

1

Appendix G: Writing Managed C++
Code for the .NET Framework

What Is .NET?

.NET is a powerful object-oriented computing platform designed by Microsoft. In addi-
tion to providing traditional software development tools, it provides technologies to cre-
ate Internet-based programs, and programs that provide services over the Web.

.NET consists of several layers of software that sit above the operating system and provide
a managed environment in which programs can execute. Within this environment, .NET
manages a program’s memory allocation and destruction needs, resource usage, and secu-
rity. For software developers, .NET consists of the following important components:

•

The Common Language Runtime (CLR)

•

The Common Type System (CTS)

•

The .NET Framework Class Library

Let’s briefly look at each of these.

The Common Language Runtime

The

Common

Language

Runtime

, or

CLR

, is the part of .NET that actually runs applica-
tion code. The CLR is a

managed

runtime

environment

. This means that the CLR exe-
cutes code within an environment where memory allocation and de-allocation, security,
and type compatibility are strictly managed.

Z07_GADD6253_07_SE_APP7 Page 1 Monday, January 10, 2011 7:25 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

2

Appendix G: Writing Managed C++ Code for the .NET Framework

The Common Type System

The

Common Type System

 or

CTS

 is a set of common data types provided by .NET. These
data types are available to all applications running in the CLR, and they have the same
characteristics regardless of the programming language used.

In C++, the standard primitive data types all correspond directly to a .NET type. For
example, .NET provides a data type named

Int32

, which is a 32-bit integer. In C++, the

int

 data type corresponds to

Int32

. Table G-1 shows a list of the .NET common types, as
well as the C++ types that they correspond to. Note that C++ does not provide primitive
types for all of the .NET types.

The .NET Framework Class Library

The .NET Framework Class Library is a library of object-oriented types, such as classes
and structures, which provide access to the capabilities of .NET. Programmers may use
these object-oriented types to create managed applications that run within the CLR. In

Table G-1 .NET Common Types

.NET
Common Type Description Equivalent C++ Type

Byte

8-bit unsigned integer

char

SByte

8 bit signed integer

signed char

Boolean

8-bit Boolean value (

true

 or

false

)

bool

Char

16-bit Unicode character

wchar_t

Int16

16-bit signed integer

short

Int32

32-bit signed integer

int
long

Int64

64-bit signed integer

_int64

UInt16

16-bit unsigned integer

unsigned short

UInt32

32-bit unsigned integer

unsigned int
unsigned long

UInt64

64-bit unsigned integer

unsigned _int64

Single

32-bit single precision floating point

float

Double

64-bit double precision floating point

double

Decimal

96-bit floating point value with 28 significant digits None

IntPtr

A signed integer used as a pointer. The size is platform-
specific

None

UIntPtr

An unsigned integer used as a pointer. The size is
platform-specific

None

Z07_GADD6253_07_SE_APP7 Page 2 Monday, January 10, 2011 7:25 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix G: Writing Managed C++ Code for the .NET Framework

3

addition, many of the .NET Framework classes may be used as base classes. This allows
programmers to create specialized classes that serve specific needs within an application.

Microsoft Intermediate Language

In order for a program to execute, its high-level language source code must be converted
to some type of executable code. Traditional compilers translate source code into binary
executable code, which may be run directly by the CPU. In order for a program to be run
by the CLR, however, it is not compiled to binary executable code. Instead, it must be
translated into

Microsoft

Intermediate

Language

, or

MSIL

. MSIL code is called "interme-
diate" because it represents an intermediate step between source code and executable
code. When a .NET program runs, the CLR reads its MSIL code, then just before execu-
tion, converts the MSIL code to binary executable code. The part of the CLR that converts
MSIL into binary executable code is called the

Just-In-Time compiler

 or

JIT

compiler

.
Figure G-1 illustrates the process of compiling and executing a .NET program.

The conversion of source code to MSIL might seem like an unnecessary step, but it has
some advantages. First, because all .NET programs are compiled to MSIL, it makes it eas-
ier to mix code from several different languages in the same application. Second, because
MSIL is not specific to any particular hardware platform, it is portable to any system that
supports the CLR.

Managed Code

A program may be executed by the CLR if it is written in a language that conforms to the

Common

Language

Specification

, or

CLS

. The CLS is a set of standards that compiler and
programming language designers must follow if they wish for programs written in their
language to run in the .NET environment. In Visual Studio .NET, Microsoft provides the
C#, Visual Basic .NET, and Visual J# languages, all of which can be used to write CLS
compliant code. A Visual C++ compiler is also provided.

