
Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Chapter 7:

Arrays

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

7.1

Arrays Hold Multiple Values

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Arrays Hold Multiple Values

• Array: variable that can store multiple

values of the same type

• Values are stored in adjacent memory

locations

• Declared using [] operator:

int tests[5];

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Array - Memory Layout

• The definition:

int tests[5];

allocates the following memory:

first
element

second
element

third
element

fourth
element

fifth
element

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Array Terminology

In the definition int tests[5];

• int is the data type of the array elements

• tests is the name of the array

• 5, in [5], is the size declarator. It shows
the number of elements in the array.

• The size of an array is (number of
elements) * (size of each element)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Array Terminology

• The size of an array is:

– the total number of bytes allocated for it

– (number of elements) * (number of bytes for
each element)

• Examples:
int tests[5] is an array of 20 bytes,
assuming 4 bytes for an int

long double measures[10]is an array of
80 bytes, assuming 8 bytes for a long double

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Size Declarators

• Named constants are commonly used as

size declarators.

const int SIZE = 5;
int tests[SIZE];

• This eases program maintenance when

the size of the array needs to be changed.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

7.2

Accessing Array Elements

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Accessing Array Elements

• Each element in an array is assigned a

unique subscript.

• Subscripts start at 0

0 1 2 3 4

subscripts:

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Accessing Array Elements

• The last element’s subscript is n-1 where n

is the number of elements in the array.

0 1 2 3 4

subscripts:

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Accessing Array Elements

• Array elements can be used as regular variables:

tests[0] = 79;

cout << tests[0];

cin >> tests[1];

tests[4] = tests[0] + tests[1];

• Arrays must be accessed via individual

elements:

cout << tests; // not legal

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

(Program Continues)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Here are the contents of the hours array, with the values

entered by the user in the example output:

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Accessing Array Contents

• Can access element with a constant or

literal subscript:

cout << tests[3] << endl;

• Can use integer expression as subscript:

int i = 5;

cout << tests[i] << endl;

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Using a Loop to Step Through

an Array
• Example – The following code defines an
array, numbers, and assigns 99 to each
element:

const int ARRAY_SIZE = 5;

int numbers[ARRAY_SIZE];

for (int count = 0; count < ARRAY_SIZE; count++)

numbers[count] = 99;

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

A Closer Look At the Loop

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Default Initialization

• Global array � all elements initialized to 0

by default

• Local array � all elements uninitialized by
default

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

7.3

No Bounds Checking in C++

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

No Bounds Checking in C++

• When you use a value as an array

subscript, C++ does not check it to make

sure it is a valid subscript.

• In other words, you can use subscripts

that are beyond the bounds of the array.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Code From Program 7-5

• The following code defines a three-element

array, and then writes five values to it!

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

What the Code Does

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

No Bounds Checking in C++

• Be careful not to use invalid subscripts.

• Doing so can corrupt other memory

locations, crash program, or lock up

computer, and cause elusive bugs.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Off-By-One Errors

• An off-by-one error happens when you use
array subscripts that are off by one.

• This can happen when you start subscripts
at 1 rather than 0:

// This code has an off-by-one error.

const int SIZE = 100;

int numbers[SIZE];

for (int count = 1; count <= SIZE; count++)

numbers[count] = 0;

Array Initialization

7.4

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

7.4

Array Initialization

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Array Initialization

• Arrays can be initialized with an

initialization list:

const int SIZE = 5;
int tests[SIZE] = {79,82,91,77,84};

• The values are stored in the array in the

order in which they appear in the list.

• The initialization list cannot exceed the

array size.
7-26

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Code From Program 7-6

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Partial Array Initialization

• If array is initialized with fewer initial

values than the size declarator, the
remaining elements will be set to 0:

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Implicit Array Sizing

• Can determine array size by the size of

the initialization list:

int quizzes[]={12,17,15,11};

• Must use either array size declarator or

initialization list at array definition

12 17 15 11

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

7.5

Processing Array Contents

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Processing Array Contents

• Array elements can be treated as ordinary
variables of the same type as the array

• When using ++, -- operators, don’t
confuse the element with the subscript:
tests[i]++; // add 1 to tests[i]

tests[i++]; // increment i, no

// effect on tests

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Array Assignment

To copy one array to another,

• Don’t try to assign one array to the other:

newTests = tests; // Won't work

• Instead, assign element-by-element:

for (i = 0; i < ARRAY_SIZE; i++)

newTests[i] = tests[i];

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Printing the Contents of an

Array

• You can display the contents of a
character array by sending its name to
cout:

char fName[] = "Henry";
cout << fName << endl;

But, this ONLY works with character arrays!

