

1

Appendix O: Solutions to Odd
Numbered Review Questions

Chapter 1

1. Main memory, or RAM, is volatile, which means its contents are erased when power is
removed from the computer. Secondary memory, such as a disk, does not lose its contents
when power is removed from the computer.

3. An operating system

5. Because high level languages are more like natural language.

7. A syntax error is the misuse of a key word, operator, punctuation, or other part of the pro-
gramming language. A logical error is a mistake that causes the program to produce the
wrong results.

9. CPU

11. disk

13. instructions

15. machine language

17. low-level

19. key words

21. operators

23. syntax

25. defined

27. input

29. hierarchy chart

Z15_GADD6253_07_SE_APP15 Page 1 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

2

Appendix O: Solutions to Odd Numbered Review Questions

31. Hierarchy chart:

33. 7

35. 365

Chapter 2

1. 1, 2, 3

3.

int months = 2, days, years = 3;

5. Multi-line comment

7.

#include <iostream>
int main()
{
 cout << "Two mandolins like creatures in the\n\n\n";
 cout << "dark\n\n\n";
 cout << "Creating the agony of ecstasy.\n\n\n";
 cout << " - George Barker\n\n\n";
 return 0;
}

9. C

11. B

13. B

15. B, C

17. A) 12
B) 4
C) 2
D) 6
E) 1

19. A

21. A

23. False

Calculate a retail sale.

Calculate and display
sales tax.

Get input. Calculate and display
sale total.

Read retail price. Read tax rate. Multiply retail price by tax
rate. Store result in tax.

Display tax. Add tax to retail price.
Store result in total.

Display total.

Z15_GADD6253_07_SE_APP15 Page 2 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix O: Solutions to Odd Numbered Review Questions

3

25. True

27.

int speed, time, distance;
speed = 20;
time = 10;
distance = speed * time;
cout << distance << endl;

29. The C-style comments symbols are backwards.

iostream

 should be enclosed in angle brackets.
There shouldn’t be a semicolon after

int main

.
The opening and closing braces of function main are reversed.
There should be a semicolon after

int a, b, c

.
The comment

\\ Three integers

 should read

// Three integers

.
There should be a semicolon at the end of the following lines:

a = 3
 b = 4
 c = a + b

cout

 begins with a capital letter.
The stream insertion operator (that appears twice in the

cout

 statement) should read

<<

instead of

<

.
The

cout

 statement uses the variable

C

 instead of

c

Chapter 3

1.

cin >> age >> pay >> section;

3.

iostream

and

 iomanip

5.

a = 12 * x;
z = 5 * x + 14 * y + 6 * k;
y = pow(x, 4);
g = (h + 12) / (4 * k);
c = pow(a, 3) / (pow(b, 2) * pow(k, 4));

7. B

9.

const int RATE = 12;

11.

east = west = north = south = 1;

13.

cout << setw(12) << fixed
 << setprecision(4) << totalAge;

15.

cos

17.

tan

19.

fmod

21.

log10

23.

sqrt

25.

Display “Enter the customer’s maximum amount of credit: ”.
Read maxCredit.
Display “Enter the amount of credit the customer has used: ”.
Read creditUsed.

Z15_GADD6253_07_SE_APP15 Page 3 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

4

Appendix O: Solutions to Odd Numbered Review Questions

availableCredit = maxCredit – creditUsed.
Display “The customer’s available credit is $”.
Display availableCredit.

#include <iostream>
using namespace std;

int main()
{
 double maxCredit, creditUsed, availableCredit;

 cout << "Enter the customer's maximum amount of credit: ";
 cin >> maxCredit;
 cout << "Enter the amount of credit used by the customer: ";
 cin >> creditUsed;
 availableCredit = maxCredit – creditUsed;
 cout << "The customer's available credit is $";
 cout << availableCredit << endl;
 return 0;
}

27.

Display “Enter the score for the 1st game: ”.
Read score1.
Display “Enter the score for the 2nd game: ”.
Read score2.
Display “Enter the score for the 3rd game: ”.
Read score3.
averageScore = (score1 + score2 + score3) / 3.
Display “The average score is : ”.
Display averageScore.

