

Through the power of practice and immediate personalized

feedback, MyProgrammingLab improves your performance.

Learn more at www.myprogramminglab.com

get with the programming

A01_GADD6253_07_SE_FM1 Page i Tuesday, January 18, 2011 3:05 PM

A01_GADD6253_07_SE_FM1 Page ii Tuesday, January 18, 2011 3:05 PM

C++

SEVENTH EDIT ION

Tony Gaddis
Haywood Community College

STARTING OUT WITH

C++
From Control Structures

through Objects

Addison-Wesley
Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

A01_GADD6253_07_SE_FM1 Page iii Friday, February 4, 2011 3:32 PM

Editorial Director: Marcia Horton Manufacturing Buyer: Lisa McDowell
Editor-in-Chief: Michael Hirsch Art Director: Linda Knowles
Editorial Assistant: Stephanie Sellinger Cover Designer: Joyce Cosentino Wells
Vice President, Marketing: Patrice Jones Cover Image: © Fotosearch/Rubberball Photos
Marketing Manager: Yezan Alayan Media Editor: Daniel Sandin
Marketing Coordinator: Kathryn Ferranti Media Project Manager: Wanda Rockwell
Vice President, Production: Vince O Brien Full-Service Vendor: Aptara

®

, Inc.
Managing Editor: Jeff Holcomb Project Management: Dennis Free/Aptara

®

, Inc.
Senior Production Project Manager: Marilyn Lloyd Printer/Binder: Edwards Brothers
Senior Operations Supervisor: Alan Fischer Cover Printer: Lehigh-Phoenix Color

Copyright © 2012, 2009, 2007, 2005 Pearson Education, Inc., publishing as Addison-Wesley. All rights
reserved. Manufactured in the United States of America. This publication is protected by Copyright, and per-
mission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval sys-
tem, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission(s) to use material from this work, please submit a written request to Pearson Education,
Inc., Permissions Department, 501 Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designa-
tions have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Gaddis, Tony.
 Starting out with C++ : from control structures through objects / Tony
Gaddis. 7th ed.
 p. cm.
 Includes bibliographical references and index.
 ISBN-13: 978-0-13-257625-3 (alk. paper)
 ISBN-10: 0-13-257625-2 (alk. paper)
 1. C++ (Computer program language) I. Title.
 QA76.73.C153G33 2012
 005.13'3 dc22
 2011003252

10 9 8 7 6 5 4 3 2 1 EB 15 14 13 12 11

ISBN 13: 978-0-13-257625-3
ISBN 10: 0-13-257625-2

A01_GADD6253_07_SE_FM1 Page iv Tuesday, January 25, 2011 10:00 PM

v

Contents at a Glance

Preface xiii

CHAPTER 1 Introduction to Computers and Programming 1

CHAPTER 2 Introduction to C++ 27

CHAPTER 3 Expressions and Interactivity 85

CHAPTER 4 Making Decisions 149

CHAPTER 5 Loops and Files 227

CHAPTER 6 Functions 301

CHAPTER 7 Arrays 377

CHAPTER 8 Searching and Sorting Arrays 451

CHAPTER 9 Pointers 491

CHAPTER 10 Characters, C-Strings, and More About the

String

 Class 541

CHAPTER 11 Structured Data 593

CHAPTER 12 Advanced File Operations 651

CHAPTER 13 Introduction to Classes 705

CHAPTER 14 More About Classes 799

CHAPTER 15 Inheritance, Polymorphism, and Virtual Functions 869

CHAPTER 16 Exceptions, Templates, and the Standard Template Library (STL) 947

CHAPTER 17 Linked Lists 1003

CHAPTER 18 Stacks and Queues 1043

CHAPTER 19 Recursion 1101

CHAPTER 20 Binary Trees 1137

Appendix A: Getting Started with Alice 1167

Appendix B: The ASCII Character Set 1195

Appendix C: Operator Precedence and Associativity 1197

Quick References 1199

Index 1201

A01_GADD6253_07_SE_FM2 Page v Monday, January 17, 2011 5:15 PM

vi

Contents at a Glance

Online

The following appendices are available at www.pearsonhighered.com/gaddis.

Appendix D: Introduction to Flowcharting

Appendix E: Using UML in Class Design

Appendix F: Namespaces

Appendix G: Writing Managed C++ Code for the .NET Framework

Appendix H: Passing Command Line Arguments

Appendix I: Header File and Library Function Reference

Appendix J: Binary Numbers and Bitwise Operations

Appendix K: Multi-Source File Programs

Appendix L: Stream Member Functions for Formatting

Appendix M: Introduction to Microsoft Visual C++ 2010 Express Edition

Appendix N: Answers to Checkpoints

Appendix O: Solutions to Odd-Numbered Review Questions

A01_GADD6253_07_SE_FM2 Page vi Thursday, February 3, 2011 7:39 PM

vii

Contents

Preface xiii

CHAPTER 1 Introduction to Computers and Programming 1

1.1 Why Program? 1
1.2 Computer Systems: Hardware and Software 3
1.3 Programs and Programming Languages 8
1.4 What Is a Program Made of? 13
1.5 Input, Processing, and Output 17
1.6 The Programming Process 18
1.7 Procedural and Object-Oriented Programming 22

