

1

Appendix N:
Answers to Checkpoints

Chapter 1

1.1 Because the computer can be programmed to do so many different tasks.

1.2 The Central Processing Unit (CPU), main memory, secondary storage devices, input
devices, output devices.

1.3 Arithmetic and Logic Unit (ALU), and Control Unit

1.4 Fetch: The CPU’s control unit fetches the program’s next instruction from main
memory.

Decode: The control unit decodes the instruction, which is encoded in the form of a
number. An electrical signal is generated.

Execute: The signal is routed to the appropriate component of the computer, which
causes a device to perform an operation.

1.5 A unique number assigned to each section of memory.

1.6 Program instructions and data are stored in main memory while the program is operating.
Main memory is volatile, and loses its contents when power is removed from the
computer. Secondary storage holds data for long periods of time—even when there is no
power to the computer.

1.7 Operating Systems and Application Software

1.8 The operating system

1.9 A utility program

1.10 application software

1.11 A set of well-defined steps for performing a task or solving a problem.

1.12 To ease the task of programming. Programs may be written in a programming language,
and then converted to machine language.

1.13 A low-level language is close to the level of the computer, and resembles the system’s
numeric machine language. A high-level language is closer to the level of human
readability, and resemble natural languages.

1.14 That a program may be written on one type of computer and run on another type.

Z14_GADD6253_07_SE_APP14 Page 1 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

2

Appendix N: Answers to Checkpoints

1.15 The preprocessor reads the source file searching for commands that begin with the #
symbol. These are commands that cause the preprocessor to modify the source file in some
way. The compiler translates each source code instruction into the appropriate machine
language instruction, and creates an object file. The linker combines the object file with
necessary library routines.

1.16 Source file: contains program statements written by the programmer.

Object file: machine language instructions, generated by the compiler translated
from the source file.

Executable file: code ready to run on the computer. Includes the machine language from
an object file, and the necessary code from library routines.

1.17 A programming environment that includes a text editor, compiler, debugger, and other
utilities, integrated into one package.

1.18 A key word has a special purpose, and is defined as part of a programming language. A
programmer-defined identifier is a word or name defined by the programmer.

1.19 Operators perform operations on one or more operands. Punctuation symbols mark the
beginning or ending of a statement, or separates items in a list.

1.20 A line is a single line as it appears in the body of a program. A statement is a complete
instruction that causes the computer to perform an action.

1.21 Because their contents may be changed.

1.22 The original value is overwritten.

1.23 The variable must be defined.

1.24 Input, processing, and output.

1.25 The program’s purpose, information to be input, the processing to take place, and the
desired output.

1.26 To imagine what the computer screen looks like while the program is running. This helps
define input and output.

1.27 A chart that depicts each logical step of the program in a hierarchical fashion.

1.28 The programmer steps through each statement in the program from beginning to end. The
contents of variables are recorded, and screen output is sketched.

1.29 It translates each source code statement into the appropriate machine language statement..

1.30 A logical error that occurs while the program is running.

1.31 By the compiler

1.32 To determine if a logical error is present in the program.

1.33 Procedural programs are made of procedures, or functions. Object-oriented programs are
centered on objects, which contain both data and the procedures that operate on the data.

Chapter 2

2.1

// A crazy mixed up program
#include <iostream>
using namespace std;

int main()
{
 cout << "In 1492 Columbus sailed the ocean blue.";
 return 0;
}

Z14_GADD6253_07_SE_APP14 Page 2 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix N: Answers to Checkpoints

3

2.2

// It's a mad, mad program
#include <iostream>
using namespace std;

int main()
{
 cout << "Success\n";
 cout << "Success";
 cout << " Success\n\n";
 cout << "Sucess\n";
 return 0;
}

2.3

The works of Wolfgang
include the following
The Turkish March
and Symphony No. 40 in G minor.

2.4

// Today's Date: September 3, 2012
#include <iostream>
using namespace std;

int main()
{

cout << "Teresa Jones\n";
cout << "127 West 423rd Street\n";
cout << "San Antonio, TX 55555\n";
cout << "555-555-1212\n";
return 0;

}

2.5 Variables:

little

 and

big

.

Constants: 2, 2000, “The little number is ”, “The big number is ”

2.6 The value is number

2.7

99bottles

: Variable names cannot begin with a number.

r&d

: Variable names may only use alphabetic letters, digits, or underscores

2.8 No. Variable names are case sensitive.

2.9 A)

short

, or

unsigned

short

.

B)

int

C) They both use the same amount of memory.

2.10 They both use the same amount of memory.

2.11 67, 70, 87

2.12 ‘B’

2.13 ‘Q’ uses one byte

“Q” uses two bytes

“Sales” uses six bytes

‘\n’ uses one byte

2.14

#include <iostream>
using namespace std;

int main()
{

char first, middle, last;

Z14_GADD6253_07_SE_APP14 Page 3 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

4

Appendix N: Answers to Checkpoints

first = 'T';
middle = 'E';
last = 'G';
cout << first << " " << middle << " " << last << endl;
return 0;

}

2.15 The string constant “Z” is being stored in the character variable

letter

.

2.16 The

string

 header file

2.17

#include <iostream>
#include <string>
using namespace std;

int main()
{
 string name = "John Smith";
 string address = "224 Maple Street\nClyde, NC 28721";
 string phone = "555-5050";

 cout << name << endl;
 cout << address << endl;
 cout << phone << endl << endl;
 return 0;
}

2.18 No

2.19 6.31E17

2.20

#include <iostream>
using namespace std;

int main()
{

int age;
float weight;

age = 26;
weight = 180;
cout << "My age is " << age << endl;
cout << "My weight is " << weight << endl;
return 0;

}

2.21 Invalid. The value on the left of the = operator must be an lvalue.

2.22

int x = 7, y = 16, z = 28;

2.23 The variable

number

 is assigned a value before it is defined. Correct the program by
moving the statement

number = 62.7;

 to the point after the variable declaration. Here is
the corrected program:

#include <iostream>
using namespace std;

int main()
{

double number;
number = 62.7;
cout << number << endl;
return 0;

}

Z14_GADD6253_07_SE_APP14 Page 4 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix N: Answers to Checkpoints

5

2.24 Integer division. The value 23 will be stored in

portion

.