#include <iostream>
using namespace std;

int main()
{
 int score1, score2, score3, averageScore;

 cout << "Enter the score for the 1st game: ";
 cin >> score1;
 cout << "Enter the score for the 2nd game: ";
 cin >> score2;
 cout << "Enter the score for the 3rd game: ";
 cin >> score3;
 averageScore = (score1 + score2 + score3) / 3;
 cout << "The average score is :";
 cout << averageScore << endl;
 return 0;
}

29. The first

cin

 statement should read:

 cin >> number1 >> number2;

 The assignment statement should read:

 quotient = static_cast<float>(number1) / number2;

 The last statement is missing a semicolon.

Z15_GADD6253_07_SE_APP15 Page 4 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix O: Solutions to Odd Numbered Review Questions

5

31. There shouldn’t be a semicolon after the

#include

 directive.
The function header for

main

 should read:

 int main()

The combined assignment operators improperly used.
Those statements should be:

 number1 *= 50;
 number2 *= 50;

33. There shouldn’t be a semicolon after the

#include

 directive.

name

 should be declared as a

string

, and the

#include <string>

 directive should be used.
The following statement:

 getline >> name;

should read:

 getline(cin, name);

35. 6 3 12

37. Minutes: 612002.0000
Hours: 10200.0332
Days: 425.0014
Months: 13.9726
Years: 1.1644

Chapter 4

1. In an

if/else

if

 statement, the conditions are tested until one is found to be true. The con-
ditionally executed statement(s) are executed and the program exits the

if/else

if

 state-
ment. In a series of

if

 statements, all of the

if

 statements execute and test their conditions
because they are not connected.

3. A flag is a Boolean variable signaling that some condition exists in the program. When the
flag is set to

false

 it indicates the condition does not yet exist. When the flag is set to

true

it indicates that the condition does exist.

5. It takes two expressions as operands and creates a single expression that is true only when
both subexpressions are true.

7. Because they test for specific relationships between items. The relationships are greater-than,
less-than, equal-to, greater-than or equal-to, less-than or equal-to, and not equal-to.

9. relational

11. False, True

13. True

15. True, False

17. nested

19.

||

21. left-to-right

23.

||

25.

>

Z15_GADD6253_07_SE_APP15 Page 5 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

6

Appendix O: Solutions to Odd Numbered Review Questions

27. integer

29. break

31.

if (y == 0)
x = 100;

33.

if (sales < 10000)
 commission = .10;
else if (sales <= 15000)
 commission = .15;
else
 commission = .20;

35.

if (amount1 > 10)
 if (amount2 < 100)
 cout << (amount1 > amount2 ? amount1 : amount2);

37.

if (temperature >= -50 && temperature <= 150)
 cout << "The number is valid.";

39.

if (str1 > str2)
 cout << str1;
else
 cout << str2;

41. C, A, B

43. False

45. True

47. True

49. True

51. True

53. False

55. F

57. T

59. The conditionally executed blocks in the

if/else

 construct should be enclosed in braces.
The following statement:

cout << "The quotient of " << num1 <<

should read:

cout << "quotient of " << num1;

61. A

switch

 statement cannot be used to test relational expressions. An

if/else if

 state-
ment should be used instead.

63. It should use

&&

 instead of

||

.

65. The

:

 and

?

 are transposed. The statement should read:

 z = (a < 10) ? 0 : 7;

Chapter 5

1. By indenting the statements, you make them stand out from the surrounding code. This
helps you to identify at a glance the statements that are conditionally executed by a loop.

3. Because they are only executed when a condition is true.

Z15_GADD6253_07_SE_APP15 Page 6 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix O: Solutions to Odd Numbered Review Questions 7

5. The while loop.

7. The for loop.

9. An accumulator is used to keep a running total of numbers. In a loop, a value is usually
added to the current value of the accumulator. If it is not properly initialized, it will not con-
tain the correct total.

11. fstream

13. ifstream

15. A file’s read position marks the location of the next byte that will be read from the file. When
an input file is opened, its read position is initially set to the first byte in the file.

