
Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Chapter 6:

Functions

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

6.1

Modular Programming

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Modular Programming

• Modular programming: breaking a program up
into smaller, manageable functions or modules

• Function: a collection of statements to perform a
task

• Motivation for modular programming:
– Improves maintainability of programs

– Simplifies the process of writing programs

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

6.2

Defining and Calling Functions

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Defining and Calling Functions

• Function call: statement causes a function

to execute

• Function definition: statements that make

up a function

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Function Definition

• Definition includes:

– return type: data type of the value that function

returns to the part of the program that called it

– name: name of the function. Function names follow

same rules as variables

– parameter list: variables containing values passed to

the function

– body: statements that perform the function’s task,
enclosed in {}

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Function Definition

Note: The line that reads int main()is the

function header.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Function Return Type

• If a function returns a value, the type of the value
must be indicated:

int main()

• If a function does not return a value, its return
type is void:

void printHeading()

{

cout << "Monthly Sales\n";

}

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Calling a Function

• To call a function, use the function name
followed by () and ;

printHeading();

• When called, program executes the body of the
called function

• After the function terminates, execution resumes
in the calling function at point of call.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Functions in Program 6-1

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Flow of Control in Program 6-1

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Calling Functions

• main can call any number of functions

• Functions can call other functions

• Compiler must know the following about a
function before it is called:

– name

– return type

– number of parameters

– data type of each parameter

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

6.3

Function Prototypes

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Function Prototypes

• Ways to notify the compiler about a function
before a call to the function:

– Place function definition before calling function’s
definition

– Use a function prototype (function declaration) – like
the function definition without the body
• Header: void printHeading()

• Prototype: void printHeading();

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

(Program Continues)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Program 6-5 (Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Prototype Notes

• Place prototypes near top of program

• Program must include either prototype or full

function definition before any call to the

function – compiler error otherwise

• When using prototypes, can place function
definitions in any order in source file

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

6.4

Sending Data into a Function

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Sending Data into a Function

• Can pass values into a function at time of call:

c = pow(a, b);

• Values passed to function are arguments

• Variables in a function that hold the values

passed as arguments are parameters

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

A Function with a Parameter

Variable

void displayValue(int num)

{

cout << "The value is " << num << endl;

}

The integer variable num is a parameter.

It accepts any integer value passed to the function.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

(Program Continues)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The function call in line 11 passes the value 5

as an argument to the function.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Other Parameter Terminology

• A parameter can also be called a formal

parameter or a formal argument

• An argument can also be called an actual

parameter or an actual argument

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Parameters, Prototypes, and

Function Headers

• For each function argument,

– the prototype must include the data type of
each parameter inside its parentheses

– the header must include a declaration for
each parameter in its ()

void evenOrOdd(int); //prototype

void evenOrOdd(int num) //header

evenOrOdd(val); //call

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Function Call Notes

• Value of argument is copied into parameter when
the function is called

• A parameter’s scope is the function which uses it

• Function can have multiple parameters

• There must be a data type listed in the prototype
() and an argument declaration in the function
header () for each parameter

• Arguments will be promoted/demoted as
necessary to match parameters

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Passing Multiple Arguments

When calling a function and passing
multiple arguments:

– the number of arguments in the call must
match the prototype and definition

– the first argument will be used to initialize the
first parameter, the second argument to
initialize the second parameter, etc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

(Program Continues)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Program 6-8 (Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The function call in line 18 passes value1,

value2, and value3 as a arguments to the

function.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

6.5

Passing Data by Value

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Passing Data by Value

• Pass by value: when an argument is

passed to a function, its value is copied

into the parameter.

• Changes to the parameter in the function

do not affect the value of the argument

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Passing Information to

Parameters by Value
• Example: int val=5;

evenOrOdd(val);

• evenOrOdd can change variable num, but
it will have no effect on variable val

5
val

argument in

calling function

5
num

parameter in
evenOrOdd function

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

6.6

Using Functions in

Menu-Driven Programs

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Using Functions in

Menu-Driven Programs
• Functions can be used

– to implement user choices from menu

– to implement general-purpose tasks:

• Higher-level functions can call general-

purpose functions, minimizing the total number

of functions and speeding program

development time

• See Program 6-10 in the book

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

6.7

The return Statement

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The return Statement

• Used to end execution of a function

• Can be placed anywhere in a function
– Statements that follow the return statement
will not be executed

• Can be used to prevent abnormal
termination of program

• In a void function without a return
statement, the function ends at its last }

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

(Program Continues)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Program 6-11(Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

6.8

Returning a Value From a

Function

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Returning a Value From a

Function

• A function can return a value back to the
statement that called the function.

• You've already seen the pow function,
which returns a value:

double x;
x = pow(2.0, 10.0);

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Returning a Value From a

Function

• In a value-returning function, the return
statement can be used to return a value from
function to the point of call. Example:

int sum(int num1, int num2)
{

double result;
result = num1 + num2;
return result;

}

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

A Value-Returning Function

int sum(int num1, int num2)

{

double result;

result = num1 + num2;

return result;

}

Return Type

Value Being Returned

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

A Value-Returning Function

int sum(int num1, int num2)

{

return num1 + num2;

}

Functions can return the values of
expressions, such as num1 + num2

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

(Program Continues)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Program 6-12 (Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The statement in line 17 calls the sum function,
passing value1 and value2 as arguments.

