Chapter 12:

From Control Structures
through Objects
seventh edition

Advanced File
Operations

TONY GADDIS
Addison-Wesley
is an imprint of
[LNSIONW Copyright © 2012 Pearson Education, Inc.

121 Y

File Operations

Copyright © 2012 Pearson Education, Inc.

File Operations

+ File: a set of data stored on a computer,
often on a disk drive
* Programs can read from, write to files
» Used in many applications:
— Word processing
— Databases
— Spreadsheets
— Compilers

Copyright © 2012 Pearson Education, Inc.




Using Files

1. Requires fstream header file
— use ifstream data type for input files
— use ofstream data type for output files

— use fstream data type for both input, output
files

Can use >>, << to read from, write to a file
3. Can use eof member function to test for
end of input file

N

Copyright © 2012 Pearson Education, Inc.

fstream Object

» fstream object can be used for either input or output
* Must specify mode on the open statement
« Sample modes:
ios::in —input
ios::out — output
* Can be combined on open call:
dFile.open("class.txt", ios::in | ios::out);

Copyright © 2012 Pearson Education, Inc.

File Access Flags

Table 12-2

File Access Flag ~ Meaning

083 :app Append mode. If the file already exists, its contents are preserved and all output
is written to the end of the file. By default, this flag causes the file to be created if
it does not exist.

ios::ate If the file already exists, the program goes directly to the end of it. Output may
be written anywhere in the file.

ioss::binary Binary mode. When a file is opened in binary mode, data is written to or read
from it in pure binary format. (The default mode is text.)

ios::in Input mode. Data will be read from the file. If the file does not exist, it will not be
created and the open function will fail.

ios: out Output mode. Data will be written to the file. By default, the file’s contents will
be deleted if it already exists.

ios::trunc If the file already exists, its contents will be deleted (truncated). This is the
default mode used by ios: :out.

Copyright © 2012 Pearson Education, Inc.




Using

// copy
// open
fstream
fstream

int num;

Files - Example

10 numbers between files

the files

infile ("input.txt", ios::in);
outfile ("output.txt", ios::out);

for (int i = 1; i <= 10; i++)

{

infile >> num; // use the files
outfile << num;

}

infile.close(); // close the files

outfile.

close();

Copyright © 2012 Pearson Education, Inc.

Default File Open Modes

e ifstream:
— open for input only
— file cannot be written to
- open fails if file does not exist

e ofstream:
— open for output only
— file cannot be read from
— file created if no file exists
— file contents erased if file exists

Copyright © 2012 Pearson Education, Inc.

More File Open Details

» Can use filename, flags in definition:
ifstream gradelist ("grades.txt");

* File stream object setto 0 (false)if
open failed:
if (!gradelist)

« Can also check fail member function to
detect file open error:
if (gradelList.fail())

Copyright © 2012 Pearson Education, Inc.




12.2

File Output Formatting

Copyright © 2012 Pearson Education, Inc.

File Output Formatting

* Use the same techniques with file stream
objects as with cout: showpoint,
setw (x), showprecision (x), etc.

* Requires iomanip to use manipulators

Copyright © 2012 Pearson Education, Inc.

Program 12-3

// This program uses the setprecision and fixed
// manipulators to format file output.

#include <iostream>
#include <iomanip>
tinclude <fstream>
using namespace std;

int main()

fstream dataFile;
double num = 17.816392:

dataFile.open("numfile.txt”, ios::out); // Open in output mode

dataFile <<
dataFile <<

dataFile <<
dataFile <<

dataFile <<
dataFile <<

fixed;
num << endl;

setpracision(d);
num << endl;

setprecision(3);
num << endl;

Copyright © 2012 Pearson Education, Inc.

rt
"

rr
rt

"t
rt

Format for fixed-point notation
Write the number

Format for 4 decimal places
Write the number

Format for 3 decimal places
Write the number




Program 12-3 (Continued)

dataFile << setprecision(2); // Format for 2 decimal places
dataFile << num << endl; /¢ Write the number

dataFile << setprecision(l); // Format for 1 decimal place
dataFile << num << endl; // Write the number

cout << "Dene.\n";
dataFile.close(); // Close the file
return 0;

¥

Contents of Flle numfile.txt
17.816392

17.8164

17.816

17.82

17.8

Copyright © 2012 Pearson Education, Inc.

12.3

Passing File Stream Objects to
Functions

Copyright © 2012 Pearson Education, Inc.

Passing File Stream Objects to
Functions

* Itis very useful to pass file stream objects
to functions

* Be sure to always pass file stream objects
by reference

Copyright © 2012 Pearson Education, Inc.




Program 12-5

// This program demonstrates how file stream objects may
// be passed by reference to functions.

