

1

Appendix K: Multi-Source
File Programs

Many of the programs you have written have been contained in one file. Once you start
writing longer programs, however, you need to break them into multiple smaller files.
Generally, a multi-file program consists of two types of files: ones that contain function
definitions, and ones that contain function prototypes and templates. Here is a common
strategy for creating such a program:

•

Group all specialized functions that perform similar tasks into the same files. For
example, a file might be created for functions that perform mathematical opera-
tions. Another file might contain functions for user input and output.

•

Group function

main

 and all functions that play a primary role into one file.

•

Create a separate header file for each file that contains function definitions. The
header files contain prototypes for each function, and any necessary templates.

As an example, consider a multi-file banking program that processes loans, savings
accounts, and checking accounts. Figure K-1 illustrates the different files that might be used.

Each file whose name ends in

.cpp

 contains function definitions. Each

.cpp

 file has a cor-
responding header file whose name ends in

.h

. The header file contains function proto-
types and templates for all functions that are part of the

.cpp

 file. Each

.cpp

 file has an

#

include

 directive that reads its own header file. If the

.cpp

 file contains calls to functions
in another

.cpp

 file, it will have an

#include

 directive to read the header file for that func-
tion as well.

All of the

.cpp

 files are compiled into separate

object

 files. The object files are then linked
into a single executable file. This process is most easily performed with a

project

or

make

utility. These utilities allow you to create a list of files that make up a multi-file program. The
compiler then automatically compiles and links all the necessary components into an
executable file. (Check with your compiler documentation for instructions on using its
specific utilities.)

Z11_GADD6253_07_SE_APP11 Page 1 Monday, January 10, 2011 8:18 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

2

Appendix K: Multi-Source File Programs

Global Variables in a Multi-File Program

Normally, global variables are only in scope in the file that defines them. In order for a
global variable defined in file A to be accessible to functions in file B, file B must contain
an

extern

 declaration of the variable. This means the keyword

extern

 must precede the
data type name in the declaration. The

extern

 declaration does not define another vari-
able, but extends the scope of the existing variable.

If a global variable is defined as

static

, its scope cannot be extended beyond the file it is
defined in. This can be done to ensure that a variable is private to one file, and its name is
hidden outside the file it is defined in.

Figure K-2 shows some global variable declarations in the example banking program. The
variables

customer

 (a character array) and

accountNum

 (an

int

) are defined in

bank.cpp

.
The scope of these variables is extended to

loans.cpp

,

savings.cpp

, and

checking.cpp

because each file has an

extern

 declaration of the variables. Even though the variables are
defined in

bank.cpp

, they may be accessed by any function whose file contains an

extern

declaration of them.

Figure K-1

NOTE:

Appendix M provide instructions for creating multi-file projects using Microsoft
Visual C++ Express Edition.

File: 1: bank.cpp

Contains main and all
primary functions

File: 2: bank.h

Contains prototypes
for functions
in bank.cpp

File: 3: loans.cpp

Contains all functions
for processing loans

File: 4: loans.h

Contains prototypes
for functions
in loans.cpp

File: 7: checking.cpp

Contains all functions
for processing checking
accounts

File: 8: checking.h

Contains prototypes
for functions
in checking.cpp

File: 5: savings.cpp

Contains all functions
for processing savings
accounts

File: 6: savings.h

Contains prototypes
for functions
in savings.cpp

Z11_GADD6253_07_SE_APP11 Page 2 Monday, January 10, 2011 8:18 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix K: Multi-Source File Programs

3

Figure K-2

checking.cpp savings.cpp

 #include "checking.h" #include "checking.h"

 (other #include (other #include
 directives) directives)

 extern string customer; extern string customer;
 extern int accountNum; extern int accountNum;
 static double balance; static double balance;
 static double checkAmnt; static int interest;
 static double deposit; static double deposit;
 static double withdrawl;
 function5()
 { function7()
 ... {
 } ...
 function6() }
 { function8()
 ... {
 } ...
 }

bank.cpp loans.cpp

 #include "bank.h" #include "loans.h"
 #include "loans.h" ...
 #include "savings.h" (other #include
 #include "checking.h" directives)
 ...
 (other #include extern string customer;
 directives) extern int accountNum;
 static double loanAmount;
 string customer; static int months;
 int accountNum; static double interest;
 static double payment;
 int main()
 { function3()
 ... {
 } ...
 function1() }
 { function4()
 ... {
 } ...
 function2() }
 {
 ...
 }

Z11_GADD6253_07_SE_APP11 Page 3 Monday, January 10, 2011 8:18 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

4

Appendix K: Multi-Source File Programs

Each file in the example also contains static global variable definitions. These variables
may not be accessed outside the file they are defined in. The variable

interest

, for exam-
ple, is defined as a static global in both

loans.cpp

 and

savings.cpp

. This means each file
has its own variable named

interest

, which is not accessible outside the file it is defined
in. The same is true of the variables

balance

 and

deposit

 defined in

savings.cpp

 and

checking.cpp

.

Class Declarations

It is common to store class declarations and member function definitions in their own sep-
arate files. Typically, program components are stored in the following fashion:

•

A class declaration is stored in its own header file, which is called the specifica-
tion file. The name of the specification file is usually the same as the class, with a

.h

extension.

•

The member function definitions for the class are stored in a separate .cpp file,
which is called the implementation file. The file usually has the same name as the
class, with the .cpp extension.

•

Any program that uses the class should

#include

 the class’s header file. The
class’s .cpp file (that which contains the member function definitions) should be
compiled and linked with the main program. This process can be automated with
a project or make utility, or an integrated development environment such as
Visual C++.

Z11_GADD6253_07_SE_APP11 Page 4 Monday, January 10, 2011 8:18 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