The return value is assigned to the total variable.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Another Example, from

Program 6-13

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Returning a Value From a

Function

• The prototype and the definition must
indicate the data type of return value
(not void)

• Calling function should use return value:

– assign it to a variable

– send it to cout

– use it in an expression

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

6.9

Returning a Boolean Value

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Returning a Boolean Value

• Function can return true or false

• Declare return type in function prototype
and heading as bool

• Function body must contain return

statement(s) that return true or false

• Calling function can use return value in a

relational expression

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

(Program Continues)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

6.10

Local and Global Variables

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Local and Global Variables

• Variables defined inside a function are local to

that function. They are hidden from the

statements in other functions, which normally

cannot access them.

• Because the variables defined in a function are

hidden, other functions may have separate,

distinct variables with the same name.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

When the program is executing in main, the num variable

defined in main is visible. When anotherFunction is called,

however, only variables defined inside it are visible, so the num

variable in main is hidden.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Local Variable Lifetime

• A function’s local variables exist only while the
function is executing. This is known as the
lifetime of a local variable.

• When the function begins, its local variables and
its parameter variables are created in memory,
and when the function ends, the local variables
and parameter variables are destroyed.

• This means that any value stored in a local
variable is lost between calls to the function in
which the variable is declared.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Global Variables and

Global Constants
• A global variable is any variable defined outside
all the functions in a program.

• The scope of a global variable is the portion of
the program from the variable definition to the
end.

• This means that a global variable can be
accessed by all functions that are defined after
the global variable is defined.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Global Variables and

Global Constants
• You should avoid using global variables

because they make programs difficult to

debug.

• Any global that you create should be

global constants.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Global constants defined for

values that do not change throughout

the program’s execution.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The constants are then used for those values

throughout the program.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Initializing Local and Global

Variables

• Local variables are not automatically

initialized. They must be initialized by

programmer.

• Global variables (not constants) are
automatically initialized to 0 (numeric) or

NULL (character) when the variable is

defined.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

6.11

Static Local Variables

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Static Local Variables

• Local variables only exist while the function is
executing. When the function terminates, the
contents of local variables are lost.

• static local variables retain their contents
between function calls.

• static local variables are defined and
initialized only the first time the function is
executed. 0 is the default initialization value.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

(Program Continues)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

In this program, each time showLocal is called, the localNum variable

is re-created and initialized with the value 5.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

A Different Approach, Using a

Static Variable

(Program Continues)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

statNum is automatically initialized to

0. Notice that it retains its value between

function calls.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

If you do initialize a local static variable, the

initialization only happens once. See Program 6-23.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

6.12

Default Arguments

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Default Arguments

A Default argument is an argument that is
passed automatically to a parameter if the
argument is missing on the function call.

• Must be a constant declared in prototype:
void evenOrOdd(int = 0);

• Can be declared in header if no prototype

• Multi-parameter functions may have default
arguments for some or all of them:

int getSum(int, int=0, int=0);
6-73

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Default arguments specified in the prototype

(Program Continues)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Program 6-23 (Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Default Arguments

• If not all parameters to a function have
default values, the defaultless ones are
declared first in the parameter list:
int getSum(int, int=0, int=0);// OK

int getSum(int, int=0, int); // NO

• When an argument is omitted from a
function call, all arguments after it must also
be omitted:
sum = getSum(num1, num2); // OK

sum = getSum(num1, , num3); // NO

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

6.13

Using Reference Variables as

Parameters

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Using Reference Variables as

Parameters

• A mechanism that allows a function to

work with the original argument from the

function call, not a copy of the argument

• Allows the function to modify values

stored in the calling environment

• Provides a way for the function to ‘return’

more than one value

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Passing by Reference

• A reference variable is an alias for another
variable

• Defined with an ampersand (&)
void getDimensions(int&, int&);

• Changes to a reference variable are made
to the variable it refers to

• Use reference variables to implement
passing parameters by reference

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The & here in the prototype indicates that the

parameter is a reference variable.

Here we are passing value by

reference.

(Program Continues)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The & also appears here in the function header.

Program 6-25 (Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Reference Variable Notes

• Each reference parameter must contain &

• Space between type and & is unimportant

• Must use & in both prototype and header

• Argument passed to reference parameter must be a
variable – cannot be an expression or constant

• Use when appropriate – don’t use when argument
should not be changed by function, or if function needs
to return only 1 value

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

6.14

Overloading Functions

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Overloading Functions

• Overloaded functions have the same name
but different parameter lists

• Can be used to create functions that perform
the same task but take different parameter
types or different number of parameters

• Compiler will determine which version of
function to call by argument and parameter
lists

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Function Overloading Examples

Using these overloaded functions,
void getDimensions(int); // 1

void getDimensions(int, int); // 2

void getDimensions(int, double); // 3

void getDimensions(double, double);// 4

the compiler will use them as follows:
int length, width;

double base, height;

getDimensions(length); // 1

getDimensions(length, width); // 2

getDimensions(length, height); // 3

getDimensions(height, base); // 4

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The overloaded

functions have

different parameter

lists

Passing an int

Passing a double

(Program Continues)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Program 6-27 (Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

6.15

The exit() Function

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The exit() Function

• Terminates the execution of a program

• Can be called from any function

• Can pass an int value to operating
system to indicate status of program
termination

• Usually used for abnormal termination of
program

• Requires cstdlib header file

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The exit() Function

• Example:
exit(0);

• The cstdlib header defines two

constants that are commonly passed, to

indicate success or failure:
exit(EXIT_SUCCESS);

exit(EXIT_FAILURE);

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

6.16

Stubs and Drivers

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Stubs and Drivers

• Useful for testing and debugging program
and function logic and design

• Stub: A dummy function used in place of
an actual function

– Usually displays a message indicating it was
called. May also display parameters

• Driver: A function that tests another
function by calling it

– Various arguments are passed and return
values are tested

