

1

Appendix E: Using UML in
Class Design

When designing a class it is often helpful to draw a UML diagram.

UML

 stands for

Uni-
fied Modeling Language

. The UML provides a set of standard diagrams for graphically
depicting object-oriented systems. Figure E-1 shows the general layout of a UML diagram
for a class. Notice that the diagram is a box that is divided into three sections. The top
section is where you write the name of the class. The middle section holds a list of the
class’s member variables. The bottom section holds a list of the class’s member functions.

For example, in Chapter 13, Introduction to Classes, you studied a

Rectangle

 class that
could be used in a program that works with rectangles. The class has the following mem-
ber variables:

•

width

•

length

The class also has the following member functions:

•

setWidth

•

setLength

•

getWidth

•

getLength

•

getArea

Figure E-1

Class name goes here

Member variables are listed here

Member functions are listed here

Z05_GADD6253_07_SE_APP5 Page 1 Monday, January 10, 2011 4:41 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

2

Appendix E: Using UML in Class Design

From this information alone we can construct a simple UML diagram for the class, as
shown in Figure E-2.

The UML diagram in Figure E-2 tells us the name of the class, the names of the member
variables, and the names of the member functions. Compare this diagram to the actual
C++ class declaration, which follows.

class Rectangle
{
 private:
 double width;
 double length;
 public:
 void setWidth(double);
 void setLength(double);
 double getWidth() const;
 double getLength() const;
 double getArea() const;
};

The UML diagram in Figure E-2 does not convey many of the class details, such as access
specification, member variable data types, parameter data types, and function return
types. The UML provides optional notation for these types of details.

Showing Access Specification in UML Diagrams

The UML diagram in Figure E-2 lists all of the members of the

Rectangle

 class but does
not indicate which members are private and which are public. In a UML diagram you may
optionally place a

-

 character before a member name to indicate that it is private, or a

+

character to indicate that it is public. Figure E-3 shows the UML diagram modified to
include this notation.

Figure E-2

Rectangle

width
length

setWidth()
setLength()
getWidth()
getLength()
getArea()

Z05_GADD6253_07_SE_APP5 Page 2 Monday, January 10, 2011 4:41 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix E: Using UML in Class Design

3

Data Type and Parameter Notation in UML Diagrams

The Unified Modeling Language also provides notation that you may use to indicate the
data types of member variables, member functions, and parameters. To indicate the data
type of a member variable, place a colon followed by the name of the data type after the
name of the variable. For example, the

width

 variable in the

Rectangle

 class is a

double

.
It could be listed as follows in the UML diagram:

- width : double

The return type of a member function can be listed in the same manner: After the func-
tion’s name, place a colon followed by the return type. The

Rectangle

 class’s

getLength

function returns a

double

, so it could be listed as follows in the UML diagram:

+ getLength() : double

Parameter variables and their data types may be listed inside a member function’s paren-
theses. For example, the

Rectangle

 class’s

setLength

 function has a

double

 parameter
named

len

, so it could be listed as follows in the UML diagram:

+ setLength(len : double) : void

Figure E-4 shows a UML diagram for the

Rectangle

 class with parameter and data type
notation.

Figure E-3

NOTE:

In UML notation the variable name is listed first, then the data type. This is
opposite of C++ syntax, which requires the data type to appear first.

Rectangle

- width
- length

+ setWidth()
+ setLength()
+ getWidth()
+ getLength()
+ getArea()

Z05_GADD6253_07_SE_APP5 Page 3 Monday, January 10, 2011 4:41 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

4

Appendix E: Using UML in Class Design

Showing Constructors in a UML Diagram

There is more than one accepted way of showing a class’s constructor in a UML diagram.
In this text we show a constructor just as any other method, except we list no return type.
Figure E-5 shows a UML diagram for the

InventoryItem

 class, which was discussed in
Chapter 13. This class has three overloaded constructors, as well as some additional mem-
ber functions.

Figure E-4

Figure E-5

Rectangle

- width : double
- length : double

+ setWidth(w : double) : void
+ setLength(len : double) : void
+ getWidth() : double
+ getLength() : double
+ getArea() : double

InventoryItem

- description : string
- cost : double
- units : int
+ InventoryItem():
+ InventoryItem(desc : string) :
+ InventoryItem(desc : string,
 c : double, u : int) :
+ setDescription(d : string) : void
+ setCost(c : double) : void
+ setUnits(u : int) : void
+ getDescription() : string
+ getCost() : double
+ getUnits() : int

Z05_GADD6253_07_SE_APP5 Page 4 Monday, January 10, 2011 4:41 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix E: Using UML in Class Design

5

Aggregation UML Diagrams

Aggregation occurs when a class contains an instance of another class as a member. You show
aggregation in a UML diagram by connecting two classes with a line that has an open dia-
mond at one end. The diamond is closest to the class that contains instances of other classes.