17. prefix

19. body

21. pretest

23. infinite or endless

25. running total

27. sentinel

29. while and for

31. initialization, test, update

33. break

35. int product = 0, num;
while (product < 100)
{
 cin >> num;
 product = num * 10;
 }

37. for (int x = 0; x <= 1000; x += 10)
 cout << x;

39. for (int row = 0; row < 10; row++)
{
 for (int col = 0; col < 15; col++)
 cout << '#';
 cout << endl;
}

41. char sure = 'x';
while (sure != 'Y' && sure != 'N')
{
 cout << "Are you sure you want quit? "
 cin >> sure;
}

43. int x = 50;
while (x > 0)
{
 cout << x << " seconds to go.\n";
 x--;
}

Z15_GADD6253_07_SE_APP15 Page 7 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

8 Appendix O: Solutions to Odd Numbered Review Questions

45. ifstream inputFile("Numbers.txt");
int number;
while (inputFile >> number)
 cout << number << endl;
inputFile.close();

47. false

49. false

51. false

53. false

55. false

57. true

59. true

61. false

63. true

65. The statement result = ++(num1 + num2); is invalid.

67. The while statement should not end with a semicolon.
It could also be argued that bigNum should be defined a long.
count should be initialized to 1.

69. The expression tested by the do-while loop should be choice == 1 instead of choice = 1.

Chapter 6
1. Because they are created in memory when the function begins execution, and are destroyed

when the function ends.

3. Inside the parentheses of a function header.

5. Yes. The first argument is passed into the parameter variable that appears first inside the
function header’s parentheses. Likewise, the second argument is passed into the second
parameter, and so on.

7. It makes the program easier to manage. Imagine a book that has a thousand pages, but isn’t
divided into chapters or sections. Trying to find a single topic in the book would be very dif-
ficult. Real-world programs can easily have thousands of lines of code, and unless they are
modularized, they can be very difficult to modify and maintain.

9. A function such as the following could be written to get user input. The input is stored in the
variables that are passed as arguments.
void getValues(int &x, int &y)
{
 cout << "Enter a number: ";
 cin >> x;
 cout << "Enter another number: ";
 cin >> y;
}

11. void

13. arguments

Z15_GADD6253_07_SE_APP15 Page 8 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix O: Solutions to Odd Numbered Review Questions 9

15. value

17. local

19. global

21. local

23. return

25. last

27. reference

29. reference

31. parameter lists

33. double half(double num)
{
 return num / 2;
}

35. void timesTen(int num)
{
 cout << (num * 10) << endl;
}

37. void getNumber(int &num)
{
 cout << "Enter a number in the range 1 – 100 : ";
 cin >> num;
 while (num < 1 || num > 100)
 {
 cout << "That number is out of range.\n";
 cout << "Enter a number in the range 1 – 100 : ";
 cin >> num;
 }
}

39. False

41. True

43. True

45. False

47. True

49. True

51. True

53. False

55. True

57. The assignment statement should read:

average = (value1 + value2 + value3) / 3.0;

The function is defined as a double but returns no value.

Z15_GADD6253_07_SE_APP15 Page 9 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

10 Appendix O: Solutions to Odd Numbered Review Questions

59. The parameter should be defined as:

int &value

The cin statement should read:

cin >> value;

Chapter 7
1. The size declarator is used in a definition of an array to indicate the number of elements the

array will have. A subscript is used to access a specific element in an array.

3. Because, with the array alone the function has no way of determining the number of ele-
ments it has.

5. By providing an initialization list. The array is sized to hold the number of values in the list.

7. Because an array name without brackets and a subscript represents the array’s beginning
memory address. The statement shown attempts to assign the address of array2 to array1,
which is not permitted.

9. By reference.

11. By using the same subscript value for each array.

13. The second size declarator, which is for the number of columns.

15. size declarator

17. subscript

19. size declarator, subscript

21. initialization

23. initialization list

25. =

27. address, or name

29. rows, columns

31. braces

33. Standard Template Library (or STL)

35. sequence

37. push_back

39. pop_back

41. for (int i = 0; i < 20; i++)
 cout << names[i] << endl;

43. const int SIZE = 10;
int id[SIZE]; // To hold ID numbers
double weeklyPay[SIZE]; // To hold weekly pay
// Display each employee's gross weekly pay.
for (int i = 0; i < SIZE; i++)
{

Z15_GADD6253_07_SE_APP15 Page 10 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix O: Solutions to Odd Numbered Review Questions 11

 cout << "The pay for employee "
 << id[i] << " is $" << fixed
 << showpoint << setprecision(2)
 << weeklyPay[i] << endl;
}