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Printing the Contents of an

Array

• For other types of arrays, you must print

element-by-element:

for (i = 0; i < ARRAY_SIZE; i++)

cout << tests[i] << endl;

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Summing and Averaging

Array Elements

• Use a simple loop to add together array
elements:
int tnum;

double average, sum = 0;

for(tnum = 0; tnum < SIZE; tnum++)

sum += tests[tnum];

• Once summed, can compute average:
average = sum / SIZE;

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Finding the Highest Value in an

Array
int count;

int highest;

highest = numbers[0];

for (count = 1; count < SIZE; count++)

{

if (numbers[count] > highest)

highest = numbers[count];

}

When this code is finished, the highest variable will contains the highest value

in the numbers array.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Finding the Lowest Value in an

Array

int count;

int lowest;

lowest = numbers[0];

for (count = 1; count < SIZE; count++)

{

if (numbers[count] < lowest)

lowest = numbers[count];

}

When this code is finished, the lowest variable will contains the lowest value in

the numbers array.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Partially-Filled Arrays

• If it is unknown how much data an

array will be holding:

–Make the array large enough to hold the

largest expected number of elements.

–Use a counter variable to keep track of

the number of items stored in the array.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Comparing Arrays

• To compare two arrays, you must compare

element-by-element:

const int SIZE = 5;
int firstArray[SIZE] = { 5, 10, 15, 20, 25 };
int secondArray[SIZE] = { 5, 10, 15, 20, 25 };
bool arraysEqual = true; // Flag variable
int count = 0; // Loop counter variable
// Compare the two arrays.
while (arraysEqual && count < SIZE)
{

if (firstArray[count] != secondArray[count])
arraysEqual = false;

count++;
}
if (arraysEqual)

cout << "The arrays are equal.\n";
else

cout << "The arrays are not equal.\n";

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

7.6

Using Parallel Arrays

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Using Parallel Arrays

• Parallel arrays: two or more arrays that

contain related data

• A subscript is used to relate arrays:

elements at same subscript are related

• Arrays may be of different types

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Parallel Array Example

const int SIZE = 5; // Array size

int id[SIZE]; // student ID

double average[SIZE]; // course average

char grade[SIZE]; // course grade

...

for(int i = 0; i < SIZE; i++)
{

cout << "Student ID: " << id[i]

<< " average: " << average[i]

<< " grade: " << grade[i]

<< endl;
}

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

(Program Continues)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Program 7-12 (Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The hours and payRate arrays are related through their subscripts:

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

7.7

Arrays as Function Arguments

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Arrays as Function Arguments

• To pass an array to a function, just use the array
name:

showScores(tests);

• To define a function that takes an array
parameter, use empty [] for array argument:

void showScores(int []);

// function prototype

void showScores(int tests[])

// function header

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Arrays as Function Arguments

• When passing an array to a function, it is common
to pass array size so that function knows how many
elements to process:

showScores(tests, ARRAY_SIZE);

• Array size must also be reflected in prototype,
header:
void showScores(int [], int);

// function prototype

void showScores(int tests[], int size)

// function header

7-48

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

(Program Continues)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Program 7-14 (Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Modifying Arrays in Functions

• Array names in functions are like

reference variables – changes made to

array in a function are reflected in actual

array in calling function

• Need to exercise caution that array is not

inadvertently changed by a function

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

7.8

Two-Dimensional Arrays

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Two-Dimensional Arrays

• Can define one array for multiple sets of
data

• Like a table in a spreadsheet

• Use two size declarators in definition:

const int ROWS = 4, COLS = 3;
int exams[ROWS][COLS];

• First declarator is number of rows;
second is number of columns

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Two-Dimensional Array

Representation

const int ROWS = 4, COLS = 3; int
exams[ROWS][COLS];

• Use two subscripts to access element:
exams[2][2] = 86;

exams[0][0] exams[0][1] exams[0][2]

exams[1][0] exams[1][1] exams[1][2]

exams[2][0] exams[2][1] exams[2][2]

exams[3][0] exams[3][1] exams[3][2]

columns

r
o
w
s

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

7-57

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

2D Array Initialization

• Two-dimensional arrays are initialized row-by-row:
const int ROWS = 2, COLS = 2;
int exams[ROWS][COLS] = { {84, 78},

{92, 97} };

• Can omit inner { }, some initial values in a row –

array elements without initial values will be set to 0

or NULL

84 78

92 97

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Two-Dimensional Array as

Parameter, Argument

• Use array name as argument in function call:
getExams(exams, 2);

• Use empty [] for row, size declarator for column in

prototype, header:
const int COLS = 2;