2.25

const float E = 2.71828;
const int MINUTES_IN_A_YEAR = 5.256E5;
const float G_FEET = 32.2;
const float G_METERS = 9.8;
const int METERS_IN_A_MILE = 1609

Chapter 3

3.1

iostream

3.2 True

3.3 B

3.4

cin >> miles >> feet >> inches;

3.5 Include one or more

cout

 statements explaining what values the user should enter.

3.6

#include <iostream>
using namespace std;

int main()
{

double pounds, kilograms;

cout << "Enter your weight in pounds: ";
cin >> pounds;
// The following line does the conversion.
// One kilogram weighs 2.2 pounds.
kilograms = pounds / 2.2;
cout << "Your weight in kilograms is ";
cout << kilograms << endl;
return 0;

}

3.7

Value

21
 2
31
 5
24
 2
69
 0
30

3.8

y = 6 * x;

a = 2 * b + 4 * c;

y = x * x;

or

 y = pow(x, 2.0);

g = (x + 2) / (z * z);

or

 g = (x + 2.0) / pow(z, 2.0);

y = (x * x) / (z * z);

or

 y = pow(x, 2.0) / pow (z, 2.0);

3.9

If the user enters… The program displays…

2 6
5 27
4.3 20.49
6 38

3.10

#include <iostream>
#include <cmath>
using namespace std;

Z14_GADD6253_07_SE_APP14 Page 5 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

6

Appendix N: Answers to Checkpoints

int main()
{
 double volume, radius, height;

 cout << "This program will tell you the volume of\n";
 cout << "a cylinder-shaped fuel tank.\n";
 cout << "How tall is the tank? ";
 cin >> height;
 cout << "What is the radius of the tank? ";
 cin >> radius;
 volume = 3.14159 * pow(radius, 2.0) * height;
 cout << "The volume of the tank is " << volume << endl;
 return 0;
}

3.11 A) 2

B) 17.0

C) 2.0

D) 2.4

E) 2.4

F) 2.4

G) 4

H) 27

I) 30

J) 27.0

3.12

#include <iostream>
using namespace std;

int main()
{

char letter;

cout << "Enter a character: ":
cin >> letter;
cout << "The ASCII code for " << letter;
cout << " is " << static_cast<int>(letter) << endl;
return 0;

}

3.13 9
9.5
9

3.14

total = subtotal = tax = shipping = 0;

3.15 A)

x += 6;

B)

amount -= 4;

C)

y *= 4;

D)

total /= 27;

E)

x %= 7;

F)

x += (y * 5);

G)

total -= (discount * 4);

H)

increase *= (salesRep * 5);

I)

profit /= (shares – 1000);

Z14_GADD6253_07_SE_APP14 Page 6 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix N: Answers to Checkpoints

7

3.16

3
11
1

3.17 A)

cout << setw(9) << fixed << setprecision(2) << 34.789;

B)

cout << setw(5) << fixed << setprecision(3) << 7.0;

C)

cout << fixed << 5.789e12;

D)

cout << left << setw(7) << 67;

3.18

#include <iostream>
#include <string>
using namespace std;

int main()
{
 string person = "Wolfgang Smith";
 cout << right;
 cout << setw(20);
 cout << person << endl;
 cout << left;
 cout << person << endl;
 return 0;
}

3.19

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

const double PI = 3.14159;
double degrees, radians;

cout << "Enter an angle in degrees and I will convert it\n";
cout << "to radians for you: ";
cin >> degrees;
radians = degrees * PI / 180;
cout << degrees << " degrees is equal to ";
cout << setw(5) << left << fixed << showpoint
 << setprecision(4) << radians << " radians.\n";
return 0;

}

3.20

cos

: Returns the cosine of the argument.

exp

: Returns the exponential function of the argument.

fmod

: Returns the remainder of the first argument divided by the second argument.

log

: Returns the natural logarithm of the argument.

log10

: Returns the base-10 logarithm of the argument.

pow

: Returns the value of the first argument raised to the power of the second
argument.

sin

: Returns the sine of the argument.

sqrt

: Returns the square root of the argument.

tan

: Returns the tangent of the argument.

3.21

x = sin(angle1) + cos(angle2);

3.22

y = pow(x, 0.2); // 0.2 is equal to 1/5

3.23

y = 1 / sin(a);

Z14_GADD6253_07_SE_APP14 Page 7 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

8

Appendix N: Answers to Checkpoints

Chapter 4

4.1 T, T, F, T, T, F, T

4.2 A) Incorrect
B) Incorrect
C) Correct

4.3 A) yes
B) no
C) no

4.4 0
0
1
0

4.5

if (x == 20)
 y = 0;

4.6

if (price > 500)
 discountRate = 0.2;

4.7

if (hours > 40)
 payRate *= 1.5;

4.8 True

4.9 False

4.10 if (sales > 50000)
{
 commissionRate = 0.25;
 bonus = 250;
}

4.11 Only the first statement after the if statement is conditionally executed. Both of the
statements after the if statement should be enclosed in a set of braces.

