
Copyright © 2012 Pearson Education, Inc.

Chapter 5:

Loops and Files

Copyright © 2012 Pearson Education, Inc.

5.1

The Increment and Decrement

Operators

Copyright © 2012 Pearson Education, Inc.

The Increment and Decrement

Operators

• ++ is the increment operator. 

It adds one to a variable.

val++; is the same as val = val + 1;

• ++ can be used before (prefix) or after (postfix) a 
variable:
++val;     val++;



Copyright © 2012 Pearson Education, Inc.

The Increment and Decrement

Operators

• -- is the decrement operator. 

It subtracts one from a variable.

val--; is the same as val = val - 1;

• -- can be also used before (prefix) or after 
(postfix) a variable:
--val;     val--;

Copyright © 2012 Pearson Education, Inc.

Increment and Decrement

Operators in Program 5-1

Continued%

Copyright © 2012 Pearson Education, Inc.

Increment and Decrement

Operators in Program 5-1



Copyright © 2012 Pearson Education, Inc.

Prefix vs. Postfix

• ++ and -- operators can be used in 
complex statements and expressions

• In prefix mode (++val, --val) the 
operator increments or decrements, then
returns the value of the variable

• In postfix mode (val++, val--) the 
operator returns the value of the variable, 
then increments or decrements

Copyright © 2012 Pearson Education, Inc.

Prefix vs. Postfix - Examples

int num, val = 12;

cout << val++; // displays 12, 

// val is now 13;

cout << ++val; // sets val to 14,

// then displays it

num = --val;   // sets val to 13,

// stores 13 in num

num = val--;   // stores 13 in num,

// sets val to 12

Copyright © 2012 Pearson Education, Inc.

Notes on Increment and 

Decrement

• Can be used in expressions:

result = num1++ + --num2;

• Must be applied to something that has a location 

in memory. Cannot have:

result = (num1 + num2)++;

• Can be used in relational expressions:

if (++num > limit)

pre- and post-operations will cause different 

comparisons 



Copyright © 2012 Pearson Education, Inc.

5.2

Introduction to Loops: The while

Loop

Copyright © 2012 Pearson Education, Inc.

Introduction to Loops: 
The while Loop

• Loop: a control structure that causes a 

statement or statements to repeat

• General format of the while loop:

while (expression)

statement;

• statement; can also be a block of 

statements enclosed in { }

Copyright © 2012 Pearson Education, Inc.

The while Loop – How It Works

while (expression)

statement;

• expression is evaluated

– if true, then statement is executed, and 

expression is evaluated again

– if false, then the loop is finished and 

program statements following statement

execute



Copyright © 2012 Pearson Education, Inc.

The Logic of a while Loop

Copyright © 2012 Pearson Education, Inc.

The while loop in Program 5-3

Copyright © 2012 Pearson Education, Inc.

How the while Loop in Program 5-

3 Lines 9 through 13 Works 



Copyright © 2012 Pearson Education, Inc.

Flowchart of the while Loop in 

Program 5-3

Copyright © 2012 Pearson Education, Inc.

The while Loop is a Pretest Loop

expression is evaluated before the 
loop executes. The following loop will 
never execute:

int number = 6;
while (number <= 5)
{

cout << "Hello\n";
number++;

}

Copyright © 2012 Pearson Education, Inc.

Watch Out for Infinite Loops

• The loop must contain code to make 
expression become false

• Otherwise, the loop will have no way of 

stopping

• Such a loop is called an infinite loop, 

because it will repeat an infinite number of 

times



Copyright © 2012 Pearson Education, Inc.

Example of an Infinite Loop

int number = 1;

while (number <= 5)

{

cout << "Hello\n";

}

Copyright © 2012 Pearson Education, Inc.

5.3

Using the while Loop for Input 

Validation

Copyright © 2012 Pearson Education, Inc.

Using the while Loop for                 

Input Validation

• Input validation is the process of 

inspecting data that is given to the 

program as input and determining whether 

it is valid.

• The while loop can be used to create input 

routines that reject invalid data, and repeat 

until valid data is entered.



Copyright © 2012 Pearson Education, Inc.

Using the while Loop for                 

Input Validation

• Here's the general approach, in 

pseudocode:

Read an item of input.

While the input is invalid

Display an error message.

Read the input again.

End While

Copyright © 2012 Pearson Education, Inc.

Input Validation Example

cout << "Enter a number less than 10: ";

cin >> number;

while (number >= 10)

{

cout << "Invalid Entry!"

<< "Enter a number less than 10: ";

cin >> number;

}

Copyright © 2012 Pearson Education, Inc.

Flowchart for Input Validation



Copyright © 2012 Pearson Education, Inc.

Input Validation in Program 5-5

Copyright © 2012 Pearson Education, Inc.

5.4

Counters

Copyright © 2012 Pearson Education, Inc.

Counters

• Counter: a variable that is incremented or 

decremented each time a loop repeats

• Can be used to control execution of the 

loop (also known as the loop control 

variable)

• Must be initialized before entering loop



Copyright © 2012 Pearson Education, Inc.