However, standard C++ does not produce code that can be managed by the CLR, even if it
is written and compiled with Visual C++. To bridge the gap between unmanaged C++ code
and the .NET CLR, Microsoft provides extensions to the C++ language which you may
use to generate CLS compliant code. C++ code that is written with these extensions is
known as

managed

C++

 code because it may be executed in and managed by the CLR.

To demonstrate how to write managed C++ code, we will look at two examples: managed
dynamic arrays, and managed classes.

NOTE:

The JIT compiler doesn’t necessarily translate an entire program all at once to
executable code. It usually compiles parts of the program as they are needed.

Z07_GADD6253_07_SE_APP7 Page 3 Monday, January 10, 2011 7:25 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

4

Appendix G: Writing Managed C++ Code for the .NET Framework

Figure G-1

Source
File

.NET
Compiler

MSIL
code

JIT
compiler

The .NET compiler
translates the source
code file into MSIL
code.

1

The CLR invokes the
Just-In-Time compiler
to translate the MSIL
code to binary
executable code.

2

Executable
code

Program
execution

The program
executes.3

Z07_GADD6253_07_SE_APP7 Page 4 Monday, January 10, 2011 7:25 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix G: Writing Managed C++ Code for the .NET Framework

5

Managed Dynamic Arrays

In standard C++, the programmer must be careful to free the memory used by dynamically
allocated objects. For example, look at the following code:

const int SIZE = 12;
int *numbers = new int[SIZE];

This code dynamically allocates enough memory for an array of twelve integers, and
assigns the starting address of the array to the

numbers

 pointer. When the program is fin-
ished using the array, it should execute the following code to free the memory used by the
array:

delete [] numbers;

In an unmanaged runtime environment, failure to properly reclaim dynamically allocated
memory can lead to serious problems. One such problem is known as a

memory leak

. This
is when a program repeatedly allocates memory but never frees it. Eventually, the avail-
able memory will run out. Another problem occurs when a dynamically allocated object is
destroyed, but other code in the program continues to use the object as though it were still
in memory.

Because the CLR is a managed runtime environment, it performs automatic

garbage

col-
lection

. This means that it automatically frees the memory used by dynamically allocated
objects when they are no longer referenced by any part of the program. The programmer
no longer has to worry about using

delete

 to free memory.

For example, suppose a function in a managed C++ program dynamically allocates an
array, and the starting address of the array is stored in a local variable. When the function
terminates, the local variable goes out of scope. The dynamically allocated array is no
longer referenced by any variables, so the runtime environment will automatically free the
memory that it uses.

In Microsoft Visual C++, the syntax for creating a managed dynamic array is different
from the syntax that you normally use. Look at the following example:

// Create an array of integers.
const int SIZE = 12;
int numbers __gc[] = new int __gc[SIZE];

// Store some values in the array.
for (int i = 0; i < SIZE; i++)

numbers[i] = i;

In this example the third line of code creates a managed array of 12 integers. Notice the use
of

__gc

 in that line of code. (That’s two underscores followed by

gc

.) The

__gc

 key word is
part of Microsoft’s managed extensions for C++. It allows you to dynamically allocate
arrays (as well as other objects) which are managed by the CLR. When the array is no
longer referenced by any variable, the CLR’s garbage collector will free the memory it uses.

Z07_GADD6253_07_SE_APP7 Page 5 Monday, January 10, 2011 7:25 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

6

Appendix G: Writing Managed C++ Code for the .NET Framework

Managed Classes

In a class declaration you can place the

__gc

 key word before the

class

 key word to cre-
ate a managed class. (As previously mentioned, that’s two underscores followed by

gc

.)
When an instance of a managed class is allocated in memory, the CLR will automatically
free it from memory when it is no longer referenced by any variables. Here is an example
of a managed class declaration:

__gc class Circle
{
private:

double radius;
public:

Circle(double rad)
{ radius = rad; }

double getRadius()
{ return radius; }

double getArea()
{ return 3.14159 * radius * radius; }

};

An instance of the class can then be dynamically allocated in memory, as shown here:

Circle *c = new Circle(100.0);
cout << "Radius: " << c->getRadius() << endl;
cout << "Area: " << c->getArea() << endl;

When the object is no longer referenced by any variable, it will be freed from memory the
next time the the CLR’s garbage collection process runs.

When creating managed classes, it is important that you understand the difference
between reference types and value types. In standard C++, a class can be used as a

value
type

, which means that you can create an instance of the class with a simple declaration
statement. A managed class, however, is a

reference

type

, which means that you must use
the

new

 operator to dynamically allocate an instance of the class. For example, had the

Circle

 class not been a managed class, we could use the following code to create and use
an instance of it.