CHAPTER 2 Introduction to C++ 27

2.1 The Parts of a C++ Program 27
2.2 The

cout

 Object 31
2.3 The

#include

 Directive 36
2.4 Variables and Literals 37
2.5 Identifiers 41
2.6 Integer Data Types 42
2.7 The

char

 Data Type 47
2.8 The C++ string Class 51
2.9 Floating-Point Data Types 53
2.10 The

bool

 Data Type 56
2.11 Determining the Size of a Data Type 57
2.12 Variable Assignments and Initialization 58
2.13 Scope 59
2.14 Arithmetic Operators 60
2.15 Comments 68
2.16 Named Constants 70
2.17 Programming Style 72
2.18 If You Plan to Continue in Computer Science: Standard and Prestandard C++ 74

A01_GADD6253_07_SE_FM2 Page vii Monday, January 17, 2011 5:15 PM

viii

Contents

CHAPTER 3 Expressions and Interactivity 85

3.1 The

cin

 Object 85
3.2 Mathematical Expressions 91
3.3 When You Mix Apples and Oranges: Type Conversion 100
3.4 Overflow and Underflow 102
3.5 Type Casting 103
3.6 Multiple Assignment and Combined Assignment 107
3.7 Formatting Output 111
3.8 Working with Characters and string Objects 120
3.9 More Mathematical Library Functions 127
3.10 Focus on Debugging: Hand Tracing a Program 130
3.11 Focus on Problem Solving: A Case Study 132

CHAPTER 4 Making Decisions 149

4.1 Relational Operators 149
4.2 The

if

 Statement 154
4.3 Expanding the

if

 Statement 162
4.4 The

if/else

 Statement 166
4.5 Nested

if

 Statements 169
4.6 The

if/else

if

 Statement

176

4.7 Flags 181
4.8 Logical Operators 182
4.9 Checking Numeric Ranges with Logical Operators 189
4.10 Menus 190
4.11 Focus on Software Engineering: Validating User Input 193
4.12 Comparing Characters and Strings 195
4.13 The Conditional Operator 199
4.14 The

switch

 Statement 202
4.15 More About Blocks and Scope 211

CHAPTER 5 Loops and Files 227

5.1 The Increment and Decrement Operators 227
5.2 Introduction to Loops: The

while

 Loop 232
5.3 Using the

while

 Loop for Input Validation 239
5.4 Counters 241
5.5 The

do-while

 Loop 242
5.6 The

for

 Loop 247
5.7 Keeping a Running Total 257
5.8 Sentinels 260
5.9 Focus on Software Engineering: Deciding Which Loop to Use 261
5.10 Nested Loops 262
5.11 Using Files for Data Storage 265
5.12 Optional Topics: Breaking and Continuing a Loop 285

CHAPTER 6 Functions 301

6.1 Focus on Software Engineering: Modular Programming 301
6.2 Defining and Calling Functions 303
6.3 Function Prototypes 311
6.4 Sending Data into a Function 313

A01_GADD6253_07_SE_FM2 Page viii Monday, January 17, 2011 5:15 PM

Contents

ix

6.5 Passing Data by Value 318
6.6 Focus on Software Engineering: Using Functions in a Menu-Driven Program 320
6.7 The

return

 Statement 324
6.8 Returning a Value from a Function 326
6.9 Returning a Boolean Value 334
6.10 Local and Global Variables 336
6.11 Static Local Variables 344
6.12 Default Arguments 347
6.13 Using Reference Variables as Parameters 350
6.14 Overloading Functions 356
6.15 The

exit()

 Function 360
6.16 Stubs and Drivers 363

CHAPTER 7 Arrays 377

7.1 Arrays Hold Multiple Values 377
7.2 Accessing Array Elements 379
7.3 No Bounds Checking in C++ 386
7.4 Array Initialization 389
7.5 Processing Array Contents 394
7.6 Focus on Software Engineering: Using Parallel Arrays 402
7.7 Arrays as Function Arguments 405
7.8 Two-Dimensional Arrays 416
7.9 Arrays with Three or More Dimensions 423
7.10 Focus on Problem Solving and Program Design: A Case Study 424
7.11 If You Plan to Continue in Computer Science: Introduction to the

STL

vector

427

CHAPTER 8 Searching and Sorting Arrays 451

8.1 Focus on Software Engineering: Introduction to Search Algorithms 451
8.2 Focus on Problem Solving and Program Design: A Case Study 458
8.3 Focus on Software Engineering: Introduction to Sorting Algorithms 464
8.4 Focus on Problem Solving and Program Design: A Case Study 472
8.5 If You Plan to Continue in Computer Science: Sorting and

Searching

vector

s 480

CHAPTER 9 Pointers 491

9.1 Getting the Address of a Variable 491
9.2 Pointer Variables 493
9.3 The Relationship Between Arrays and Pointers 500
9.4 Pointer Arithmetic 504
9.5 Initializing Pointers 506
9.6 Comparing Pointers 507
9.7 Pointers as Function Parameters 509
9.8 Focus on Software Engineering: Dynamic Memory Allocation 518
9.9 Focus on Software Engineering: Returning Pointers from Functions 522
9.10 Focus on Problem Solving and Program Design: A Case Study 529

CHAPTER 10 Characters, C-Strings, and More About the

string

 Class 541

10.1 Character Testing 541
10.2 Character Case Conversion 545

A01_GADD6253_07_SE_FM2 Page ix Monday, January 17, 2011 5:15 PM

x

Contents

10.3 C-Strings 548
10.4 Library Functions for Working with C-Strings 552
10.5 C-String/Numeric Conversion Functions 563
10.6 Focus on Software Engineering: Writing Your Own

C-String-Handling Functions 568
10.7 More About the C++

string

 Class 574
10.8 Focus on Problem Solving and Program Design: A Case Study 584

CHAPTER 11 Structured Data 593

11.1 Abstract Data Types 593
11.2 Focus on Software Engineering: Combining Data

into Structures 595
11.3 Accessing Structure Members 598
11.4 Initializing a Structure 602
11.5 Arrays of Structures 605
11.6 Focus on Software Engineering: Nested Structures 608
11.7 Structures as Function Arguments 612
11.8 Returning a Structure from a Function 615
11.9 Pointers to Structures 618
11.10 Focus on Software Engineering: When to Use

.