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

// Function prototypes
bool openFileIn(fstream &, string);
void showContents (fstream &);

int main()

{
fstream dataFile;

1f (openFileIn(dataFile, "demofile.txt"))
{
cout << "File opened successfully.\n";
cout << "Now reading data from the file.\n\n
showContents (dataFile);
dataFile.close();
cout << "\nDone.\n

Copyright © 2012 Pearson Education, Inc.

else
cout << "File open error!" << endl;

return 0;

/7

// Definition of function openFileIn. Accepts a reference *
// to an fstream object as an argument. The file is opened *
// for input. The function returns true upon success, false *
// upon failure. *
/7
bool openFileIn(fstream &file, string name)
{
file.open(name.c_str(), ios::in);
1f (file.fall())
return false;
else
return true;
}
/7

// Definition of function showContents. Accepts an fstream *
// reference as its argument. Uses a loop to read each name
// from the file and displays it on the screen.

/7

*
*

Copyright © 2012 Pearson Education, Inc.

void showContents (fstream &file)

{
string line;
while (file >> line)
cout << line << endl;
}
}

Program Output
File opened successfully.
Now reading data from the file.

Jones
smith
Willis
Davis

Done.

012 Pearson Education, Inc,




TONY GADDIS

More Detailed Error Testing

Copyright © 2012 Pearson Education, Inc

More Detailed Error Testing

» Can examine error state bits to determine stream
status

+ Bits tested/cleared by stream member functions

ios::eofbit set when end of file detected
ios::failbit set when operation failed
ios::hardfail set when error occurred and no recovery
ios::badbit set when invalid operation attempted
ios::goodbit set when no other bits are set

Copyright © 2012 Pearson Education, Inc.

Member Functions / Flags

eof () true if eofbit set, false otherwise

fail() true if failbit or hardfail set, false otherwise
bad () true if badbit set, false otherwise

good () true if goodbit set, false otherwise

clear () clear all flags (no arguments), or clear a specific flag

Copyright © 2012 Pearson Education, Inc.




From Program 12-6

vold showState(fstream &file)
{
cout << "File Status:\n";

cout << " eof bit: " << file.eocf() << endl;
cout << " fail bit: " << file.fail() << endl;
cout << " bad bit: " << file.bad() << endl;
cout << " goed bit: " << file.good() << endl;

file.clear(); // Clear any bad bits

Copyright © 2012 Pearson Education, Inc.

Member Functions for Reading
and Writing Files

Copyright © 2012 Pearson Education, Inc.

Member Functions for Reading
and Writing Files

» Functions that may be used for input with
whitespace, to perform single character
I/O, or to return to the beginning of an input
file

* Member functions:

getline: reads input including whitespace
get: reads a single character
put: writes a single character

Copyright © 2012 Pearson Education, Inc.




The getline Function

* Three arguments:

— Name of a file stream object
Name of a string object
Delimiter character of your choice

— Examples, using the file stream object myFile,
and the string objects name and address:

getline (myFile, name) ;
getline (myFile, address, '\t');

— Ifleftout, '\n"' is default for third argument

Copyright © 2012 Pearson Education, Inc.

Program 12-8

// This program uses the getline function to read a line of
// data from the file.

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main()
{
string input; // To hold file input

fstream nameFile; // File stream object

// Open the file in input mode.
nameFile.open("murphy.txt", ios::in);

// 1f the file was successfully opened, continue.
if (nameFile)
{
// Read an item from the file.
getline(nameFile, input);

Copyright © 2012 Pearson Education, Inc.

// While the last read operation
// was successful, continue.
while (nameFile)
{
// Display the last item read.
cout << input << endl;

// Read the next item.
getline(nameFile, input);

// Close the file.
nameFile.close();

}
else

{
cout << "ERROR: Cannot open file.\n";

return 0;
}

Program Output
Jayne Murphy

47 Jones circle
Almond, NC 28702

Copyright © 2012 Pearson Education, Inc.




Single Character I/O

- get: read a single character from a file
char letterGrade;
gradeFile.get (letterGrade) ;
Will read any character, including whitespace

 put: write a single character to a file
reportFile.put (letterGrade) ;

Copyright © 2012 Pearson Education, Inc.

Working with Multiple Files

Copyright © 2012 Pearson Education, Inc.

Working with Multiple Files

+ Can have more than file open at a time in
a program

+ Files may be open for input or output

* Need to define file stream object for each
file

Copyright © 2012 Pearson Education, Inc.




Program 12-12

// This program demonstrates reading from one file and
// to a second file.

#include <iostream>

#include <fstream>

#include <string>

#include <cctype> // Needed for the toupper function.
using namespace std;

int main()

{
string fileName; // To hold the file name
char ch; // To hold a character
ifstream inFile; // Input file

// Open a file for output
ofstream outFile("out.txt"

// Get the input file name.
cout << "Enter a file name:
cin >> fileName;

// Open the file for input.
inFile.open(fileName.c_str()):

// If the input file opened successfully, continue.

