

1

Appendix J: Binary Numbers
and Bitwise Operations

One of the many powers that C++ gives the programmer is the ability to work with the
individual bits of an integer field. The purpose of this appendix is to give an overview of
how integer data types are stored in binary and explain the bitwise operators that the C++
offers. Finally, we will look at bit fields, which allow us to treat the individual bits of a
variable as separate entities.

Integer Forms

The integer types that C++ offers are as follows:

char
int
short
long
unsigned char
unsigned (same as unsigned int)
unsigned short
unsigned long

When you assign constant values to integers in C++, you may use decimal, octal, or hexa-
decimal. Placing a zero in the first digit creates an octal constant. For example, 0377
would be interpreted as an octal number. Hexadecimal constants are created by placing 0x
or 0X (zero-x, not O-x) in front of the number. The number 0X4B would be interpreted as
a hex number.

Binary Representation

Regardless of how you express constants, integer values are all stored the same way inter-
nally—in binary format. Let’s take a quick review of binary number representation.

Z10_GADD6253_07_SE_APP10 Page 1 Monday, January 10, 2011 5:33 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

2

Appendix J: Binary Numbers and Bitwise Operations

Let’s assume we have a one-byte field. The following diagram shows our field broken into
its individual bits.

The leftmost bits are called the

high order

 bits and the rightmost bits are called the

low order

bits. Bit number 7 is the highest order bit, so it is called the

most significant

 bit.

Each of these bits has a value assigned to it. The following diagram shows the values of
each bit.

These values are actually powers of two. The value of bit 0 is 2

0

 which is 1. The value of
bit 1 is 2

1

, which is 2. Bit 2 has the value 2

2

, which is 4. It progresses to the last bit.

When a number is stored in this field, the bits may be set to either 1 or 0. Here is an example.

Here, bits 1, 2, 5, and 6 are set to 1. To calculate the overall value of this bit pattern, we
add up all of the bit values of the bits that are set to 1.

Bit 1’s value 2
Bit 2’s value 4
Bit 5’s value 32
Bit 6’s value 64

Overall Value 102

The bit pattern

01100110

 has the decimal value 102.

Negative Integer Values

One way that a computer can store a negative integer is to use the leftmost bit as a sign
bit. When this bit is set to 1, it would indicate a negative number, and when it is set to 0
the number would be positive. The problem with this, however, is that we would have two
bit patterns for the number 0. One pattern would be for positive 0, the other would be for
negative 0. Because of this, most systems use two’s complement representation for nega-
tive integers.

Bit Bit Bit Bit Bit Bit Bit Bit

7 6 5 4 3 2 1 0

High Order -------------------------> Low Order

Bit Bit Bit Bit Bit Bit Bit Bit

7 6 5 4 3 2 1 0

Values –>

128 64 32 16 8 4 2 1

Bit Bit Bit Bit Bit Bit Bit Bit

7 6 5 4 3 2 1 0

0 1 1 0 0 1 1 0

Values –>

128 64 32 16 8 4 2 1

Z10_GADD6253_07_SE_APP10 Page 2 Monday, January 10, 2011 5:33 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix J: Binary Numbers and Bitwise Operations

3

To calculate the two’s complement of a number, first you must get the one’s complement.
This means changing each 1 to a 0, and each 0 to a 1. Next, add 1 to the resulting number.
What you have is the two’s complement. Here is how the computer stores the value –2.

2 is stored as

00000010

Get the one’s complement

11111101

Add 1

 1

And the result is

11111110

As you can see, the highest order bit is still set to 1, indicating not only that this is a nega-
tive number, but it is stored in two’s complement representation.

Bitwise Operators

C++ provides operators that let you perform logical operations on the individual bits of
integer values, and shift the bits right or left.

The Bitwise Negation Operator

The bitwise negation operator is the ~ symbol. It is a unary operator that performs a nega-
tion, or one’s complement on each bit in the field. The expression

~val

returns the one’s complement of

val

. It does not change the contents of

val

. It could be
used in the following manner:

negval = ~val;

This will store the one’s complement of

val

 in

negval

.