, When to Use

->

,
and When to Use

*

621
11.11 Unions 623
11.12 Enumerated Data Types 627

CHAPTER 12 Advanced File Operations 651

12.1 File Operations 651
12.2 File Output Formatting 658
12.3 Passing File Stream Objects to Functions 660
12.4 More Detailed Error Testing 662
12.5 Member Functions for Reading and Writing Files 665
12.6 Focus on Software Engineering: Working with Multiple Files 672
12.7 Binary Files 674
12.8 Creating Records with Structures 679
12.9 Random-Access Files 683
12.10 Opening a File for Both Input and Output 691

CHAPTER 13 Introduction to Classes 705

13.1 Procedural and Object-Oriented Programming 705
13.2 Introduction to Classes 712
13.3 Defining an Instance of a Class 717
13.4 Why Have Private Members? 728
13.5 Focus on Software Engineering: Separating Class Specification

from Implementation 729
13.6 Inline Member Functions 735
13.7 Constructors 738
13.8 Passing Arguments to Constructors 742
13.9 Destructors 750
13.10 Overloading Constructors 754
13.11 Private Member Functions 758
13.12 Arrays of Objects 759

A01_GADD6253_07_SE_FM2 Page x Monday, January 17, 2011 5:15 PM

Contents

xi

13.13 Focus on Problem Solving and Program Design: An OOP Case Study 763
13.14 Focus on Object-Oriented Programming: Creating an Abstract Array

Data Type 770
13.15 Focus on Object-Oriented Design: The Unified Modeling Language (UML) 774
13.16 Focus on Object-Oriented Design: Finding the Classes and Their

Responsibilities 777

CHAPTER 14 More About Classes 799

14.1 Instance and Static Members 799
14.2 Friends of Classes 807
14.3 Memberwise Assignment 812
14.4 Copy Constructors 813
14.5 Operator Overloading 819
14.6 Object Conversion 846
14.7 Aggregation 849
14.8 Focus on Object-Oriented Design: Class Collaborations 853

CHAPTER 15 Inheritance, Polymorphism, and Virtual Functions 869

15.1 What Is Inheritance? 869
15.2 Protected Members and Class Access 878
15.3 Constructors and Destructors in Base and Derived Classes 884
15.4 Redefining Base Class Functions 896
15.5 Class Hierarchies 901
15.6 Polymorphism and Virtual Member Functions 907
15.7 Abstract Base Classes and Pure Virtual Functions 921
15.8 Multiple Inheritance 928

CHAPTER 16 Exceptions, Templates, and the Standard Template Library (STL) 947

16.1 Exceptions 947
16.2 Function Templates 966
16.3 Focus on Software Engineering: Where to Start When Defining Templates 972
16.4 Class Templates 973
16.5 Introduction to the Standard Template Library (STL) 983

CHAPTER 17 Linked Lists 1003

17.1 Introduction to the Linked List ADT 1003
17.2 Linked List Operations 1005
17.3 A Linked List Template 1022
17.4 Variations of the Linked List 1034
17.5 The STL

list

 Container 1035

CHAPTER 18 Stacks and Queues 1043

18.1 Introduction to the Stack ADT 1043
18.2 Dynamic Stacks 1060
18.3 The STL

stack

 Container 1071
18.4 Introduction to the Queue ADT 1073
18.5 Dynamic Queues 1085
18.6 The STL

deque

 and

queue

 Containers 1092

A01_GADD6253_07_SE_FM2 Page xi Monday, January 17, 2011 5:15 PM

xii

Contents

CHAPTER 19 Recursion 1101

19.1 Introduction to Recursion 1101
19.2 Solving Problems with Recursion 1106
19.3 Focus on Problem Solving and Program Design: The Recursive

gcd

 Function 1113
19.4 Focus on Problem Solving and Program Design: Solving Recursively

Defined Problems 1114
19.5 Focus on Problem Solving and Program Design: Recursive Linked

List Operations 1116
19.6 Focus on Problem Solving and Program Design: A Recursive Binary

Search Function 1119
19.7 The Towers of Hanoi 1122
19.8 Focus on Problem Solving and Program Design: The QuickSort Algorithm 1125
19.9 Exhaustive Algorithms 1130
19.10 Focus on Software Engineering: Recursion vs. Iteration 1132

CHAPTER 20 Binary Trees 1137

20.1 Definition and Applications of Binary Trees 1137
20.2 Binary Search Tree Operations 1140
20.3 Template Considerations for Binary Search Trees 1157

Appendix A: Getting Started with Alice 1167

Appendix B: The ASCII Character Set 1195

Appendix C: Operator Precedence and Associativity 1197

Quick References 1199

Index 1201

Online

The following appendices are available at www.pearsonhighered.com/gaddis.