A Counter Variable Controls the 

Loop in Program 5-6

Continued%

Copyright © 2012 Pearson Education, Inc.

A Counter Variable Controls the 

Loop in Program 5-6

Copyright © 2012 Pearson Education, Inc.

5.5

The do-while Loop



Copyright © 2012 Pearson Education, Inc.

The do-while Loop

• do-while: a posttest loop – execute the loop, 
then test the expression

• General Format:
do

statement;  // or block in { }

while (expression);

• Note that a semicolon is required after 
(expression)

Copyright © 2012 Pearson Education, Inc.

The Logic of a do-while Loop

Copyright © 2012 Pearson Education, Inc.

An Example do-while Loop

int x = 1;

do

{

cout << x << endl;

} while(x < 0);

Although the test expression is false, this loop will 
execute one time because do-while is a posttest 

loop.



Copyright © 2012 Pearson Education, Inc.

A do-while Loop in Program 5-7

Continued%

Copyright © 2012 Pearson Education, Inc.

A do-while Loop in Program 5-7

Copyright © 2012 Pearson Education, Inc.

do-while Loop Notes

• Loop always executes at least once

• Execution continues as long as 
expression is true, stops repetition 

when expression becomes false

• Useful in menu-driven programs to bring 

user back to menu to make another choice 

(see Program 5-8 on pages 245-246)



Copyright © 2012 Pearson Education, Inc.

5.6

The for Loop

Copyright © 2012 Pearson Education, Inc.

The for Loop

• Useful for counter-controlled loop

• General Format:

for(initialization; test; update)

statement; // or block in { }

• No semicolon after the update expression or 

after the )

Copyright © 2012 Pearson Education, Inc.

for Loop - Mechanics

for(initialization; test; update)

statement; // or block in { }

1) Perform initialization

2) Evaluate test expression

– If true, execute statement

– If false, terminate loop execution

3) Execute update, then re-evaluate test

expression



Copyright © 2012 Pearson Education, Inc.

for Loop - Example

int count;

for (count = 1; count <= 5; count++)

cout << "Hello" << endl;

Copyright © 2012 Pearson Education, Inc.

A Closer Look                                           

at the Previous Example

Copyright © 2012 Pearson Education, Inc.

Flowchart for the Previous Example



Copyright © 2012 Pearson Education, Inc.

A for Loop in Program 5-9

Continued%

Copyright © 2012 Pearson Education, Inc.

A for Loop in Program 5-9

Copyright © 2012 Pearson Education, Inc.

A Closer Look at Lines 15 through 

16 in Program 5-9



Copyright © 2012 Pearson Education, Inc.

Flowchart for Lines 15 through 16 

in Program 5-9

Copyright © 2012 Pearson Education, Inc.

When to Use the for Loop

• In any situation that clearly requires

– an initialization

– a false condition to stop the loop

– an update to occur at the end of each iteration

Copyright © 2012 Pearson Education, Inc.

The for Loop is a Pretest Loop

• The for loop tests its test expression 

before each iteration, so it is a pretest 

loop.

• The following loop will never iterate:

for (count = 11; count <= 10; count++)

cout << "Hello" << endl;



Copyright © 2012 Pearson Education, Inc.

for Loop - Modifications

• You can have multiple statements in the 
initialization expression. Separate 
the statements with a comma:

int x, y;
for (x=1, y=1; x <= 5; x++)
{

cout << x << " plus " << y
<< " equals " << (x+y)
<< endl;

}

Initialization Expression

Copyright © 2012 Pearson Education, Inc.

for Loop - Modifications

• You can also have multiple statements in 
the test expression. Separate the 
statements with a comma:

int x, y;
for (x=1, y=1; x <= 5; x++, y++)
{

cout << x << " plus " << y
<< " equals " << (x+y)
<< endl;

}

Test Expression

Copyright © 2012 Pearson Education, Inc.

for Loop - Modifications

• You can omit the initialization

expression if it has already been done:

int sum = 0, num = 1;

for (; num <= 10; num++)

sum += num;



Copyright © 2012 Pearson Education, Inc.

for Loop - Modifications

• You can declare variables in the 
initialization expression:

int sum = 0;

for (int num = 0; num <= 10; 
num++)

sum += num;

The scope of the variable num is the for loop.

Copyright © 2012 Pearson Education, Inc.

5.7

Keeping a Running Total

Copyright © 2012 Pearson Education, Inc.

Keeping a Running Total

• running total: accumulated sum of numbers from 
each repetition of loop

• accumulator: variable that holds running total
int sum=0, num=1; // sum is the

while (num <= 10) // accumulator

{ sum += num;

num++;

}

cout << "Sum of numbers 1 – 10 is"
<< sum << endl;



Copyright © 2012 Pearson Education, Inc.

Logic for Keeping a Running Total

Copyright © 2012 Pearson Education, Inc.

A Running Total in Program 5-12

Continued%

Copyright © 2012 Pearson Education, Inc.

A Running Total in Program 5-12



Copyright © 2012 Pearson Education, Inc.

5.8

Sentinels

Copyright © 2012 Pearson Education, Inc.