The Bitwise AND Operator

The bitwise AND operator is the

&

 symbol. This operator performs a logical AND opera-
tion on each bit of two operands. This means that it compares the two operands bit by bit.
For each position, if both bits are 1, the result will be 1. If either or both bits are 0, the
results will be 0. Here is an example:

andval = val & 0377;

The result of the AND operation will be stored in

andval

. There is a combined assign-
ment version of this operator. Here is an example:

val &= 0377;

This is the same as:

val = val & 0377;

The Bitwise OR Operator

The bitwise OR operator is the | symbol. This operator performs a logical OR operation
on each bit of two operands. This means that it compares the two operands bit by bit. For

Z10_GADD6253_07_SE_APP10 Page 3 Monday, January 10, 2011 5:33 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

4

Appendix J: Binary Numbers and Bitwise Operations

each position, if either of the two bits is 1, the result will be 1. Otherwise, the results will
be 0. Here is an example:

orval = val | 0377;

The result of the OR operation will be stored in

orval

. There is a combined assignment
version of this operator. Here is an example:

val |= 0377;

This is the same as

val = val | 0377;

The Bitwise EXCLUSIVE OR Operator

The bitwise EXCLUSIVE OR operator is the

^

 symbol. This operator performs a logical
XOR operation on each bit of two operands. This means that it compares the two oper-
ands bit by bit. For each position, if one of the two bits is 1, but not both, the result will
be 1. Otherwise, the results will be 0. Here is an example:

xorval = val ^ 0377;

The result of the XOR operation will be stored in

xorval

. There is a combined assign-
ment version of this operator. Here is an example:

val ^= 0377;

This is the same as:

val = val ^ 0377;

Using Bitwise Operators with Masks

Suppose we have the following variable declarations:

char value = 110, cloak = 2;

The binary pattern for each of these two variables will be as follows:

The operation

value &= cloak;

will perform a logical bitwise AND on the two variables

value

 and

cloak

. The result will
be stored in

value

. Remember a bitwise AND will produce a 1 only when both bits are
set to 1. Here is a diagram showing the result of the AND operation.

AND

value --> 0 1 1 0 1 1 1 0 = 110

cloak --> 0 0 0 0 0 0 1 0 = 2

value --> 0 1 1 0 1 1 1 0

cloak --> 0 0 0 0 0 0 1 0

Z10_GADD6253_07_SE_APP10 Page 4 Monday, January 10, 2011 5:33 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix J: Binary Numbers and Bitwise Operations

5

equals

The 0’s in the

cloak

 variable “hide” the values that are in the corresponding positions of
the

value

 variable. This is called

masking.

 When you mask a variable, the only bits that
will “show through” are the ones that correspond with the 1’s in the mask. All others will
be turned off.

Turning Bits On

Sometimes you may want to turn on selected bits in a variable and leave all of the rest
alone. This operation can be performed with the bitwise OR operator. Let’s see what hap-
pens when we OR the

value

 and

cloak

 variables we used before, but using a different
value for cloak.

char value = 110, cloak = 16;
value |= mask;

This diagram illustrates the result of the OR operation:

OR

Equals

This caused bit 4 to be turned on and all the rest to be left alone.

Turning Bits Off

Suppose that instead of turning specific bits on, you wish to turn them off. Assume we
have the following declaration:

char status = 127, cloak = 8;

Bit 3 of

cloak

 is set to 1, and all the rest are set to 0. If we wish to set bit 3 of status to 0
we must AND it with the negation of

cloak

. In other words, we must get the one’s com-
plement of

cloak

, then AND it with

status

. The statement would look like this:

status &= ~cloak;

Here is what

cloak

’s bit pattern looks like:

And here is the one’s complement of

cloak

:

Here is what we get when we AND status and the one’s complement of

cloak

:

result --> 0 0 0 0 0 0 1 0

value --> 0 1 1 0 1 1 1 0

cloak --> 0 0 0 1 0 0 0 0

result --> 0 1 1 1 1 1 1 0

cloak --> 0 0 0 0 1 0 0 0

~cloak --> 1 1 1 1 0 1 1 1

status --> 0 1 1 1 1 1 1 1

Z10_GADD6253_07_SE_APP10 Page 5 Monday, January 10, 2011 5:33 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

6

Appendix J: Binary Numbers and Bitwise Operations

AND

Equals

Bit 3 of status is turned off, and all other bits were left unchanged.