Appendix D: Introduction to Flowcharting

Appendix E: Using UML in Class Design

Appendix F: Namespaces

Appendix G: Writing Managed C++ Code for the .NET Framework

Appendix H: Passing Command Line Arguments

Appendix I: Header File and Library Function Reference

Appendix J: Binary Numbers and Bitwise Operations

Appendix K: Multi-Source File Programs

Appendix L: Stream Member Functions for Formatting

Appendix M: Introduction to Microsoft Visual C++ 2010 Express Edition

Appendix N: Answers to Checkpoints

Appendix O: Solutions to Odd-Numbered Review Questions

A01_GADD6253_07_SE_FM2 Page xii Thursday, February 3, 2011 7:40 PM

xiii

Welcome to

Starting Out with C++: From Control Structures through Objects, 7th edi-

tion.

This book is intended for use in a two-semester C++ programming sequence, or an

accelerated one-semester course. Students new to programming, as well as those with

prior course work in other languages, will nd this text bene cial. The fundamentals of

programming are covered for the novice, while the details, pitfalls, and nuances of the

C++ language are explored in-depth for both the beginner and more experienced student.

The book is written with clear, easy-to-understand language and it covers all the necessary

topics for an introductory programming course. This text is rich in example programs that

are concise, practical, and real-world oriented, ensuring that the student not only learns

how to implement the features and constructs of C++, but why and when to use them.

Changes in the Seventh Edition

This book s pedagogy, organization, and clear writing style remain the same as in the pre-

vious edition. Many improvements have been made, which are summarized here:

This edition uses

string

 objects, instead of

char

 arrays, as the preferred way to

store strings. This change has been made throughout the entire book. A thorough

discussion of C-strings and the technique of storing them in

char

 arrays is pro-

vided as a topic in Chapter 10.

All of the introductory file I/O material has been consolidated and moved to

Chapter 5. In previous editions, this material was gradually introduced in Chap-

ters 3 through 5. Many reviewers requested that all the material be given in one

place, after loops have been covered.

Named constants are now introduced in Chapter 2, after variables.

In Chapter 2 an additional

In the Spotlight

 section demonstrating the modulus

operator has been added.

Chapter 4 has been reorganized so that all the fundamental decision structure

topics appear early in the chapter.

A discussion of passing arrays using

const

 references has been added to Chapter 7.

Preface

A01_GADD6253_07_SE_FM3 Page xiii Monday, January 17, 2011 5:27 PM

xiv

Preface

An

In the Spotlight

 section giving an additional example of inheritance has been

added to Chapter 15.

Template examples for stacks, queues, and binary search trees have been added to

Chapters 18 and 20.

The Serendipity Booksellers project has been moved to the book s online resource

page at www.pearsonhighered.com/gaddis.

Organization of the Text

This text teaches C++ in a step-by-step fashion. Each chapter covers a major set of topics

and builds knowledge as the student progresses through the book. Although the chapters

can be easily taught in their existing sequence, some exibility is provided. The diagram

shown in Figure P-1 suggests possible sequences of instruction.

Chapter 1 covers fundamental hardware, software, and programming concepts. You may

choose to skip this chapter if the class has already mastered those topics. Chapters 2

through 7 cover basic C++ syntax, data types, expressions, selection structures, repetition

structures, functions, and arrays. Each of these chapters builds on the previous chapter

and should be covered in the order presented.

After Chapter 7 has been covered, you may proceed to Chapter 8, or jump to either Chap-

ter 9 or Chapter 12. (If you jump to Chapter 12 at this point, you will need to postpone

sections 12.7, 12.8, and 12.10 until Chapters 9 and 11 have been covered.)

After Chapter 9 has been covered, either of Chapters 10 or 11 may be covered. After

Chapter 11, you may cover Chapters 13 through 17 in sequence. Next you can proceed to

either Chapter 18 or Chapter 19. Finally, Chapter 20 may be covered.

This text s approach starts with a rm foundation in structured, procedural programming

before delving fully into object-oriented programming and advanced data structures.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter provides an introduction to the eld of computer science and covers the funda-

mentals of programming, problem solving, and software design. The components of pro-

grams, such as key words, variables, operators, and punctuation are covered. The tools of

the trade, such as pseudocode, ow charts, and hierarchy charts are also presented.

Chapter 2: Introduction to C++

This chapter gets the student started in C++ by introducing data types, identi ers, variable

declarations, constants, comments, program output, simple arithmetic operations, and C-

strings. Programming style conventions are introduced and good programming style is

modeled here, as it is throughout the text. An optional section explains the difference

between ANSI standard and pre-standard C++ programs.

A01_GADD6253_07_SE_FM3 Page xiv Thursday, February 3, 2011 7:42 PM

Preface

xv

Figure P-1

Chapter 8

Searching And

Sorting Arrays

Chapter 9

Pointers

Chapter 10

Characters, Strings,

and the string Class

Chapter 12
Advanced File

Operations*

Chapter 20

Binary Trees

Chapters 2 7

Basic Language

Elements

Chapter 11

Structures

Chapter 13

Introduction to

Classes

Chapter 14

More About Classes

Chapter 15

Inheritance and

Polymorphism

Chapter 16

Exceptions,

Templates, and STL

Chapter 17

Linked Lists

Chapter 18

Stacks and Queues
Chapter 19

Recursion

*A few subtopics in

Chapter 12 require

Chapters 9 and 11.