Sentinels

• sentinel: value in a list of values that 
indicates end of data

• Special value that cannot be confused with 
a valid value, e.g., -999 for a test score

• Used to terminate input when user may 
not know how many values will be entered

Copyright © 2012 Pearson Education, Inc.

A Sentinel in Program 5-13

Continued%



Copyright © 2012 Pearson Education, Inc.

A Sentinel in Program 5-13

Copyright © 2012 Pearson Education, Inc.

5.9

Deciding Which Loop to Use

Copyright © 2012 Pearson Education, Inc.

Deciding Which Loop to Use

• The while loop is a conditional pretest loop 
– Iterates as long as a certain condition exits

– Validating input

– Reading lists of data terminated by a sentinel

• The do-while loop is a conditional posttest loop 
– Always iterates at least once

– Repeating a menu

• The for loop is a pretest loop
– Built-in expressions for initializing, testing, and updating

– Situations where the exact number of iterations is known



Copyright © 2012 Pearson Education, Inc.

5.10

Nested Loops

Copyright © 2012 Pearson Education, Inc.

Nested Loops

• A nested loop is a loop inside the body of 

another loop

• Inner (inside), outer (outside) loops:

for (row=1; row<=3; row++) //outer

for (col=1; col<=3; col++)//inner

cout << row * col << endl;

Copyright © 2012 Pearson Education, Inc.

Nested for Loop in Program 5-14

Inner Loop

Outer Loop



Copyright © 2012 Pearson Education, Inc.

Nested Loops - Notes

• Inner loop goes through all repetitions for 
each repetition of outer loop

• Inner loop repetitions complete sooner 
than outer loop

• Total number of repetitions for inner loop 
is product of number of repetitions of the 
two loops.  

Copyright © 2012 Pearson Education, Inc.

5.11

Using Files for Data Storage

Copyright © 2012 Pearson Education, Inc.

Using Files for Data Storage

• Can use files instead of keyboard, monitor 
screen for program input, output

• Allows data to be retained between 
program runs

• Steps:

– Open the file

– Use the file (read from, write to, or both)

– Close the file



Copyright © 2012 Pearson Education, Inc.

Files: What is Needed

• Use fstream header file for file access

• File stream types:
ifstream for input from a file

ofstream for output to a file

fstream for input from or output to a file

• Define file stream objects:
ifstream infile;

ofstream outfile;

Copyright © 2012 Pearson Education, Inc.

Opening Files

• Create a link between file name (outside the program) 
and file stream object (inside the program)

• Use the open member function:
infile.open("inventory.dat");

outfile.open("report.txt");

• Filename may include drive, path info.

• Output file will be created if necessary; existing file will 
be erased first

• Input file must exist for open to work

Copyright © 2012 Pearson Education, Inc.

Testing for File Open Errors

• Can test a file stream object to detect if an open 
operation failed:

infile.open("test.txt");

if (!infile)

{

cout << "File open failure!";

}

• Can also use the fail member function



Copyright © 2012 Pearson Education, Inc.

Using Files

• Can use output file object and << to send 

data to a file:

outfile << "Inventory report";

• Can use input file object and >> to copy 

data from file to variables:

infile >> partNum;

infile >> qtyInStock >> 

qtyOnOrder;

Copyright © 2012 Pearson Education, Inc.

Using Loops to Process Files

• The stream extraction operator >> returns 

true when a value was successfully read, 

false otherwise

• Can be tested in a while loop to continue 

execution as long as values are read from 

the file:

while (inputFile >> number) ...

Copyright © 2012 Pearson Education, Inc.

Closing Files

• Use the close member function:

infile.close();

outfile.close();

• Don’t wait for operating system to close 
files at program end:

– may be limit on number of open files

– may be buffered output data waiting to send 
to file



Copyright © 2012 Pearson Education, Inc.

Letting the User Specify a 

Filename

• The open member function requires that 

you pass the name of the file as a null-

terminated string, which is also known as 

a C-string. 

• String literals are stored in memory as 

null-terminated C-strings, but string 

objects are not.

Copyright © 2012 Pearson Education, Inc.

Letting the User Specify a 

Filename

• string objects have a member function 

named c_str

– It returns the contents of the object formatted 

as a null-terminated C-string. 

– Here is the general format of how you call the 
c_str function:

stringObject.c_str()

Copyright © 2012 Pearson Education, Inc.

Letting the User Specify a 

Filename in Program 5-24

Continued%



Copyright © 2012 Pearson Education, Inc.

Letting the User Specify a 

Filename in Program 5-24

Copyright © 2012 Pearson Education, Inc.

5.12

Breaking and Continuing a Loop

Copyright © 2012 Pearson Education, Inc.

Breaking Out of a Loop

• Can use break to terminate execution of 

a loop

• Use sparingly if at all – makes code harder 

to understand and debug

• When used in an inner loop, terminates 

that loop only and goes back to outer loop



Copyright © 2012 Pearson Education, Inc.

The continue Statement

• Can use continue to go to end of loop 

and prepare for next repetition

– while, do-while loops: go to test, repeat 

loop if test passes

– for loop: perform update step, then test, 

then repeat loop if test passes

• Use sparingly – like break, can make 

program logic hard to follow