Toggling Bits

To toggle a bit is to flip it off when it is on, and on when it is off. This can be done with
the EXCLUSIVE OR operator. We will use the following variables to illustrate.

char status = 127, cloak = 8;

Our objective is to toggle bit 3 of

status

, so we will use the XOR operator.

status ^= cloak;

Here is the diagram of the operation:

XOR

Equals

Bit 3 of

status

 will be set to 0. If we repeat this operation with the new value of

status

,
this is what will happen:

XOR

equals

Bit 3 of

status

 will be toggled again, restoring it to its previous state.

Testing the Value of a Bit

To test the value of an individual bit, you must use the AND operator. For example, if we
want to test the variable

bitvar

 to see if bit 2 is on, we must use a mask that has bit 2
turned on. Here is an example of the test:

if ((bitvar & 4) == 4)
cout << "Bit 2 is on.\n";

Remember that ANDing a value with a mask will produce a value that hides all of the bits but the ones
turned on in the mask. If bit 2 of bitvar is on, the expression bitvar & 4 will return the value 4.

~cloak --> 1 1 1 1 0 1 1 1

result --> 0 1 1 1 0 1 1 1

status --> 0 1 1 1 1 1 1 1

cloak --> 0 0 0 0 1 0 0 0

result --> 0 1 1 1 0 1 1 1

status --> 0 1 1 1 0 1 1 1

cloak --> 0 0 0 0 1 0 0 0

result --> 0 1 1 1 1 1 1 1

Z10_GADD6253_07_SE_APP10 Page 6 Monday, January 10, 2011 5:33 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix J: Binary Numbers and Bitwise Operations 7

The parentheses around bitvar & 4 are necessary because the == operator has higher pre-
cedence than the & operator.

The Bitwise Left Shift Operator
The bitwise left shift operator is two less-than signs (<<). It takes two operands. The oper-
and on the left is the one to be shifted, and the operand on the right is the number of places
to shift. When the bit values are shifted left, the vacated positions to the right are filled with
0’s and the bits that shift out of the field are lost. Suppose we have the following variables:

char val = 2, shiftval;

The following statement will store in shiftval the value of val shifted left 2 places.

shiftval = val << 2;

Let’s see what is happening behind the scenes with the value in vals.

Realize, however that val itself is not being shifted. The variable shiftval is being set to
the value of val shifted left 2 places. If we wanted to shift val itself, we could use the
combined assignment version of the left shift operator.

val <<= 2;

Shifting a number left by n places is the same as multiplying it by 2n. So, this example is
the same as:

val *= 4;

The bitwise shift will almost always work faster, however.

The Bitwise Right Shift Operator
The bitwise right shift operator is two greater-than signs (>>). Like the left shift operator,
it takes two operands. The operand on the left is the one to be shifted, and the operand on
the right is the number of places to shift. When the bit values are shifted right, and the
variable is signed, what the vacated positions to the left are filled with depends on the
machine. They could be filled with 0s, or with the value of the sign bit. If the variable is
unsigned, the places will be filled with 0s. The bits that shift out of the field are lost. Sup-
pose we have the following variables:

char val = 8, shiftval;

The following statement will store in shiftval the value of val shifted right 2 places.

shiftval = val >> 2;

Let’s see what is happening behind the scenes with the value in val.