Chapter 1

Introduction

A01_GADD6253_07_SE_FM3 Page xv Monday, January 17, 2011 5:27 PM

xvi

Preface

Chapter 3: Expressions and Interactivity

In this chapter the student learns to write programs that input and handle numeric, char-

acter, and string data. The use of arithmetic operators and the creation of mathematical

expressions are covered in greater detail, with emphasis on operator precedence. Debug-

ging is introduced, with a section on hand tracing a program. Sections are also included

on simple output formatting, on data type conversion and type casting, and on using

library functions that work with numbers.

Chapter 4: Making Decisions

Here the student learns about relational operators, relational expressions and how to con-

trol the ow of a program with the

if

,

if

/

else

, and

if

/

else

if

 statements. The condi-

tional operator and the

switch

 statement are also covered. Crucial applications of these

constructs are covered, such as menu-driven programs and the validation of input.

Chapter 5: Loops and Files

This chapter covers repetition control structures. The

while

 loop,

do

-

while

 loop, and

for

loop are taught, along with common uses for these devices. Counters, accumulators, run-

ning totals, sentinels, and other application-related topics are discussed. Sequential le I/O is

also introduced. The student learns to read and write text les, and use loops to process the

data in a le.

Chapter 6: Functions

In this chapter the student learns how and why to modularize programs, using both

void

and value returning functions. Argument passing is covered, with emphasis on when argu-

ments should be passed by value versus when they need to be passed by reference. Scope

of variables is covered and sections are provided on local versus global variables and on

static local variables. Overloaded functions are also introduced and demonstrated.

Chapter 7: Arrays

In this chapter the student learns to create and work with single and multidimensional

arrays. Many examples of array processing are provided including examples illustrating

how to nd the sum, average, highest and lowest values in an array and how to sum the

rows, columns, and all elements of a two-dimensional array. Programming techniques using

parallel arrays are also demonstrated and the student is shown how to use a data le as an

input source to populate an array. STL vectors are introduced and compared to arrays.

Chapter 8: Sorting and Searching Arrays

Here the student learns the basics of sorting arrays and searching for data stored in them.

The chapter covers the Bubble Sort, Selection Sort, Linear Search, and Binary Search algo-

rithms. There is also a section on sorting and searching STL

vector

 objects.

A01_GADD6253_07_SE_FM3 Page xvi Monday, January 17, 2011 5:27 PM

Preface

xvii

Chapter 9: Pointers

This chapter explains how to use pointers. Pointers are compared to and contrasted with

reference variables. Other topics include pointer arithmetic, initialization of pointers, rela-

tional comparison of pointers, pointers and arrays, pointers and functions, dynamic mem-

ory allocation, and more.

Chapter 10: Characters, C-strings, and More About the

string

 Class

This chapter discusses various ways to process text at a detailed level. Library functions

for testing and manipulating characters are introduced. C-strings are discussed, and the

technique of storing C-strings in

char

 arrays is covered. An extensive discussion of the

string

 class methods is also given.

Chapter 11: Structured Data

The student is introduced to abstract data types and taught how to create them using struc-

tures, unions, and enumerated data types. Discussions and examples include using pointers

to structures, passing structures to functions, and returning structures from functions.

Chapter 12: Advanced File Operations

This chapter covers sequential access, random access, text, and binary les. The various

modes for opening les are discussed, as well as the many methods for reading and writing

le contents. Advanced output formatting is also covered.

Chapter 13: Introduction to Classes

The student now shifts focus to the object-oriented paradigm. This chapter covers the

fundamental concepts of classes. Member variables and functions are discussed. The

student learns about private and public access speci cations, and reasons to use each.

The topics of constructors, overloaded constructors, and destructors are also presented.

The chapter presents a section modeling classes with UML, and how to nd the classes

in a particular problem.

Chapter 14: More About Classes

This chapter continues the study of classes. Static members, friends, memberwise assign-

ment, and copy constructors are discussed. The chapter also includes in-depth sections on

operator overloading, object conversion, and object aggregation. There is also a section

on class collaborations and the use of CRC cards.

Chapter 15: Inheritance and Polymorphism

The study of classes continues in this chapter with the subjects of inheritance, polymor-

phism, and virtual member functions. The topics covered include base and derived class

constructors and destructors, virtual member functions, base class pointers, static and

dynamic binding, multiple inheritance, and class hierarchies.

A01_GADD6253_07_SE_FM3 Page xvii Monday, January 17, 2011 5:27 PM

xviii

Preface

Chapter 16: Exceptions, Templates, and the Standard
Template Library (STL)

The student learns to develop enhanced error trapping techniques using exceptions. Dis-

cussion then turns to function and class templates as a method for reusing code. Finally,

the student is introduced to the containers, iterators, and algorithms offered by the Stan-

dard Template Library (STL).

Chapter 17: Linked Lists

This chapter introduces concepts and techniques needed to work with lists. A linked list

ADT is developed and the student is taught to code operations such as creating a linked

list, appending a node, traversing the list, searching for a node, inserting a node, deleting a

node, and destroying a list. A linked list class template is also demonstrated.

Chapter 18: Stacks and Queues

In this chapter the student learns to create and use static and dynamic stacks and queues. The

operations of stacks and queues are de ned, and templates for each ADT are demonstrated.

Chapter 19: Recursion

This chapter discusses recursion and its use in problem solving. A visual trace of recursive

calls is provided and recursive applications are discussed. Many recursive algorithms are

presented, including recursive functions for nding factorials, nding a greatest common

denominator (GCD), performing a binary search, and sorting (QuickSort). The classic

Towers of Hanoi example is also presented. For students who need more challenge, there

is a section on exhaustive algorithms.