45. const int SIZE = 12;
// A string array to hold the country names
string countries[SIZE];
// An array to hold populations
long populations[SIZE];
// Display each country's name and population.
for (int i = 0; i < SIZE; i++)
{
 cout << "The population of " << countries[i]
 << " is " << populations[i] << endl;
}

47. numberArray[0][0] = 145;
numberArray[8][10] = 18;

49. const int NUM_ROWS = 29;
const int NUM_COLS = 5;
int row, col, // Loop counters
 total; // Accumulator
// Display the sum of each row.
for (row = 0; row < NUM_ROWS; row++)
{

// Set the accumulator.
total = 0;
// Sum a row.
for (col = 0; col < NUM_COLS; col++)
 total += days[row][col];
// Display the row's total.
cout << "The total for row " << row
 << " is " << total << endl;

}
// Display the sum of each column.
for (col = 0; col < NUM_COLS; col++)
{

// Set the accumulator.
total = 0;
// Sum a column.
for (row = 0; row < NUM_ROWS; row++)
 total += days[row][col];
// Display the column's total.
cout << "The total for column "
 << col << " is " << total << endl;

}

51. True

53. False

55. False

57. True

59. True

Z15_GADD6253_07_SE_APP15 Page 11 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

12 Appendix O: Solutions to Odd Numbered Review Questions

61. False

63. False

65. True

67. True

69. True

71. True

73. False

75. False

77. True

79. True

81. The size declarator cannot be negative.

83. The initialization list must be enclosed in braces.

85. For the array to be implicitly sized there must be an initialization list.

87. The assignment operator cannot be used to assign the contents of one array to another, in a
single statement.

89. The parameter must specify the number of columns, not the number of rows.

Chapter 8
1. Because it uses a loop to sequentially step through an array, starting with the first element. It

compares each element with the value being searched for, and stops when either the value is
found or the end of the array is encountered.

3. N/2 times

5. Ten

7. The selection sort usually performs fewer exchanges because it moves items immediately to
their final position in the array.

9. binary

11. binary

13. descending

15. False

17. False

Chapter 9
1. It dereferences a pointer, allowing code to work with the value that the pointer points to.

3. Multiplication operator, definition of a pointer variable, and the indirection operator.

5. It adds 4 times the size of an int to the address stored in ptr.

7. To dynamically allocate memory.

Z15_GADD6253_07_SE_APP15 Page 12 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix O: Solutions to Odd Numbered Review Questions 13

9. To free memory that has been dynamically allocated with the new operator.

11. A pointer to a constant points to a constant item. The data that the pointer points to cannot
change, but the pointer itself can change. With a constant pointer, it is the pointer itself that
is constant. Once the pointer is initialized with an address, it cannot point to anything else.

13. address

15. pointer

17. pointers

19. new

21. null

23. new

25. *(set + 7) = 99;

27. delete [] tempNumbers;

29. const int *ptr;

31. True

33. True

35. False

37. False

39. True

41. False

43. True

45. False

47. False

49. The assignment statement should read ptr = &x;

51. The assignment statement should read *ptr = 100;

53. Multiplication cannot be performed on pointers.

55. iptr cannot be initialized with the address of ivalue. ivalue is defined after iptr.

57. The second statement should read pint = new int;

59. The last line should read delete [] pint;

61. The pointer definition should read:
const int *ptr = array;

Chapter 10
1. cctype

3. ‘A’
‘B’
‘d’
‘E’

Z15_GADD6253_07_SE_APP15 Page 13 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

14 Appendix O: Solutions to Odd Numbered Review Questions

5. cstring

7. string

9. isupper

11. isdigit

13. toupper

15. cctype

17. concatenate

19. strcpy

21. strcmp

23. atoi

25. atof

27. if (toupper(choice) == 'Y')

29. if (strlen(name) <= 9)
 strcpy(str, name);

31. int wCount(char *str)
{
 int num = 0;
 while (*str != '\0')
 {
 if (*str == 'w')
 num++;
 }
 return num;
}

33. False

35. False

37. True

39. False

41. True

43. The isupper function can only be used to test a character, not a string.

45. The compiler will not allocate enough space in string1 to accommodate both strings.

Chapter 11
1. A data type that is built into the C++ language, such as int, char, float, etc.