// Prototype

void getExams(int [][COLS], int);

// Header

void getExams(int exams[][COLS], int rows)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Example – The showArray

Function from Program 7-19

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

How showArray is Called

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Summing All the Elements in a

Two-Dimensional Array
• Given the following definitions:

const int NUM_ROWS = 5; // Number of rows

const int NUM_COLS = 5; // Number of columns

int total = 0; // Accumulator

int numbers[NUM_ROWS][NUM_COLS] =

{{2, 7, 9, 6, 4},

{6, 1, 8, 9, 4},

{4, 3, 7, 2, 9},

{9, 9, 0, 3, 1},

{6, 2, 7, 4, 1}};

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Summing All the Elements in a

Two-Dimensional Array

// Sum the array elements.

for (int row = 0; row < NUM_ROWS; row++)

{

for (int col = 0; col < NUM_COLS; col++)

total += numbers[row][col];

}

// Display the sum.

cout << "The total is " << total << endl;

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Summing the Rows of a

Two-Dimensional Array
• Given the following definitions:

const int NUM_STUDENTS = 3;

const int NUM_SCORES = 5;

double total; // Accumulator

double average; // To hold average scores

double scores[NUM_STUDENTS][NUM_SCORES] =

{{88, 97, 79, 86, 94},

{86, 91, 78, 79, 84},

{82, 73, 77, 82, 89}};

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Summing the Rows of a

Two-Dimensional Array
// Get each student's average score.

for (int row = 0; row < NUM_STUDENTS; row++)

{

// Set the accumulator.
total = 0;

// Sum a row.

for (int col = 0; col < NUM_SCORES; col++)

total += scores[row][col];

// Get the average

average = total / NUM_SCORES;

// Display the average.

cout << "Score average for student "
<< (row + 1) << " is " << average <<endl;

}

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Summing the Columns of a

Two-Dimensional Array
• Given the following definitions:

const int NUM_STUDENTS = 3;

const int NUM_SCORES = 5;

double total; // Accumulator

double average; // To hold average scores

double scores[NUM_STUDENTS][NUM_SCORES] =

{{88, 97, 79, 86, 94},

{86, 91, 78, 79, 84},

{82, 73, 77, 82, 89}};

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Summing the Columns of a

Two-Dimensional Array
// Get the class average for each score.

for (int col = 0; col < NUM_SCORES; col++)

{

// Reset the accumulator.

total = 0;
// Sum a column

for (int row = 0; row < NUM_STUDENTS; row++)

total += scores[row][col];

// Get the average

average = total / NUM_STUDENTS;

// Display the class average.

cout << "Class average for test " << (col + 1)

<< " is " << average << endl;
}

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

7.9

Arrays with Three or More

Dimensions

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Arrays with Three or More

Dimensions

• Can define arrays with any number of

dimensions:

short rectSolid[2][3][5];

double timeGrid[3][4][3][4];

• When used as parameter, specify all but

1st dimension in prototype, heading:

void getRectSolid(short [][3][5]);

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

7.11

Introduction to the STL vector

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Introduction to the STL vector

• A data type defined in the Standard
Template Library (covered more in Chapter
16)

• Can hold values of any type:
vector<int> scores;

• Automatically adds space as more is
needed – no need to determine size at
definition

• Can use [] to access elements

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Declaring Vectors

• You must #include<vector>

• Declare a vector to hold int element:
vector<int> scores;

• Declare a vector with initial size 30:
vector<int> scores(30);

• Declare a vector and initialize all elements to 0:
vector<int> scores(30, 0);

• Declare a vector initialized to size and contents
of another vector:

vector<int> finals(scores);

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Adding Elements to a Vector

• Use push_back member function to add

element to a full array or to an array that

had no defined size:

scores.push_back(75);

• Use size member function to determine

size of a vector:

howbig = scores.size();

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Removing Vector Elements

• Use pop_back member function to remove last
element from vector:

scores.pop_back();

• To remove all contents of vector, use clear
member function:

scores.clear();

• To determine if vector is empty, use empty
member function:

while (!scores.empty()) ...

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Other Useful Member Functions

Member
Function

Description Example

at(elt) Returns the value of the element at
position elt in the vector

cout <<
vec1.at(i);

capacity() Returns the maximum number of
elements a vector can store without
allocating more memory

maxelts =
vec1.capacity();

reverse() Reverse the order of the elements
in a vector

vec1.reverse();

resize
(elts,val)

Add elements to a vector,
optionally initializes them

vec1.resize(5,0);

swap(vec2) Exchange the contents of two
vectors

vec1.swap(vec2);