4.12 False

4.13 if (y == 100)
 x = 1;
else
 x = 0;

4.14 if (sales >= 50000.00)
 commissionRate = 0.20;
else
 commissionRate = 0.10;

4.15 Zero
Zero Ten
Zero Ten Twenty
No Output

4.16 11

4.17 If the customer purchases this many coupons are
this many books... given.

1 1
2 1
3 2
4 2
5 3
10 3

Z14_GADD6253_07_SE_APP14 Page 8 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix N: Answers to Checkpoints 9

4.18

4.19 T, F, T, T, T

4.20 if (speed >= 0 && speed <= 200)
cout << "The number is valid.";

4.21 if (speed < 0 || speed > 200)
cout << "The number is not valid.";

4.22 A) True
B) False
C) True
D) False
E) False
F) True

4.23 A) False
B) False
C) False
D) True
E) False
F) False
G) False

4.24 A) z = x > y ? 1 : 20;

B) population = temp > 45 ? base * 10 : base * 2;

C) wages *= hours > 40 ? 1.5 : 1;

D) cout << (result >= 0 ? "The result is positive\n" :
 "The result is negative.\n");

4.25 A) if (k > 90)
 j = 57;
else
 j = 12;

B) if (x >= 10)

 factor = y * 22;

else

 factor = y * 35;

Logical Expression Result (true or false)

true && false false

true && true true

false && true false

false && false false

true || false true

true || true true

false || true true

false || false false

!true false

!false true

Z14_GADD6253_07_SE_APP14 Page 9 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

10 Appendix N: Answers to Checkpoints

C) if (count == 1)

 total += sales;

else

 total += count * sales;

D) if (num % 2)

 cout << "Odd\n";

else

 cout << "Even\n";

4.26 2 2

4.27 Because the if /else if statement tests several different conditions, consisting of
different variables.

4.28 The case statements must be followed by an integer constant, not a relational expression.

4.29 That is serious.

4.30 switch (userNum)
{

case 1 : cout << "One";
 break;
case 2 : cout << "Two";
 break;
case 3 : cout << "Three";
 break;
default: cout << "Enter 1, 2, or 3 please.\n";

}

4.31 switch (selection)
{

case 1 : cout << "Pi times radius squared\n";
 break;
case 2 : cout << "Length times width\n";
 break;
case 3 : cout << "Pi times radius squared times height\n";
 break;
case 4 : cout << "Well okay then, good bye!\n";
 break;
default : cout << "Not good with numbers, eh?\n";

}

Chapter 5
5.1 A) 32

B) 33
C) 23
D) 34
E) It is true!
F) It is true!

5.2 int number;
cout << "Enter a number in the range 10 through 25: ";
cin >> number;
while (number < 10 || number > 25)
{
 cout << "Error! The number must be in the range "
 << "of 10 through 25. Enter a valid number: ";
 cin >> number;
}

Z14_GADD6253_07_SE_APP14 Page 10 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix N: Answers to Checkpoints 11

5.3 char letter;
cout << "Enter Y for yes or N for no: ";
cin >> letter;
while (letter != 'Y' && letter != 'y' &&
 letter != 'N' && letter != 'n')
{
 cout << "Error! Enter either Y or N: ";
 cin >> letter;
}

5.4 string input;
cout << "Enter Yes or No: ";
cin >> input;
while ((input != "Yes") && (input != "No"))
{
 cout << "Error! Enter either Yes or No: ";
 cin >> input;
 }

5.5 A) Hello World
B) 10
C) 8 4

5.6 Initialization, test, and update.

5.7 A) int count = 1;
B) count <= 50;
C) count++
D) for (int count = 1; count <= 50; count++)

 cout << "I love to program\n";

5.8 A) 0246810
B) -5-4-3-2-101234
C) 5

8

11

14

17

5.9 for (int count = 1; count <= 10; count++)
 cout << "Chris Coder\n";

5.10 for (int count = 1; count <= 49; count += 2)
 cout << count << endl;

5.11 for (int count = 0; count <= 100; count += 5)
 cout << count << endl;

5.12 int number, total = 0;
for (int count = 0; count < 7; count++)
{
 cout << "Enter a number: ";
 cin >> number;
 total += number;
}

5.13 The variable x is the counter variable. The variable y is the accumulator.

5.14 You must be sure to choose a sentinel value that could not be mistaken as a member of the
data list.

Z14_GADD6253_07_SE_APP14 Page 11 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

12 Appendix N: Answers to Checkpoints

5.15 Change the while loop to read:
while (points >= 0)

5.16 An output file is a file that data is written to. An input file is a file that data is read from.

5.17 1. Open the file
2. Process the file
3. Close the file

5.18 A text file contains data that has been encoded as text, using a scheme such ASCII or
Unicode. Even if the file contains numbers, those numbers are stored in the file as a
series of characters. As a result, the file may be opened and viewed in a text editor
such as Notepad. A binary file contains data that has not been converted to text. As a
consequence, you cannot view the contents of a binary file with a text editor.

5.19 When you work with a sequential access file, you access data from the beginning of the file
to the end of the file. When you work with a random access file, you can jump directly to
any piece of data in the file without reading the data that comes before it.

5.20 ofstream

5.21 ifstream

5.22 ofstream outputFile("num.txt");
for (int num = 1; num <= 10; num++)

 outputFile << num << endl;
outputFile.close();

5.23 ifstream inputFile("num.txt");
int num;
while (inputFile >> num)

 cout << num << endl;
inputFile.close();

5.24 ofstream outputFile;
string filename = "Test.txt";
outputFile.open(filename.c_str());

Chapter 6
6.1 Function call

6.2 Function header

6.3 I saw Elba
Able was I

6.4 void qualify()
{

cout << "Congratulations, you qualify for\n";
cout << "the loan. The annual interest rate\n";
cout << "is 12%\n";

}

void noQualify()
{

cout << "You do not qualify. In order to\n";
cout << "qualify you must have worked on\n";
cout << "your current job for at least two\n";
cout << "years and you must earn at least\n";
cout << "$17,000 per year.\n";

}

Z14_GADD6253_07_SE_APP14 Page 12 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix N: Answers to Checkpoints 13

6.5 Header
Prototype
Function call

6.6 void timesTen(int number)
{

cout << (number * 10);
}

6.7 void timesTen(int);

6.8 0 0
1 2
2 4
3 6
4 8
5 10
6 12
7 14
8 16
9 18

6.9 0 1.5
1.5 0
0 10
0 1.5

6.10 void showDollars(double amount)
{
 cout << "Your wages are $";
 cout << setprecision(2);
 cout << fixed << showpoint;
 cout << amount << endl;
}

6.11 One

6.12 double distance(double rate, double time)

6.13 int days(int years, int months, int weeks)

6.14 char getKey()

6.15 long lightYears(long miles)

6.16 A static local variable’s scope is limited to the function in which it is declared. A global
variable’s scope is the portion of the program beginning at its declaration to the end.