3. The elements of an array must all be of the same data type. The members of a structure may
be of different data types.

5. A) FullName info;

B) info.lastName = "Smith";
info.middleName = "Bart";
info.firstName = "William";

Z15_GADD6253_07_SE_APP15 Page 14 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix O: Solutions to Odd Numbered Review Questions 15

C) cout << Info.lastName << endl;
cout << info.middleName << endl;
cout << info.firstName << endl;

7. A) “Canton”

B) “Haywood”

C) 9478

D) uninitialized

9. All the members of a union occupy the same area of memory, whereas the members of a
structure have their own memory locations.

11. 0 1 2

13. declared

15. members

17. tag

19. Car hotRod = {"Ford", "Mustang", 1997, 20000};

21. Car forSale[35] = {{"Ford", "Taurus", 1997, 21000},
 {"Honda", "Accord", 1992, 11000},
 {"Lamborghini", "Countach", 1997, 200000}};

23. struct TempScale
{
 double fahrenheit;
 double centigrade;
};
struct Reading
{
 int windSpeed;
 double humidity;
 tempScale temperature;
};
Reading today;

25. void showReading(Reading values)
{
 cout << "Wind speed: " << values.windSpeed << endl;
 cout << "Humidity: " << values.humidity << endl;
 cout << "Fahrenheit temperature: " <<
 values.temperature.fahrenheit << endl;
 cout << "Centigrade temperature: " <<
 values.temperature.centigrade << endl;
}

27. Reading getReading()
{
 Reading local;

 cout << "Enter the following values:\n";
 cout << "Wind speed: ";
 cin >> local.windSpeed;
 cout << "Humidity: ";
 cin >> local.humidity;
 cout << "Fahrenheit temperature: ";
 cin >> local.temperature.fahrenheit;

Z15_GADD6253_07_SE_APP15 Page 15 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

16 Appendix O: Solutions to Odd Numbered Review Questions

 cout << "Centigrade temperature: ";
 cin >> local.temperature.centigrade;
 return local;
}

29. rptr->WindSpeed = 50;

31. union Items
{
 char alpha;
 int num;
 long bigNum;
 float real;
};
Items x;

33. num = 452;

35. enum Pets{DOGS, CATS, BIRDS, HAMSTERS};

37. True

39. False

41. False

43. True

45. True

47. True

49. False

51. False

53. True

55. True

57. The structure declaration has no tag.

59. No structure variable has been declared. TwoVals is the structure tag.

61. The initialization list of the customer variable must be enclosed in braces.

63. Structure members cannot be initialized in the structure definition.

65. The function must define a variable of the TwoVals structure. The variable, then, should be
used in the assignment statement.

67. Both x and y cannot be meaningfully used at the same time.

Chapter 12
1. The fstream data type allows both reading and writing, while the ifstream data type

allows only for reading, and the ofstream data type allows only for writing.

3. Its contents are erased. (In other words, the file is truncated.)

5. By reference because the internal state of file stream objects changes with most every opera-
tion. They should always be passed to functions by reference to ensure internal consistency.

7. When the end of the file has been encountered. The eof member function reports the state of
this bit.

Z15_GADD6253_07_SE_APP15 Page 16 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix O: Solutions to Odd Numbered Review Questions 17

9. By using the getline member function.

11. Two arguments: The starting address of the section of memory where the data will be stored,
and the number of bytes to read.

13. The seekg function moves a file’s write position, and the seekp function moves a file’s read
position.

15. Call the file object’s clear member function.

17. Use the seekg member function to move the read position back to the beginning of the file.

19. NULL or 0

21. getline

23. put

25. text, ASCII text

27. structures

29. read

31. sequential

33. seekg

35. tellg

37. ios::beg

39. ios::cur

41. fstream places("places.dat", ios::in | ios::out);

43. pets.open("pets.dat", ios::in);
fstream pets("pets.dat" ios::in);

45. fstream employees;
employees.open("emp.dat", ios::in | ios::out | ios::binary);
if (!employees)

cout << "Failed to open file.\n";

47. dataFile.seekg(0L, ios::end);
numBytes = dataFile.tellg();
cout << "The file has " << numBytes << " bytes.\n";

49. True

51. True

53. True

55. False

57. True

59. True

61. True

63. False

Z15_GADD6253_07_SE_APP15 Page 17 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

18 Appendix O: Solutions to Odd Numbered Review Questions

65. File should be opened as

fstream file("info.dat", ios::in | ios::out);

or

fstream file;
file.open("info.dat", ios::in | ios::out);

67. File access flags must be specified with fstream objects.

69. The file access flag should be ios::in. Also, the get member function cannot be used to
read a string.

71. The file access flag should be ios::out. Also, the last line should read

dataFile.write(reinterpret_cast<char *>(&dt), sizeof(dt));

Chapter 13
1. A class describes a data type. An instance of a class is an object of the data type that exists in

memory.