Copyright © 2012 Pearson Education, Inc.

writing

if (inFile)

{
// Read a char from file 1.
inFile.get(ch);

// While the last read operation was
// successful, continue.
while (inFile)
{
// Write uppercase char to file 2.
outFile.put (toupper(ch));

// Read another char from file 1.
inFile.get(ch);

// Close the two files.
inFile.close();
outFile.close();
cout << "File conversion done.\n";
}
else
cout << "Cannot open " << fileName << endl;
return 0;

Copyright © 2012 Pearson Education, Inc.

Program Screen Output with Example Input Shown in Bold
Enter a file name: hownow.txt [Enter]
File conversion done.

Contents of hownow. txt
how now brown cow.
How Now?

Resulting Contents of out.txt

HOW NOW BROWN COW.
HOW NOW?2

Copyright © 2012 Pearson Education, Inc.




Binary Files

Copyright © 2012 Pearson Education, Inc.

Binary Files

* Binary file contains unformatted, non-ASCI|
data

* Indicate by using binary flag on open:

inFile.open ("nums.dat", ios::in |
ios::binary);

12-35
Copyright © 2012 Pearson Education, Inc.

Binary Files

* Use read and write instead of <<, >>
char ch;
// read in a letter from file

inFile.read(&ch, sizeof (ch));

/
address of where to put

the data being read in.
The read function expects pg;’é rf’:gr’:]ytﬁgﬁlzto

toread chars

// send a character to a file

outFile.write (&ch, sizeof (ch));

12-36

Copyright © 2012 Pearson Education, Inc.




Binary Files

* To read, write non-character data, must use a
typecast operator to treat the address of the data
as a character address

int num;
// read in a binary number from a file
inFile.read(reinterpret cast<char *>&num,

treat the address Ofnumy sizeof (num)) ;

the address of a char

// send a binary value to a file
outf.write(reinterpret_ cast<char *>&num,
sizeof (num)) ;

Copyright © 2012 Pearson Education, Inc.

Creating Records with Structures

Copyright © 2012 Pearson Education, Inc.

Creating Records with

Structures

» Can write structures to, read structures
from files

» To work with structures and files,

—use ios: :binary file flag upon open
—use read, write member functions

12-39

Copyright © 2012 Pearson Education, Inc.




Creating Records with
Structures

struct TestScore

{
int studentId;
double score;
char grade;

}i

TestScore oneTest;

// write out oneTest to a file
gradeFile.write (reinterpret cast<char *>
(&oneTest), sizeof (oneTest));

12-40

Copyright © 2012 Pearson Education, Inc.

Random-Access Files

Copyright © 2012 Pearson Education, Inc.

Random-Access Files

» Sequential access: start at beginning of
file and go through data in file, in order,
to end

—to access 100t entry in file, go through 99
preceding entries first

« Random access: access data in a file in
any order

— can access 100t entry directly

12-42

Copyright © 2012 Pearson Education, Inc.




Random Access Member
Functions

» seekqg (seek get): used with files open for
input

» seekp (seek put): used with files open for
output

+ Used to go to a specific position in a file

12-43

Copyright © 2012 Pearson Education, Inc.

Random Access Member
Functions

* seekg, seekp arguments:
offset: number of bytes, as a long
mode flag: starting point to compute offset

+ Examples:
inData.seekg (25L, ios::beq);
// set read position at 26th byte
// from beginning of file
outData.seekp(-10L, ios::cur);
// set write position 10 bytes
// before current position

12-44
Copyright © 2012 Pearson Education, Inc.

Important Note on Random
Access

* If eof is true, it must be cleared before
seekg Or seekp:

gradeFile.clear();
gradeFile.seekg (0L, ios::beqg);
// go to the beginning of the file

12-45

Copyright © 2012 Pearson Education, Inc.




Random Access Information

» tellg member function: return current
byte position in input file
long int whereAmI;
whereAmI = inData.tellg();

» tellp member function: return current
byte position in output file
whereAmI = outData.tellp();

12-46

Copyright © 2012 Pearson Education, Inc.

12.10 Y,

Opening a File for
Both Input and Output

Copyright © 2012 Pearson Education, Inc.

Opening a File for
Both Input and Output

* File can be open for input and output simultaneously
» Supports updating a file:

— read data from file into memory

— update data

— write data back to file
* Use fstreamn for file object definition:

fstream gradeList ("grades.dat",
ios::in | ios::out);

» Can also use ios: :binary flag for binary data

Copyright © 2012 Pearson Education, Inc.




