sort

Concept:

– Compare 1st two elements

• If out of order, exchange them to put in order

– Move down one element, compare 2nd and 3rd

elements, exchange if necessary. Continue until end

of array.

– Pass through array again, exchanging as necessary

– Repeat until pass made with no exchanges

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Example – First Pass

Array numlist3 contains:

17 23 5 11

compare values
17 and 23 – in correct
order, so no exchange

compare values 23 and
5 – not in correct order,
so exchange them

compare values 23 and
11 – not in correct order,
so exchange them

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Example – Second Pass

After first pass, array numlist3 contains:

17 5 11 23

compare values 17 and
5 – not in correct order,
so exchange them

compare values 17 and
11 – not in correct order,
so exchange them

compare values 17 and
23 – in correct order,
so no exchange

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Example – Third Pass

After second pass, array numlist3 contains:

5 11 17 23

compare values 5 and
11 – in correct order,
so no exchange

compare values 11 and
17 – in correct order,
so no exchange

compare values 17 and
23 – in correct order,
so no exchange

No exchanges, so

array is in order

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

A Bubble Sort Function –

From Program 8-4

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Bubble Sort - Tradeoffs

• Benefit:

– Easy to understand and implement

• Disadvantage:

– Inefficient: slow for large arrays

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Selection Sort

• Concept for sort in ascending order:

– Locate smallest element in array. Exchange it

with element in position 0

– Locate next smallest element in array.

Exchange it with element in position 1.

– Continue until all elements are arranged in

order

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Selection Sort - Example

Array numlist contains:

1. Smallest element is 2. Exchange 2 with

element in 1st position in array:

11 2 29 3

2 11 29 3

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Example (Continued)

2. Next smallest element is 3. Exchange 3 with

element in 2nd position in array:

3. Next smallest element is 11. Exchange 11

with element in 3rd position in array:

2 3 29 11

2 3 11 29

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

A Selection Sort Function –

From Program 8-5
35 void selectionSort(int array[], int size)

36 {

37 int startScan, minIndex, minValue;

38

39 for (startScan = 0; startScan < (size - 1); startScan++)

40 {

41 minIndex = startScan;

42 minValue = array[startScan];

43 for(int index = startScan + 1; index < size; index++)

44 {

45 if (array[index] < minValue)

46 {

47 minValue = array[index];

48 minIndex = index;

49 }

50 }

51 array[minIndex] = array[startScan];

52 array[startScan] = minValue;

53 }

54 }

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Selection Sort - Tradeoffs

• Benefit:

– More efficient than Bubble Sort, since fewer

exchanges

• Disadvantage:

– May not be as easy as Bubble Sort to

understand

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

8.5

Sorting and Searching Vectors

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Sorting and Searching Vectors

• Sorting and searching algorithms can be

applied to vectors as well as arrays

• Need slight modifications to functions to

use vector arguments:

– vector <type> & used in prototype

– No need to indicate vector size – functions
can use size member function to calculate