3. private

5. A class is analogous to the blueprint.

7. Yes it is. This protects the variables from being directly manipulated by code outside the
class, and prevents them from receiving invalid data.

9. When the function is necessary for internal processing, but not useful to the program outside
the class. In some cases a class may contain member functions that initialize member vari-
ables or destroy their contents. Those functions should not be accessible by an external part
of the program because they may be called at the wrong time.

11. A default constructor is a constructor that is called without any arguments. It is not possible
to have more than one default constructor.

13. Yes, the constructor executes when the object is created.

15. A class’s responsibilities are the things that the class is responsible for knowing and the
actions that the class is responsible for doing.

17. procedural programming, object-oriented programming

19. object-oriented

21. class

23. access specifier

25. public

27. ->

29. canine.cpp

31. constructor

33. constructors

Z15_GADD6253_07_SE_APP15 Page 18 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix O: Solutions to Odd Numbered Review Questions 19

35. default

37. ~

39. default

41. constructor, destructor

43. class Circle
{
private:
 double radius;
public:
 void setRadius(double r)
 { radius = r; }
 double getRadius()
 { return radius; }
 double getArea()
 { return 3.14159 * radius * radius; }
};

45. class Circle
{
private:
 double radius;
public:
 Circle()
 { radius = 0.0; }
 Circle(double r)
 { radius = r; }
 void setRadius(double r)
 { radius = r; }
 double getRadius()
 { return radius; }
 double getArea()
 { return 3.14159 * radius * radius; }
};

47. Circle collection[5] = {12, 7, 9, 14, 8 };

49.

51. False

53. False

55. False

57. True

59. False

61. True

Animal Medication Nurse

Doctor Invoice Customer

Patient Client

Z15_GADD6253_07_SE_APP15 Page 19 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

20 Appendix O: Solutions to Odd Numbered Review Questions

63. True

65. True

67. False

69. True

71. False

73. There should not be a colon after the word Circle.

Colons should appear after the words private and public.

A semicolon should appear after the closing brace.

75. The semicolon should not appear after the word DumbBell.

The function header for setWeight should appear as:

void DumbBell::setWeight(int w)

The line that reads:

DumbBell(200);

should read:

bar.setWeight(200);

bar.weight cannot be accessed outside of the class because no access specifier appeared
before it in the class, making the variable private to the class by default. This means the cout
statement will not work.

Chapter 14
1. Each class object has its own copy of the class’s instance member variables. All objects of a

class share the class’s static member variables.

3. Outside the class declaration.

5. Because every member function of the friend class would have access to the class’s private
member variables.

7. When an object is initialized with another object’s data.

9. When an object has a pointer as a member, and it points to a chunk of dynamically allocated
memory. When this object is copied to another object via memberwise assignment, the
receiving object’s pointer will point to the same chunk of memory.

11. It is a copy constructor that is automatically created for a class, and performs memberwise
assignment.

13. The object on the right side of the = operator in the statement that called the overloaded
operator function.

15. A dummy parameter is used in the function header of a postfix operator.

17. A Boolean value.

19. Place the key word static before the variable declaration (inside the class). Then, place a
separate definition of the variable outside the class.

21. 3, 3, 1, 0, Thing::putThing(2);

Z15_GADD6253_07_SE_APP15 Page 20 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix O: Solutions to Odd Numbered Review Questions 21

23. To inform the compiler of the class’s existence before it reaches the class’s definition.

25. Because the parameter variable is created in memory when the function executes, and is ini-
tialized with the argument object. This causes the copy constructor to be called.