For example, suppose we have the

PersonalInfo

 class shown in Figure E-6, which holds
information about a person.

Suppose we also have the

BankAccount

 class shown in Figure E-7, which holds the balance
of a bank account, and can perform operations such as making deposits and withdrawals.

Figure E-6

Figure E-7

- customerName : string
- customerAddress : string
- customerCity : string
- customerState : string
- customerZip : string

+ PersonalInfo(name : string,
 address : string,
 city : string,
 state : string,
 zip : string) :
+ getName() : string
+ getAddress() : string
+ getCity() : string
+ getState() : string
+ getZip() : string

PersonalInfo

BankAccount

- balance : double
- interestRate : double
- interest : double

+ BankAccount(startBalance : double,
 intRate : double) :
+ deposit(amount : double) : void
+ withdraw(amount : double) : void
+ addInterest() : void
+ getBalance() : double
+ getInterest() : double

Z05_GADD6253_07_SE_APP5 Page 5 Monday, January 10, 2011 4:41 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

6

Appendix E: Using UML in Class Design

Figure E-8 shows a UML diagram for another class,

BankCustomer

, which contains
instances of the

PersonalInfo

 and

BankAccount

 classes as members. The relationship
between the classes is shown by the connecting lines with the open diamond. The open
diamond is closest to the

BankCustomer

 class because it contains instances of the other
classes as members.

Figure E-8

- info : PersonalInfo
- checking : BankAccount
- savings : BankAccount

+ BankCustomer(i : PersonalInfo,
 c : BankAccount,
 s : BankAccount) :
+ getCheckingBalance() : double
+ getSavingsBalance() : double
+ checkingDeposit(amt : double)
 : void
+ checkingWithdrawal(amt : double)
 : void
+ savingsDeposit(amt: double) : void
+ savingsWithdrawal(amt : double)
 : void

BankCustomer

BankAccount

- balance : double
- interestRate : double
- interest : double

+ BankAccount(startBalance : double,
 intRate : double) :
+ deposit(amount : double) : void
+ withdraw(amount : double) : void
+ addInterest() : void
+ getBalance() : double
+ getInterest() : double

- customerName : string
- customerAddress : string
- customerCity : string
- customerState : string
- customerZip : string

+ PersonalInfo(name : string,
 address : string,
 city : string,
 state : string,
 zip : string) :
+ getName() : string
+ getAddress() : string
+ getCity() : string
+ getState() : string
+ getZip() : string

PersonalInfo

Z05_GADD6253_07_SE_APP5 Page 6 Monday, January 10, 2011 4:41 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Appendix E: Using UML in Class Design

7

Inheritance in UML Diagrams

You show inheritance in a UML diagram by connecting two classes with a line that has an
open arrowhead at one end. The arrowhead points to the base class. For example,
Figure E-9 shows a UML diagram depicting the relationship between the

GradedActivity

and

FinalExam

 classes that you studied in Chapter 15. The arrowhead points toward the

GradedActivity

 class, which is the base class.

Showing Protected Members

Protected class members may be denoted in a UML diagram with the

#

 symbol. In the sec-
ond version of the

GradedActivity

 class, in Chapter 15, the

score

 member variable was
declared

protected

. Figure E-10 shows a UML diagram for the class.

Figure E-9

- score : double

+ GradedActivity() :
+ GradedActivity(s : double) :
+ setScore(s : double) : void
+ getScore() : double
+ getLetterGrade() : char

GradedActivity

- numQuestions : int
- pointsEach : double
- numMissed : int

+ FinalExam() :
+ FinalExam(questions : int,
 missed : int) :
+ set(questions : int,
 missed : int) : void
+ getNumQuestions() : double
+ getPointsEach() : double
+ getNumMissed() : int

FinalExam

Z05_GADD6253_07_SE_APP5 Page 7 Monday, January 10, 2011 4:41 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

8

Appendix E: Using UML in Class Design

Figure E-10

score : double

+ GradedActivity() :
+ GradedActivity(s : double) :
+ setScore(s : double) : void
+ getScore() : double
+ getLetterGrade() : char

GradedActivity

Z05_GADD6253_07_SE_APP5 Page 8 Monday, January 10, 2011 4:41 PM

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