Chapter 20: Binary Trees

This chapter covers the binary tree ADT, and demonstrates many binary tree operations.

The student learns to traverse a tree, insert an element, delete an element, replace an ele-

ment, test for an element, and destroy a tree.

Appendix A: Getting Started with Alice

This appendix gives a quick introduction to Alice. Alice is free software that can be used

to teach fundamental programming concepts using 3D graphics.

Appendix B: ASCII Character Set

A list of the ASCII and Extended ASCII characters and their codes.

Appendix C: Operator Precedence and Associativity

A chart showing the C++ operators and their precedence.

A01_GADD6253_07_SE_FM3 Page xviii Monday, January 17, 2011 5:27 PM

Preface

xix

The following appendices are available online at www.pearsonhighered.com/gaddis.

Appendix D: Introduction to Flowcharting

A brief introduction to owcharting. This tutorial discusses sequence, selection, case, rep-

etition, and module structures.

Appendix E: Using UML in Class Design

This appendix shows the student how to use the Uni ed Modeling Language to design

classes. Notation for showing access speci cation, data types, parameters, return values,

overloaded functions, composition, and inheritance are included.

Appendix F: Namespaces

This appendix explains namespaces and their purpose. Examples showing how to de ne a

namespace and access its members are given.

Appendix G: Writing Managed C++ Code for the .NET Framework

This appendix introduces the student to the concepts surrounding managed C++ in

Microsoft s .NET environment.

Appendix H: Passing Command Line Arguments

Teaches the student how to write a C++ program that accepts arguments from the com-

mand line. This appendix will be useful to students working in a command line environ-

ment, such as Unix, Linux, or the Windows command prompt.

Appendix I: Header File and Library Function Reference

This appendix provides a reference for the C++ library functions and header les discussed

in the book.

Appendix J: Binary Numbers and Bitwise Operations

A guide to the C++ bitwise operators, as well as a tutorial on the internal storage of integers.

Appendix K: Multi-Source File Programs

Provides a tutorial on creating programs that consist of multiple source les. Function

header les, class speci cation les, and class implementation les are discussed.

Appendix L: Stream Member Functions for Formatting

Covers stream member functions for formatting such as

setf

.

Appendix M: Introduction to Microsoft Visual C++ 2010 Express Edition

A tutorial on how to start a project in Microsoft Visual C++ 2010 Express Edition, com-

pile a program, save source les, and more.

A01_GADD6253_07_SE_FM3 Page xix Saturday, January 22, 2011 3:31 PM

xx

Preface

Appendix N: Answers to Checkpoints

Students may test their own progress by comparing their answers to the checkpoint exer-

cises against this appendix. The answers to all Checkpoints are included.

Appendix O: Solutions to Odd-Numbered Review Questions

Another tool that students can use to gauge their progress.

Features of the Text

Concept

Statements

Each major section of the text starts with a concept statement.

This statement summarizes the ideas of the section.

Example Programs

The text ha

s hundreds of

 complete example programs, each

designed to highlight the topic currently being studied. In most

cases, these are practical, real-world examples. Source code for

these programs is provided so that students can run the

programs themselves.

Program Output

After each example program there is a sample of its screen

output. This immediately shows the student how the program

should function.

In the Spotlight

Each of these sections provides a programming problem and a

detailed, step by step analysis showing the student how to solve

it.

VideoNotes

A series of online videos, developed speci cally for this book, is

available for viewing at

www.pearsonhighered.com/gaddis

.

Icons appear throughout the text alerting the student to videos

about speci c topics.

Checkpoints

Checkpoints are questions placed throughout each chapter as a

self-test study aid. Answers for all Checkpoint questions can be

downloaded from the book s Companion Website at

www.pearsonhighered.com/gaddis. This allows students to

check how well they have learned a new topic.

Notes

Notes appear at appropriate places throughout the text. They

are short explanations of interesting or often misunderstood

points relevant to the topic at hand.

Warnings

Warnings are notes that caution the student about certain C++

features, programming techniques, or practices that can lead to

malfunctioning programs or lost data.

VideoNote

A01_GADD6253_07_SE_FM3 Page xx Thursday, February 3, 2011 10:46 PM

Preface

xxi

Case Studies

Case studies that simulate real-world applications appear in

many chapters throughout the text. These case studies are

designed to highlight the major topics of the chapter in which

they appear.

Review Questions

and Exercises

Each chapter presents a thorough and diverse set of review

questions, such as ll-in-the-blank and short answer, that check

the student s mastery of the basic material presented in the

chapter. These are followed by exercises requiring problem

solving and analysis, such as the

Algorithm Workbench

,

Predict

the Output

, and

Find the Errors

sections. Answers to the odd

numbered review questions and review exercises can be

downloaded from the book s Companion Website at

www.pearsonhighered.com/gaddis.

Programming

Challenges

Each chapter offers a pool of programming exercises designed

to solidify the student s knowledge of the topics currently being

studied. In most cases the assignments present real-world

problems to be solved. When applicable, these exercises include

input validation rules.

Group Projects

There are several group programming projects throughout the

text, intended to be constructed by a team of students. One

student might build the program s user interface, while another

student writes the mathematical code, and another designs and

implements a class the program uses. This process is similar to

the way many professional programs are written and

encourages team work within the classroom.