27. outside

29. before

31. forward declaration

33. copy constructor

35. overloaded

37. aggregation

39. Bird Bird::operator=(const Bird &right)

41. bool Yen::operator<(const Yen &right)

43. Collection Collection::operator[](const Collection &sub)

45. True

47. False

49. True

51. True

53. True

55. False

57. True

59. The copy constructor’s parameter should be a reference variable.

61. The overloaded + operator function header should read

void operator+(const Point &right)

63. The float conversion function header should read

operator float()

Chapter 15
1. When one object is a specialized version of another object, there is an “is a” relationship

between them. This indicates that one class “is a” specialized version of the other class.

3. Base class access specification specifies how members of the base class are inherited by the
derived class. Member access specification specifies how class members may be accessed by
code outside the class.

5. No.

7. When a derived class has a function with the same name as a base class’s function, and the
base class function is not virtual, it is said that the function is redefined in the derived class. If
the base class’s function is virtual, however, it is said that the function is overridden.

9. An abstract base class is not instantiated itself, but serves as a base class for other classes.
The abstract base class represents the generic, or abstract form of all the classes that are
derived from it. A class is abstract when it has one or more virtual functions.

Z15_GADD6253_07_SE_APP15 Page 21 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

22 Appendix O: Solutions to Odd Numbered Review Questions

11. Dog

13. public

15. private

17. inaccessible, protected, protected

19. members

21. last

23. The base class version.

25. static

27. polymorphism

29. abstract base class

31. chain

33. override or redefine

35. class SoundSystem : public CDplayer, public Tuner, public Cas-
settePlayer

37. class B
{
private:
 int m;
protected:
 int n;
public:
 void setM(int);
 int getM();
 void setN(int);
 int getN();
 virtual int calc()
 { return m * n; }
};

class D : public B
{
protected:
 float q;
 float r;
public:
 void setQ(float);
 float getQ();
 void setR(float);
 float getR();
 virtual float calc()
 { return q * r; }
};

39. True

41. True

43. False

45. False

47. True

Z15_GADD6253_07_SE_APP15 Page 22 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix O: Solutions to Odd Numbered Review Questions 23

49. True

51. True

53. The first line of the class declaration should read

class Car : public Vehicle

Also, the class declaration should end in a semicolon.

55. The constructor function header should read

SnowMobile(int h, double w) : Vehicle(h)

Also, the constructor parameter w is not used.

57. The parameter lists for the setContents functions must be different.

Chapter 16
1. A throw point is a line in a program that contains a throw statement, thus throwing an

exception.

3. A try block contains a block of code executing any statements that might directly or indi-
rectly cause an exception to be thrown. A catch block catches a specific exception and con-
tains code to respond to it.

5. Once an exception has been thrown, the program cannot jump back to the throw point. The
function that executes a throw statement will immediately terminate. If that function was
called by another function, then the calling function will terminate as well. This process,
known as unwinding the stack, continues for the entire chain of nested function calls, from
the throw point, all the way back to the try block.

7. By catching the bad_alloc exception.

9. Because a class object passed to a function template must support all the operators the func-
tion will use on the object.

11. Sequence and associative.

13. throw point

15. catch

17. template prefix

19. specialized

21. associative

23. bad_alloc

25. char * allocBlock(int size)
{
 char *ptr;

 try
 {
 ptr = new char[size];
 }

Z15_GADD6253_07_SE_APP15 Page 23 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

24 Appendix O: Solutions to Odd Numbered Review Questions

 catch(bad_alloc)
 {
 ptr = 0;
 }
 return ptr;
}

27. template <class T>
void displayContents(T arr[], int size)
{
 for (int i = 0; i < size; i++)
 cout << arr[i] << endl;
}

29. // Search for the value 7.
binary_search(vect.begin(), vect.end(), 7)

31. False

33. True

35. True

37. True

39. False

41. True

43. False

45. True

47. The try block must appear before the catch block.

49. The return statement should read return number * number;

51. The type parameter T2 is not used.

53. The statement should read cout << valueSet[2] << endl;

Chapter 17
1. A linked list can easily grow or shrink in size. In fact, the programmer doesn’t need to know

how many nodes will be in the list. They are simply created in memory as they are needed.
Also, when a node is inserted into or deleted from a linked list, none of the other nodes have
to be moved.

3. A pointer that simply points to the first node in the list.

5. The last node in the list usually points to address 0, the null address.

7. Appending a node means that a new node is added to the end of the list. Inserting a node
means that a new node is inserted somewhere in the middle of the list.