6.17 100
50
100

6.18 10
11
12
13
14
15
16
17
18
19

6.19 Literals or constants

Z14_GADD6253_07_SE_APP14 Page 13 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

14 Appendix N: Answers to Checkpoints

6.20 Prototype:
void compute(double, int = 5, long = 65536);

Header:
void compute(double x, int y, long z)

6.21 Prototype:
void calculate(long, double&, int = 47);

Header:
void calculate(long x, double &y, int z)

6.22 5 10 15
9 10 15
6 15 15
4 11 16

6.23 0 00
Enter two numbers: 12 14
12 140
14 15-1
14 15-1

6.24 1.2

6.25 30

Chapter 7
7.1 A) int empNums[100];

B) float payRates[25];
C) long miles[14];
D) string cityNames[26];
E) double lightYears[1000];

7.2 int readings[-1]; // Size declarator cannot be negative

float measurements[4.5]; // Size declarator must be an integer

int size;
string names[size]; // Size declarator must be a constant

7.3 0 through 3

7.4 The size declarator is used in the array declaration statement. It specifies the number of
elements in the array. A subscript is used to access an individual element in an array.

7.5 Array bounds checking is a safeguard provided by some languages. It prevents a program
from using a subscript that is beyond the boundaries of an array. C++ does not perform
array bounds checking.

7.6 1
2
3
4
5

7.7 #include <iostream>
using namespace std;

int main()
{
 const int NUM_FISH = 20;
 int fish[NUM_FISH], count;

Z14_GADD6253_07_SE_APP14 Page 14 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix N: Answers to Checkpoints 15

 cout << "Enter the number of fish caught\n";
 cout << "by each fisherman.\n";
 for (count = 0; count < NUM_FISH; count++)
 {
 cout << "fisherman " << (count+1) << ": ";
 cin >> fish[count];
 }
 return 0;
}

7.8 A) int ages[10] = {5, 7, 9, 14, 15, 17, 18, 19, 21, 23};
B) float temps[7] = {14.7, 16.3, 18.43, 21.09, 17.9, 18.76, 26.7};
C) char alpha[8] = {'J', 'B', 'L', 'A', '*', '$', 'H', 'M'};

7.9 The definition of numbers is valid.

The declaration of matrix is invalid because there are too many values in the initialization list.

The definition of radii is valid.

The definition of table is invalid. Values cannot be skipped in the initialization list.

The definition of codes is valid.

The definition of blanks is invalid. An initialization list must be provided when an array
is implicitly sized.

7.10 A) 0
B) 3
C) 6
D) 14

7.11 0

7.12 10.00
25.00
32.50
50.00
110.00

7.13 1 18 18
2 4 8
3 27 81
4 52 208
5 100 500

7.14 No. An entire array cannot be copied in a single statement with the = operator. The array
must be copied element-by-element.

7.15 The address of the array.

7.16 No.

7.17 ABCDEFGH

7.18 (The entire program is shown here.)

#include <iostream>
using namespace std;

// Function prototype here
double avgArray(int []);

int main()
{
 const int SIZE = 10;
 int userNums[SIZE];

Z14_GADD6253_07_SE_APP14 Page 15 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

16 Appendix N: Answers to Checkpoints

 cout << "Enter 10 numbers: ";
 for (int count = 0; count < SIZE; count++)
 {
 cout << "#" << (count + 1) << " ";
 cin >> userNums[count];
 }
 cout << "The average of those numbers is ";
 cout << avgArray(userNums, SIZE) << endl;
 return 0;
}

// Function avgArray
double avgArray(int arr[])
{
 double total = 0.0, average;
 for (int count = 0; count < 10; count++)
 total += arr[count];
 average = total / 10;
 return average;
}

7.19 int grades[30][10];

7.20 24

7.21 sales[0][0] = 56893.12;

7.22 cout << sales[5][3];

7.23 int settings[3][5] = {{12, 24, 32, 21, 42},
 {14, 67, 87, 65, 90},
 {19, 1, 24, 12, 8}};

7.24

7.25 void displayArray7(int arr[][7], int rows)
{
 for (int x = 0; x < rows; x++)
 {
 for (int y = 0; y < 7; y++)
 {
 cout << arr[x][y] << " ";
 }
 cout << endl;
 }
}

7.26 int vidNum[50][10][25];

7.27 vector

7.28 vector <int> frogs;

7.29 vector <float> lizards(20);

7.30 vector <char> toads(100, 'Z');

7.31 vector <int> gators;

gators.push_back(27);

7.32 snakes[4] = 12.897;

2 3 0 0

7 9 2 0

1 0 0 0

Z14_GADD6253_07_SE_APP14 Page 16 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix N: Answers to Checkpoints 17

Chapter 8
8.1 The linear search algorithm simply uses a loop to step through each element of an array,

comparing each element’s value with the value being searched for. The binary search algo-
rithm, which requires the values in the array to be sorted in order, starts searching at the
element in the middle of the array. If the middle element’s value is greater than the value
being searched for, the algorithm next tests the element in the middle of the first half of the
array. If the middle element’s value is less than the value being searched for, the algorithm
next tests the element in the middle of the last half of the array. Each time the array tests
an array element and does not find the value being searched for, it eliminates half of the
remaining portion of the array. This method continues until the value is found, or there are
no more elements to test. The binary search is more efficient than the linear search.