Software

Development

Project:

Serendipity

Booksellers

Available for download from the book s Companion Website at

www.pearsonhighered.com/gaddis. This is an on-going project

that instructors can optionally assign to teams of students. It

systematically develops a real-world software package: a

point-of-sale program for the ctitious Serendipity Booksellers

organization. The Serendipity assignment for each chapter adds

more functionality to the software, using constructs and

techniques covered in that chapter. When complete, the

program will act as a cash register, manage an inventory

database, and produce a variety of reports.

C++ Quick

Reference Guide

For easy access, a quick reference guide to the C++ language is

printed on the last two pages of Appendix C in the book.

A01_GADD6253_07_SE_FM3 Page xxi Thursday, February 3, 2011 10:46 PM

xxii

Preface

Supplements

Student Online Resources

Many student resources are available for this book from the publisher. The following items

are available on the Gaddis Series Companion Website at www.pearsonhighered.com/gaddis:

The source code for each example program in the book

Access to the book s companion VideoNotes

A full set of appendices, including answers to the Checkpoint questions, and

answers to the odd-numbered review questions

A collection of valuable Case Studies

The complete Serendipity Booksellers Project

Integrated Development Environment (IDE) Resource Kits

Professors who adopt this text can order it for students with a kit containing ve popular

C++ IDEs (Microsoft

®

 Visual Studio 2010 Express Edition, Dev C++, NetBeans, Eclipse,

and CodeLite) and access to a Web site containing written and video tutorials for getting

started in each IDE. For ordering information, please contact your campus Pearson Edu-

cation representative or visit www.pearsonhighered.com/cs.

Online Practice and Assessment with MyProgrammingLab

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of program-

ming. Through practice exercises and immediate, personalized feedback, MyProgram-

mingLab improves the programming competence of beginning students who often struggle

with the basic concepts and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hundreds of

small practice problems organized around the structure of this textbook. For students, the

system automatically detects errors in the logic and syntax of their code submissions and

offers targeted hints that enable students to gure out what went wrong and why. For

instructors, a comprehensive gradebook tracks correct and incorrect answers and stores the

code inputted by students for review.

MyProgrammingLab is offered to users of this book in partnership with Turing s Craft, the

makers of the CodeLab interactive programming exercise system. For a full demonstration,

to see feedback from instructors and students, or to get started using MyProgrammingLab

in your course, visit www.myprogramminglab.com.

Instructor Resources

The following supplements are available to quali ed instructors only:

Answers to all Review Questions in the text

Solutions for all Programming Challenges in the text

PowerPoint presentation slides for every chapter

A01_GADD6253_07_SE_FM3 Page xxii Saturday, January 22, 2011 3:34 PM

Preface

xxiii

Computerized test bank

Answers to all Student Lab Manual questions

Solutions for all Student Lab Manual programs

Visit the Pearson Instructor Resource Center (

www.pearsonhighered.com/irc

) or send an

email to

computing@pearson.com

 for information on how to access them.

Textbook Web site

Student and instructor resources, including links to download Microsoft

®

 Visual C++

2010 Express and other popular IDEs, for all the books in the Gaddis

Starting Out With

series can be accessed at the following URL:

http://www.pearsonhighered.com/gaddis

Get this book the way you want it!

This book is part of Pearson Education s custom database for Computer Science textbooks.

Use our online PubSelect system to select just the chapters you need from this, and other,

Pearson Education CS textbooks. You can edit the sequence to exactly match your course

organization and teaching approach. Visit

www.pearsoncustom.com/cs

 for details.

Which Gaddis C++ book is right for you?

The Starting Out with C++ Series includes three books, one of which is sure to t your

course:

Starting Out with C++: From Control Structures through Objects

Starting Out with C++: Early Objects

Starting Out with C++: Brief Version

.

The following chart will help you determine which book is right for your course.

FROM CONTROL STRUCTURES
THROUGH OBJECTS

BRIEF VERSION

EARLY OBJECTS

LATE INTRODUCTION OF OBJECTS

Classes are introduced in Chapter 13 of the standard
text and Chapter 11 of the brief text, after control
structures, functions, arrays, and pointers. Advanced
OOP topics, such as inheritance and polymorphism,
are covered in the following two chapters.

EARLIER INTRODUCTION OF OBJECTS

Classes are introduced in Chapter 7, after control
structures and functions, but before arrays and
pointers. Their use is then integrated into the
remainder of the text. Advanced OOP topics, such as
inheritance and polymorphism, are covered in
Chapters 11 and 15.

INTRODUCTION OF DATA STRUCTURES AND
RECURSION

Linked lists, stacks and queues, and binary trees are
introduced in the nal chapters of the standard text.
Recursion is covered after stacks and queues, but
before binary trees. These topics are not covered in
the brief text, though it does have appendices dealing
with linked lists and recursion.

INTRODUCTION OF DATA STRUCTURES AND
RECURSION

Linked lists, stacks and queues, and binary trees are
introduced in the nal chapters of the text, after the
chapter on recursion.

A01_GADD6253_07_SE_FM3 Page xxiii Friday, February 4, 2011 4:54 PM

xxiv

Preface

Acknowledgments

There have been many helping hands in the development and publication of this text. We

would like to thank the following faculty reviewers for their helpful suggestions and expertise.