9. • Remove the node from the list without breaking the links created by the next pointers.
• Deleting the node from memory.

11. In a singly linked list each node is linked to a single other node. In a doubly linked list each
node not only points to the next node, but also the previous one. In a circularly linked list
the last node points to the first,

Z15_GADD6253_07_SE_APP15 Page 24 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix O: Solutions to Odd Numbered Review Questions 25

13. head pointer

15. NULL

17. Inserting

19. circular

21. ListNode *nodePtr;
nodePtr = head;
while (nodePtr)
{
 cout << nodePtr->value << endl;
 nodePtr = nodePtr->next;
}

23. list<float> myList;

25. myList.reverse();

27. False

29. True

31. False

33. nodePtr is never properly initialized.

35. The node pointers are simply set to NULL. The nodes themselves are not deleted from
memory.

Chapter 18
1. Last in first out

3. A static stack has a fixed size and is usually implemented as an array. A dynamic stack
expands as items are added to it. Dynamic stacks are implemented as linked lists.

5. isFull and isEmpty. The isFull operation returns true if the stack is full, and false other-
wise. This operation is necessary to prevent a stack overflow in the event a push operation is
attempted when all of the stack’s elements have values stored in them. The isEmpty opera-
tion returns true when the stack is empty, and false otherwise. This prevents an error from
occurring when a pop operation is attempted on an empty stack.

7. vector, list, or deque. By default it is base on the deque type.

9. The rear

11. The two primary queue operations are enqueuing and dequeuing. To enqueue means to
insert an element at the rear of a queue, and to dequeue means to remove an element from
the front of a queue.

13. last

15. static

17. vectors, lists, and deques

19. enqueuing and dequeuing

21. deque

Z15_GADD6253_07_SE_APP15 Page 25 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

26 Appendix O: Solutions to Odd Numbered Review Questions

23.

25.

27. Code segment using an if/else statement:
if (rear == queueSize - 1)
 rear = 0;
else
 rear++;

Code segment using modular arithmetic:

rear = (rear + 1) % queueSize;

29. False

31. True

Chapter 19
1. For question 12: num <= 0

For question 13: num > 0

For question 14: pos < size – 1

3. Recursive functions are less efficient, due to the overhead associated with each function call.

5. The program will eventually run out of stack memory and abort.

7. base case

9. indirect

11. int findLargest(const int arr[], int start, int end)
{
 int largest;

 if(start == end)
 return arr[start];
 else
 {

19

8

Top of stack

Bottom of stack

129 10

Front Rear

Z15_GADD6253_07_SE_APP15 Page 26 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix O: Solutions to Odd Numbered Review Questions 27

 largest = findLargest(arr, start + 1, end);
 if(arr[start] >= largest)
 return arr[start];
 else
 return largest;
 }
}

13. **********

**
*

Chapter 20
1. Two others.

3. A node that has no children.

5. The order in which the values are inserted.

7. root node

9. leaf node

11. inorder, preorder, and postorder

13. (Recursive Function)
Display In Order(Node Pointer)
 If Node Pointer is not Null
 Display In Order (Node Pointer -> Left).
 Display the node’s Value.
 Display In Order (Node Pointer -> Right).
 End If
End Display In Order

15. (Recursive Function)
Display Post Order(Node Pointer)
 If Node Pointer is not Null
 Display Post Order (Node Pointer -> Left).
 Display Post Order (Node Pointer -> Right).
 Display the node’s Value.
 End If
End Display Post Order

Z15_GADD6253_07_SE_APP15 Page 27 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

28 Appendix O: Solutions to Odd Numbered Review Questions

17.

19. 12 7 3 9 10 22 18 14 20 24 30

21. True

23. True

25. False

PointerPointer

Tree
Pointer

12

PointerPointer

NULL

9

PointerPointer

7

NULLNULL

PointerPointer

3

NULL NULL

PointerPointer

10

PointerPointer

22

PointerPointer

18
PointerPointer

24

PointerPointer

30

NULL

PointerPointer
14

NULL

PointerPointer

20

NULL NULL

NULL

NULL

NULL

Z15_GADD6253_07_SE_APP15 Page 28 Friday, February 11, 2011 2:42 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