8.2 10,000

8.3 15

8.4 The items frequently searched for can be stored near the beginning of the array.

Chapter 9
9.1 cout << &count;

9.2 float *fltPtr;

9.3 Multiplication operator, pointer definition, indirection operator.

9.4 50 60 70
500 300 140

9.5 for (int x = 0; x < 100; x++)
 cout << *(array + x) << endl;

9.6 12040

9.7 A) Valid
B) Valid
C) Invalid. Only addition and subtraction are valid arithmetic operations with pointers.
D) Invalid. Only addition and subtraction are valid arithmetic operations with pointers.
E) Valid

9.8 A) Valid
B) Valid
C) Invalid. fvar is a float and iptr is a pointer to an int.
D) Valid
E) Invalid. ivar must be declared before iptr.

9.9 A) True

B) False

C) True

D) False

9.10 makeNegative (&num);

9.11 void convert(double *val)
{

*val *= 2.54;
}

9.12 A

Z14_GADD6253_07_SE_APP14 Page 17 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

18 Appendix N: Answers to Checkpoints

9.13 ip = new int;
delete ip;

9.14 ip = new int[500];

delete [] ip;

9.15 A pointer that contains the address 0.

9.16 char *getInitials()
{
 char *initials = new char[3];
 cout << "Enter your three initials: ";
 cin >> initials[0] >> initials[1] >> initials[2];
 return initials;
}

9.17 char *getInitials()
{
 char[3] initials;
 cout << "Enter your three initials: ";
 cin >> initials[0] >> initials[1] >> initials[2];
 return initials;
}

Chapter 10
10.1

isalpha Returns true (a nonzero number) if the argument is a letter of the alphabet.
Returns 0 if the argument is not a letter.

isalnum Returns true (a nonzero number) if the argument is a letter of the alphabet or
a digit. Otherwise it returns 0.

isdigit Returns true (a nonzero number) if the argument is a digit 0–9. Otherwise it
returns 0.

islower Returns true (a nonzero number) if the argument is a lowercase letter.
Otherwise, it returns 0.

isprint Returns true (a nonzero number) if the argument is a printable character
(including a space). Returns 0 otherwise.

ispunct Returns true (a nonzero number) if the argument is a printable character
other than a digit, letter, or space. Returns 0 otherwise.

isupper Returns true (a nonzero number) if the argument is an uppercase letter.
Otherwise, it returns 0.

isspace Returns true (a nonzero number) if the argument is a whitespace character.
Whitespace characters are any of the following:

space................ ‘ ’
newline.............. ‘\n’
tab.................. ‘\t’
vertical tab......... ‘\v’

Otherwise, it returns 0.

toupper Returns the uppercase equivalent of its argument.

tolower Returns the lowercase equivalent of its argument.

Z14_GADD6253_07_SE_APP14 Page 18 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix N: Answers to Checkpoints 19

10.2 little = tolower(big);

10.3 if (isdigit(ch))
 cout << "digit";
 else
 cout << "Not a digit.";

10.4 A

10.5 char choice;
do
{
 cout << "Do you want to repeat the program or quit? (R/Q) ";
 cin >> choice;
} while (toupper(choice) != 'R' && toupper(choice) != 'Q');

10.6

10.7 4

10.8 Have a nice day
nice day

10.9 strcpy(composer, "Beethoven");

10.10 #include <iostream>
#include <cstring>
using namespace std;

int main()
{
 char place[] = "The Windy City";
 if (strstr(place, "Windy"))
 cout << "Windy found.\n";
 else
 cout << "Windy not found.\n";
 return 0;
}

strlen Accepts a pointer to a string as an argument. Returns the length of the
string (not including the null terminator).

strcat Accepts pointers to two strings as arguments. The function appends the
contents of the second string to the first string. (The first string is altered,
the second string is left unchanged.)

strcpy Accepts pointers to two strings as arguments. The function copies the
second string to the first string. The second string is left unchanged.

strncpy

Accepts pointers to two strings and an integer argument. The third
argument, an integer, indicates how many characters to copy from the
second string to the first string. If the String2 has fewer than n characters,
String1 is padded with ‘\0’ characters.

strcmp Accepts pointers to two string arguments. If String1 and String2 are the
same, this function returns 0. If String2 is alphabetically greater than
String1, it returns a positive number. If String2 is alphabetically less than
String1, it returns a negative number.

strstr Searches for the first occurrence of String2 in String1. If an occurrence of
String2 is found, the function returns a pointer to it. Otherwise, it returns a
NULL pointer (address 0).

Z14_GADD6253_07_SE_APP14 Page 19 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

20 Appendix N: Answers to Checkpoints

10.11

10.12 num = atoi("10");

10.13 num = atol("10000");

10.14 num = atof("7.2389");

10.15 itoa(127, Value, 10);

10.16 Tom Talbert Tried Trains
Dom Dalbert Dried Drains

Chapter 11
11.1 struct Account

{
 string acctNum;
 double acctBal;
 double intRate;
 double avgBal;
};

11.2 Account savings = {"ACZ42137-B12-7",
 4512.59,
 0.04,
 4217.07 };

11.3 #include <iostream>
#include <string>
using namespace std;

struct Movie
{
 string name;
 string director;
 string producer;
 string year;
};

int main()
{
 Movie favorite;

 cout << "Enter the following information about your\n";
 cout << "favorite movie.\n";
 cout << "Name: ";
 getline(cin, favorite.name);

atoi Accepts a string as an argument. The function converts the string to an
integer and returns that value.

atol Accepts a string as an argument. The function converts the string to a long
integer and returns that value.

atof Accepts a string as an argument. The function converts the string to a float
and returns that value.

itoa Converts an integer to a string. The first argument is the integer. The result
will be stored at the location pointed to by the second argument, String.
The third argument is an integer. It specifies the numbering system that the
converted integer should be expressed in. (8 = octal, 10 = decimal, 16 =
hexadecimal, etc.)