// This code works only with an unmanaged Circle class.
Circle c(100.0);
cout << "Radius: " << c.getRadius() << endl;
cout << "Area: " << c.getArea() << endl;

This code will not work, however, with a managed

Circle

 class because it is a reference
type.

NOTE:

The garbage collector runs in the background. Under normal circumstances it
runs infrequently, allowing more important tasks to operate. If available memory
becomes low, however, it will run more frequently. With this in mind, you cannot predict
exactly when a dynamically allocated array or object will be deleted.

Z07_GADD6253_07_SE_APP7 Page 6 Monday, January 10, 2011 7:25 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix G: Writing Managed C++ Code for the .NET Framework

7

An Example Program

Now that you have an idea of what .NET is, and have been introduced to the concept of
managed code, let’s look at an example of a managed C++ program. Program G-1 shows a
simple "Hello world" program. This code is automatically generated by the Visual Studio
.NET application wizard when you create a console application.

Let’s take a closer look at this program. First notice that the following directives appear
after the comments.

#include "stdafx.h"
#using <mscorlib.dll>

These

stdafx.h

 header file is necessary because it includes all of the other system header
files needed for a .NET application. The

#using

 directive is used to import an MSIL file
into a C++ project. The directive shown here imports the

mscorlib.dll

 file, which con-
tains parts of the .NET Framework that you will use the most. For example, all of the CTS
data types are defined there.

Next we have the following statement:

using namespace System;

This statement tells the compiler that we will be using the System namespace. The .NET
class library is organized into numerous namespaces, and System is one of the most com-
monly used ones. In this namespace are the fundamental components of a .NET applica-
tion. For example, the names of the CTS data types are part of the System namespace. In
addition, there are numerous other namespaces within the System namespace. For exam-
ple, the System.Collections namespace contains classes that can be used to implement
containers, and the System.Data namespace contains the classes needed to work with
databases.

Program G-1

 1 // This is the main project file for VC++ application project
 2 // generated using an Application Wizard.
 3
 4 #include "stdafx.h"
 5
 6 #using <mscorlib.dll>
 7
 8 using namespace System;
 9
 10 int _tmain()
 11 {
 12 // TODO: Please replace the sample code below with your own.
 13 Console::WriteLine(S"Hello World");
 14 return 0;
 15 }

Program Output
Hello World

Z07_GADD6253_07_SE_APP7 Page 7 Monday, January 10, 2011 7:25 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

8 Appendix G: Writing Managed C++ Code for the .NET Framework

Next we have the following function header:

int _tmain()

Instead of main(), the application wizard creates a _tmain() function. If you prefer, you
can use main instead of _tmain. Although we won’t go into a detailed explanation here,
the reason the application wizard automatically uses _tmain is because it provides some
additional support for Unicode characters.

Inside the _tmain function we see the following statement:

Console::WriteLine(S"Hello World");

This shows a class from the .NET Framework class library being used. This statement
calls the WriteLine method, which is a member of the Console class. The Console class is
in the System namespace. If we hadn’t specified that we were using the System namespace,
we would have to write this statement as:

System::Console::WriteLine(S"Hello World");

Like cout, the Console::WriteLine method displays console output.

Program G-2 shows another example. This program uses the code previously discussed to
dynamically allocate a managed array of integers. The contents of the array are then dis-
played using the Console::WriteLine method within a loop.

Program G-2

 1 // This program uses managed C++ code.
 2 #include "stdafx.h"
 3 #using <mscorlib.dll>
 4 using namespace System;
 5
 6 int _tmain()
 7 {
 8 // Create an array of integers.
 9 const int SIZE = 12;
 10 int numbers __gc[] = new int __gc[SIZE];
 11
 12 // Store some values in the array.
 13 for (int i = 0; i < SIZE; i++)
 14 numbers[i] = i;
 15
 16 // Display the values in the array.
 17 for (int i = 0; i < SIZE; i++)
 18 Console::WriteLine(numbers[i]);
 19
 20 return 0;
 21 }

Z07_GADD6253_07_SE_APP7 Page 8 Monday, January 10, 2011 7:25 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix G: Writing Managed C++ Code for the .NET Framework 9

Learning More
An easy way that you can learn more about .NET programming and managed C++ is
through the Visual Studio .NET online help. Just click Help on the main menu bar, and
then click Contents. You’ll find an abundance of information there.

Program Output
0
1
2
3
4
5
6
7
8
9
10
11

Z07_GADD6253_07_SE_APP7 Page 9 Monday, January 10, 2011 7:25 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