Before shift 0 0 0 0 0 0 1 0

After shift 0 0 0 0 1 0 0 0

Before shift 0 0 0 0 1 0 0 0

After shift 0 0 0 0 0 0 1 0

Z10_GADD6253_07_SE_APP10 Page 7 Monday, January 10, 2011 5:33 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

8 Appendix J: Binary Numbers and Bitwise Operations

As before, val itself is not being shifted. The variable shiftval is being set to the value of
val shifted right 2 places. If we wanted to shift val itself, we could use the combined
assignment version of the right shift operator.

val >>= 2;

Shifting a number right by n places is the same as dividing it by 2n (as long as the number
is not negative). So, the example is the same as

val /= 4;

The bitwise shift will almost always work faster, however.

Bit Fields
C++ allows you to create data structures that use bits as individual variables. Bit fields
must be declared as part of a structure. Here is an example.

struct {
 unsigned field1 : 1;
 unsigned field2 : 1;
 unsigned field3 : 1;
 unsigned field4 : 1;
 } fourbits;

The variable fourbits contains 4 bit fields: field1, field2, field3, and field4. Follow-
ing the colon after each name is a number that tells how many bits each field should be
made up of. In this example, each field is 1 bit in size. This structure is stored in memory in
a regular unsigned int. Since we are only using 4 bits, the remaining ones will go unused.

Values may be assigned to the fields just as if it were a regular structure. In this example,
we assign the value 1 to the field1 member:

fourbits.field1 = 1;

Because these fields are only 1 bit in size, we can only put a 1 or a 0 in them. We can
expand the capacity of bit fields by making them larger, as in the following example:

struct {
 unsigned field1 : 1;
 unsigned field2 : 2;
 unsigned field3 : 3;
 unsigned field4 : 4;
 } mybits;

Here, mybits.field1 is only 1 bit in size, but others are larger. mybits.field2 occupies
2 bits, mybits.field3 occupies 3 bits, and mybits.field4 occupies 4 bits. Here is a
table that shows the maximum values of each field:

Field Name Number of Bits Maximum Value
mybits.field1 1 1

mybits.field2 2 3

mybits.field3 3 7

mybits.field4 4 15

Z10_GADD6253_07_SE_APP10 Page 8 Monday, January 10, 2011 5:33 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix J: Binary Numbers and Bitwise Operations 9

This data structure uses a total of 10 bits. If you create a bit field structure that uses more
bits than will fit in an int, the next int sized area will be used. Suppose we define the fol-
lowing bit field structure on a system that has 16 bit integers.

struct {
 unsigned tiny : 1;
 unsigned small : 4;
 unsigned big : 6;
 unsigned bigger : 8;
 unsigned biggest : 9;
 } flags;

The problem that occurs here is that flags.bigger will straddle the boundary between
the first and second integer area. The compiler won’t allow this to happen. flags.tiny,
flags.small, and flags.big will occupy the first integer area, and flags.bigger will
reside in the second integer area. There will be 5 unused bits in the first. Likewise, since
flags.bigger and flags.biggest cannot fit within one integer area, flags.biggest
will reside in a third area. There will be 8 unused bits in the second area, and 7 unused bits
in the third.

You can force a field to be aligned with the next integer area by putting an unnamed bit
field with a length of 0 before it. Here is an example:

struct {
 unsigned first : 1;
 : 0;
 unsigned second : 1;
 : 0;
 unsigned third : 2;
 } scattered;

The unnamed fields with the 0 width force scattered.second and scattered.third to
be aligned with the next int area.

You can create unnamed fields with lengths other than 0. This way you can force gaps to
exist at certain places. Here is an example.

struct {
 unsigned first : 1;
 : 2;
 unsigned second : 1;
 : 3;
 unsigned third : 2;
 } gaps;

This will cause a 2-bit gap to come between gaps.first and gaps.second, and a 3-bit
gap to come between gaps.second and gaps.third.

Bit fields are not very portable when the physical order of the fields and the exact location
of the boundaries are used. Some machines order the bit fields from left to right, but oth-
ers order them from right to left.

Z10_GADD6253_07_SE_APP10 Page 9 Monday, January 10, 2011 5:33 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