Z14_GADD6253_07_SE_APP14 Page 20 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix N: Answers to Checkpoints 21

 cout << "Director: ";
 getline(cin, favorite.director);

 cout << "Producer: ";
 getline(cin, favorite.producer);

 cout << "Year of release: ";
 getline(cin, favorite.year);

 cout << "Here is information on your favorite movie:\n";
 cout << "Name: " << favorite.name << endl;
 cout << "Director: " << favorite.director << endl;
 cout << "Producer: " << favorite.producer << endl;
 cout << "Year of release: " << favorite.year << endl;
 return 0;
}

11.4 Product items[100];

11.5 for (int x = 0; x < 100; x++)
{
 items[x].description = "";
 items[x].partNum = 0;
 items[x].cost = 0;
}

11.6 items[0].description = "Claw Hammer";
items[0].partNum = 547;
items[0].cost = 8.29;

11.7 for (int x = 0; x < 100; x++)
{
 cout << items[x].description << endl;
 cout << items[x].partNum << endl;
 cout << items[x].cost << endl << endl;
}

11.8 struct Measurement
{
 int miles;
 long meters;
};

11.9 struct Destination
{
 string city;
 Measurement distance;
};
Destination place;

11.10 place.city = "Tupelo";
place.distance.miles = 375;
place.distance.meters = 603375;

11.11 void showRect(Rectangle r)
{
 cout << r.length << endl;
 cout << r.width << endl;
}

Z14_GADD6253_07_SE_APP14 Page 21 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

22 Appendix N: Answers to Checkpoints

11.12 void getRect(Rectangle &r)
{
 cout << "Width: ";
 cin >> r.width;
 cout << "length: ";
 cin >> r.length;
}

11.13 Rectangle getRect()
{
 Rectangle r;
 cout << "Width: ";
 cin >> r.width;
 cout << "length: ";
 cin >> r.length;
 return r;
}

11.14 Rectangle *rptr;

11.15 B

11.16 union ThreeTypes
{
 char letter;
 int whole;
 double real
};

11.17 ThreeTypes Items[50];

11.18 for (int x = 0; x < 50; x++)
 items[x].real = 2.37;

11.19 for (int x = 0; x < 50; x++)
 items[x].letter = 'A';

11.20 for (int x = 0; x < 50; x++)
 items[x].whole = 10;

11.21 The integers 0, 1, and 2.

11.22 0 7 8

11.23 It is anonymous.

11.24 Z is not greater than X.

11.25 The code will not compile. The assignment statement should be written as:

c = static_cast<Color>(0);

11.26 The code will not compile. The statement c++ should be written as:

c = static_cast<Color>(c + 1);

Chapter 12
12.1 ios::app

12.2 Place the | operator between them.

12.3 diskInfo.open("names.dat", ios::out);

12.4 diskInfo.open("customers.dat", ios::out | ios::app);

12.5 diskInfo.open("payable.dat", ios::in | ios::out);

Z14_GADD6253_07_SE_APP14 Page 22 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix N: Answers to Checkpoints 23

12.6 fstream dataFile("salesfigures.txt", ios::in);

12.7 Run
Spot
run
See
spot
run

12.8 The >> operator considers whitespace characters as delimiters, and does not read them.
The getline() member function does read whitespace characters.

12.9 100.28 1.72 8.60 7.78 5.10

12.10 seekg moves the file’s read position (for input) and seekp moves the file’s write
position (for output).

12.11 tellg reports the file’s read position and tellp reports the files write position.

12.12 ios::beg The offset is calculated from the beginning of the file

ios::endThe offset is calculated from the end of the file

ios::currThe offset is calculated from the current position

12.13 0

12.14 file.seekp(100L, ios::beg);
Moves the write position to the 101st byte (byte 100) from the beginning of the file.

file.seekp(-10L, ios::end);
Moves the write position to the 11th byte (byte 10) from the end of the file.

file.seekp(-25L, ios::cur);
Moves the write position backward to the 26th byte from the current position.

file.seekp(30L, ios::cur);
Moves the write position to the 30th byte (byte 31) from the current position.

12.15 file.open("info.dat", ios::in | ios::out);
Input and output.

file.open("info.dat", ios::in | ios::app);
Input and output. Output will be appended to the end of the file.

file.open("info.dat", ios::in | ios::out | ios::ate);
Input and output. If the file already exists, the program goes immediately to the end of
the file.

file.open("info.dat", ios::in | ios::out);
Input and output, binary mode.

Chapter 13
13.1 False

13.2 B

13.3 A

13.4 C

13.5 class Date
{
private:
 int month;
 int day;
 int year;

Z14_GADD6253_07_SE_APP14 Page 23 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

24 Appendix N: Answers to Checkpoints

public:
 // Mutators
 void setMonth(int m)
 { month = m; }
 void setDay(int d)
 { day = d; }
 void setYear(int y)
 { year = y; }

 // Accessors
 int getMonth() const
 { return month; }
 int getDay() const
 { return day; }
 int getYear() const
 { return year; }
};

13.6 To prevent code outside the class from directly accessing the member variable. This
protects the variables from being accidentally modified or used in a way that might
adversely affect the state of the object.

13.7 Through public member functions.

13.8 A class specification file is a header file (with a name that ends in .h) that contains a
class declaration. A class implementation file is a .cpp file that contains a class’s
member function definitions.

13.9 To prevent the contents of a header file from being included more than once in a
program.

13.10 The BasePay class declaration would reside in basepay.h

The BasePay member function definitions would reside in basepay.cpp

The Overtime class declaration would reside in overtime.h

The Overtime member function declarations would reside in overtime.cpp

13.11 A member function whose body is coded in the class declaration.

13.12 A constructor is automatically called when the class object is created. It is useful for
initializing member variables, or performing set-up operations.

13.13 A destructor is automatically called before a class object is destroyed. It is useful for
performing housekeeping operations, such as freeing memory that was allocated by the
class object’s member functions.

13.14 A

13.15 B

13.16 B

13.17 A

13.18 True

13.19 True

13.20 False

13.21 10
20
50

13.22 4
7
2

Z14_GADD6253_07_SE_APP14 Page 24 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix N: Answers to Checkpoints 25

2
7
4

13.23 4 (This line is displayed by constructor #2)

7 (This line is displayed by constructor #1)

2 (This line is displayed by constructor #2)

2 (This line is displayed by the destructor)

7 (This line is displayed by the destructor)

4 (This line is displayed by the destructor)

13.24 Some member functions are meant for internal processing, and should be called only
from other member functions of the same class. Such member functions may have
adverse effects if they are called at the wrong time. For example, a function might
initialize member variables, or destroy a member variable’s contents. To prevent a
member function from being called at the wrong time, it can be made private. Then, it
can only be called from another member function, which can determine if it is
appropriate to call the private function.

13.25 const int SIZE = 3;
InventoryItem items[SIZE];

13.26 #include <iostream>
using namespace std;

class Yard
{
private:
 int length, width;
public:
 Yard()
 { length = 0; width = 0; }
 setLength(int len)
 { length = len; }
 setWidth(int w)
 { width = w; }
};

int main()
{
 Yard lawns[10];
 cout << "Enter the length and width of "
 << "each yard.\n";
 for (int count = 0; count < 10; count++)
 {
 int input;
 cout << "Yard " << (count + 1) << ":\n";
 cout << "Length: ";
 cin >> Input;
 lawns[count].setLength(input);
 cout << "width: ";
 cin >> input;
 lawns[count].setWidth(input);
 }
 return 0;
}

13.27 The problem domain is the set of real-world objects, parties, and major events related to
a problem.

Z14_GADD6253_07_SE_APP14 Page 25 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

26 Appendix N: Answers to Checkpoints

13.28 Someone who has an adequate understanding of the problem. If you adequately
understand the nature of the problem you are trying to solve, you can write a
description of the problem domain yourself. If you do not thoroughly understand the
nature of the problem, you should have an expert write the description for you.

13.29 Identify all the nouns (including pronouns and noun phrases) in the problem domain
description. Each of these is a potential class. Then, refine the list to include only the
classes that are relevant to the problem.

13.30 A class’s responsibilities are the things that the class is responsible for knowing and the
actions that the class is responsible for doing.

13.31 It is often helpful to ask the questions “In the context of this problem, what must the
class know? What must the class do?”

13.32 No. Often responsibilities are discovered through brainstorming.

13.33 A) We begin by identifying the nouns: doctor, patients, practice, patient, procedure,
description, fee, statement, office manager, name, address, and total charge. After
eliminating duplicates, objects, and primitive variables, the list of potential classes
is: Doctor, Practice, Patient, Procedure, Statement, and Office manager.

B) The necessary classes for this problem are: Patient, Procedure, and Statement.

C) The Patient class knows the patient’s name and address.

The Procedure class knows the procedure description and fee.

The Statement class knows each procedure that was performed.

The Statement class can calculate the total charges.

Chapter 14
14.1 Each class object (an instance of a class) has its own copy of the class’s instance member

variables. If a class’s member variable is static, however, only one instance of the
variable exists in memory. All objects of that class have access to that one variable.

14.2 Outside the class declaration.

14.3 Before.

14.4 Static member functions can only access member variables that are also static.

14.5 You can call a static member function before any instances of the class have been created.

14.6 No, but it has access to class X’s private members, just as if it were a member.

14.7 Class X.

14.8 Each member of one object is copied to its counterpart in another object of the
same class.

14.9 When one object is copied to another with the = operator, and when one object is
initialized with another object’s data.

14.10 When an object contains a pointer to dynamically allocated memory.

14.11 When an object is initialized with another object’s data, and when an object is passed by
value as the argument to a function.

14.12 It has a reference parameter object of the same class type as the constructor’s class.

14.13 It performs memberwise assignment.

14.14 void operator=(const Pet &);

14.15 dog.operator=(cat);

14.16 It cannot be used in multiple assignment statements or other expressions.

14.17 It is a built-in pointer, available to a class’s member functions, that always points to the
instance of the class making the function call.

Z14_GADD6253_07_SE_APP14 Page 26 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix N: Answers to Checkpoints 27

14.18 Non-static member functions

14.19 cat is calling the operator+ function. tiger is passed as an argument.

14.20 The operator is used in postfix mode.

14.21 They should always return true or false values.

14.22 The object may be directly used with cout and cin.

14.23 An ostream object.

14.24 An istream object.

14.25 The operator function must be declared as a friend.

14.26 list1.operator[](25);

14.27 The object whose name appears on the right of the operator in the expression.

14.28 So statements using the overloaded operators may be used in other expressions.

14.29 The postfix version has a dummy parameter.

14.30 (Overloaded operator functions)

// Overloaded prefix -- operator
FeetInches FeetInches::operator--()
{
--inches;
simplify();
return *this;

}

// Overloaded postfix -- operator
FeetInches FeetInches::operator--(int)
{
FeetInches temp(feet, inches);
inches--;
simplify();
return temp;

}

(Demonstration program)

// This program demonstrates the prefix and postfix –
// operators, overloaded to work with the FeetInches class.

#include <iostream>
#include "FeetInches.h"
using namespace std;

int main()
{
FeetInches distance;

cout << "Enter a distance in feet and inches: ";
cin >> distance;
cout << "Demonstrating the prefix – operator: \n";
cout << "Here is the value: " << --distance << endl;
cout << "Demonstrating the postfix – operator: \n";
cout << "Here is the value: " << distance-- << endl;
cout << "Here is the final value: " << distance << endl;
return 0;

}

Z14_GADD6253_07_SE_APP14 Page 27 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

28 Appendix N: Answers to Checkpoints

14.31 Objects are automatically converted to other types. This ensures that an object’s data is
properly converted.

14.32 They always return a value of the data type they are converting to.

14.33 BlackBox::operator int()

14.34 The Big class “has a” Small class as its member.

Chapter 15
15.1 The base class is Vehicle.

15.2 The derived class is Truck.

15.3 A) The radius variable. (The area variable is inherited, but inaccessible.)

B) The setArea function (inherited)

The getArea function (inherited)

The setRadius function

The getRadius function

C) The area variable

15.4 Protected members may be accessed by derived classes. Private members are inaccessible to
derived classes.

15.5 Member access specification determines if a class member is accessible to statements
outside the class. Class access specification determines how the derived class inherits
members of the base class.

15.6 A) a is inaccessible, the rest are private.
B) a is inaccessible, the rest are protected.
C) a is inaccessible, b, c, and setA are protected, setB and setC are public.
D) private

15.7 Entering the Sky
Entering the Ground
Leaving the Ground
Leaving the Sky

15.8 Entering the Sky
Entering the Ground
Leaving the Ground
Leaving the Sky

15.9 An overloaded function is one with the same name as one or more other functions, but
with a different parameter list. The compiler determines which function to call based on
the arguments used. Redefining occurs when a derived class has a function with the same
name as a base class function. The two functions can have the same parameter list. Objects
that are of the derived class always call the derived class’s version of the function, while
objects that are of the base class always call the base class’s version.

15.10 Static binding means the compiler binds a function call to a function at compile time.
Dynamic binding means a function call is bound to a function at runtime.

15.11 Dynamically

15.12 1
5

15.13 2
2

15.14 2
1

Z14_GADD6253_07_SE_APP14 Page 28 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix N: Answers to Checkpoints 29

15.15 2

15.16 Chain of inheritance

15.17 Multiple inheritance
15.18 A) inaccessible

B) protected
C) protected
D) inaccessible
E) protected
F) public
G) private
H) protected
I) public

15.19 class SportUtility : public van, public FourByFour
{
};

Chapter 16
16.1 The try block contains one or more statements that may directly or indirectly throw an

exception. The catch block contains code that handles, or responds to an exception.

16.2 The entire program will abort execution.

16.3 Each exception must be of a different type. The catch block whose parameter matches
the data type of the exception handles the exception.

16.4 With the first statement after the try/catch construct.

16.5 By giving the exception class a member variable, and storing the desired information in
the variable. The throw statement creates an instance of the exception class, which must
be caught by a catch statement. The catch block can then examine the contents of the
member variable.

16.6 When it encounters a call to the function.

16.7 template <class T>
double half(T number)
{
 return number / 2.0;
}

16.8 That the operator has been overloaded by the class object.

16.9 First write a regular, non-template version of the function. Then, after testing the
function, convert it to a template.

16.10 List<int> myList;

16.11 template <class T>
class Rectangle
{
 private:
 T width;
 T length;
 T area;
 public:
 void setData(T w, T l)
 { width = w; length = l;}
 void calcArea()
 { area = width * length; }

Z14_GADD6253_07_SE_APP14 Page 29 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

30 Appendix N: Answers to Checkpoints

 T getWidth()
 { return width; }
 T getLength()
 { return length; }
 T getArea()
 { return area; }
};

Chapter 17
17.1 A data member contains the data stored in the node. A pointer points to another node in

the list.

17.2 A pointer to the first node in the list.

17.3 The last node in the list will point to the NULL address.

17.4 A data structure that contains a pointer to an object of the same data structure type.

17.5 Appending a node is adding a new node to the end of the list. Inserting a node is adding
a new node in a position between two other nodes.

17.6 Appending

17.7 Because the new node is being inserted between two other nodes, previousNode
points to the node that will appear before the new node.

17.8 A) Remove the node from the list without breaking the links created by the next
pointers

B) Delete the node from memory

17.9 Because there is probably a node pointing to the node being deleted. Additionally, the
node being deleted probably points to another node. These links in the list must be
preserved.

17.10 The unused memory is never freed, so it could eventually be used up.

Chapter 18
18.1 Last-in-first-out. The last item stored in a LIFO data structure is the first item extracted.

18.2 A static stack has a fixed size, and is implemented as an array. A dynamic stack grows in
size as needed, and is implemented as a linked list. Advantages of a dynamic stack:
There is no need to specify the starting size of the stack. The stack automatically grows
each time an item is pushed, and shrinks each time an item is popped. Also, a dynamic
stack is never full (as long as the system has free memory).

18.3 Push: An item is pushed onto, or stored in the stack.

Pop: An item is retrieved (and hence, removed) from the stack.

18.4 vector, list, or deque.

Chapter 19
19.1 The function calls itself with no way of stopping. It creates an infinite recursion.

19.2 The solvable problem that the recursive algorithm is designed to solve. When the
recursive algorithm reaches the base case, it terminates.

19.3 10

19.4 In direct recursion, a recursive function calls itself. In indirect recursion, function A calls
function B, which in turn calls function A.

Z14_GADD6253_07_SE_APP14 Page 30 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix N: Answers to Checkpoints 31

Chapter 20
20.1 A standard linked list is a linear data structure in which one node is linked to the next. A

binary tree is non-linear, because each node can point to two other nodes.

20.2 The first node in the list.

20.3 A node pointed to by another node in the tree.

20.4 A node that points to no other nodes.

20.5 An entire branch of the binary tree, from one particular node down.

20.6 Information can be stored in a binary tree in a way that makes a binary search simple.

20.7 1. The node’s left subtree is traversed.
2. The node’s data is processed.
3. The node’s right subtree is traversed.

20.8 1. The node’s data is processed
2. The node’s left subtree is traversed.
3. The node’s right subtree is traversed.

20.9 1. The node’s left subtree is traversed.
2. The node’s right subtree is traversed.
3. The node’s data is processed.

20.10 The node to be deleted is node D.
1. Find node D’s parent and set the child pointer that links the parent to node D, to

NULL.
2. Free node D’s memory.

20.11 The node to be deleted is node D.
1. Find node D’s parent.
2. Link the parent node’s child pointer (that points to node D) to node D’s child.
3. Free node D’s memory.

20.12 1. Attach the node’s right subtree to the parent, and then find a position in the right
subtree to attach the left subtree.

2. Free the node’s memory.

Z14_GADD6253_07_SE_APP14 Page 31 Thursday, February 10, 2011 4:34 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