Ahmad Abuhejleh

University of Wisconsin, River Falls

Royce Curtis

Western Wisconsin Technical College

David Akins

El Camino College

Joseph DeLibero

Arizona State University

Steve Allan

Utah State University

Jeanne Douglas

University of Vermont

Vicki Allan

Utah State University

Michael Dowell

Augusta State U

Karen M. Arlien

Bismark State College

William E. Duncan

Louisiana State University

Mary Astone

Troy University

Judy Etchison

Southern Methodist University

Ijaz A. Awan

Savannah State University

Dennis Fairclough

Utah Valley State College

Robert Baird

Salt Lake Community College

Mark Fienup

University of Northern Iowa

Don Biggerstaff

Fayetteville Technical Community College

Richard Flint

North Central College

Michael Bolton

Northeastern Oklahoma State University

Ann Ford Tyson

Florida State University

Bill Brown

Pikes Peak Community College

Jeanette Gibbons

South Dakota State University

Charles Cadenhead

Richland Community College

James Gifford

University of Wisconsin, Stevens Point

Randall Campbell

Morningside College

Leon Gleiberman

Touro College

Wayne Caruolo

Red Rocks Community College

Barbara Guillott

Louisiana State University

Cathi Chambley-Miller

Aiken Technical College

Ranette Halverson, Ph.D.

Midwestern State University

C.C. Chao

Jacksonville State University

Carol Hannahs

University of Kentucky

Joseph Chao

Bowling Green State University

Dennis Heckman

Portland Community College

A01_GADD6253_07_SE_FM3 Page xxiv Saturday, January 22, 2011 3:35 PM

Preface xxv

Ric Heishman

George Mason University

James McGuffee

Austin Community College

Michael Hennessy

University of Oregon

Dean Mellas

Cerritos College

Ilga Higbee

Black Hawk College

Lisa Milkowski

Milwaukee School of Engineering

Patricia Hines

Brookdale Community College

Marguerite Nedreberg

Youngstown State University

Mike Holland

Northern Virginia Community College

Lynne O Hanlon

Los Angeles Pierce College

Mary Hovik

Lehigh Carbon Community College

Frank Paiano

Southwestern Community College

Richard Hull

Lenoir-Rhyne College

Theresa Park

Texas State Technical College

Chris Kardaras

North Central College

Mark Parker

Shoreline Community College

Willard Keeling

Blue Ridge Community College

Tino Posillico

SUNY Farmingdale

A.J. Krygeris

Houston Community College

Frederick Pratter

Eastern Oregon University

Sheila Lancaster

Gadsden State Community College

Susan L. Quick

Penn State University

Ray Larson

Inver Hills Community College

Alberto Ramon

Diablo Valley College

Jennifer Li

Ohlone College

Bazlur Rasheed

Sault College of Applied Arts and Technology

Norman H. Liebling

San Jacinto College

Farshad Ravanshad

Bergen Community College

Zhu-qu Lu

University of Maine, Presque Isle

Dolly Samson

Weber State University

Heidar Malki

University of Houston

Ruth Sapir

SUNY Farmingdale

Debbie Mathews

J. Sargeant Reynolds

Jason Schatz

City College of San Francisco

Rick Matzen

Northeastern State University

Dr. Sung Shin

South Dakota State University

Robert McDonald

East Stroudsburg University

Bari Siddique

University of Texas at Brownsville

A01_GADD6253_07_SE_FM3 Page xxv Monday, January 17, 2011 5:27 PM

xxvi

Preface

I would like to thank my family for their love and support in all of my many projects. I

would also like to thank Christopher Rich for his assistance in this revision. I am

extremely fortunate to have Michael Hirsch as my editor, and Stephanie Sellinger as edito-

rial assistant. Michael s support and encouragement makes it a pleasure to write chapters

and meet deadlines. I am also fortunate to have Yez Alayan as marketing manager, and

Kathryn Ferranti as marketing coordinator. They do a great job getting my books out to

the academic community. I had a great production team led by Jeff Holcomb, Managing

Editor, and Marilyn Lloyd, Senior Production Project Manager. Thanks to you all!

William Slater

Collin County Community College

David Topham

Ohlone College

Shep Smithline

University of Minnesota

Robert Tureman

Paul D. Camp Community College

Caroline St. Claire

North Central College

Arisa K. Ude

Richland College

Kirk Stephens

Southwestern Community College

Peter van der Goes

Rose State College

Cherie Stevens

South Florida Community College

Stewart Venit

California State University, Los Angeles

Dale Suggs

Campbell University

Judy Walters

North Central College

Mark Swanson

Red Wing Technical College

John H. Whipple

Northampton Community College

Ann Sudell Thorn

Del Mar College

Aurelia Williams

Norfolk State University

Martha Tillman

College of San Mateo

Vida Winans

Illinois Institute of Technology

Ralph Tomlinson

Iowa State University

A01_GADD6253_07_SE_FM3 Page xxvi Saturday, January 22, 2011 3:35 PM

Preface xxvii

About the Author

Tony Gaddis is the principal author of the Starting Out with series of textbooks. He has

nearly two decades of experience teaching computer science courses, primarily at Haywood

Community College. Tony is a highly acclaimed instructor who was previously selected as

the North Carolina Community College Teacher of the Year, and has received the Teaching

Excellence award from the National Institute for Staff and Organizational Development.

The Starting Out With series includes introductory textbooks covering Programming Logic

and Design, Alice, C++, JavaTM, Microsoft® Visual Basic®, Microsoft® Visual C#, and

Python, all published by Pearson Addison-Wesley.

A01_GADD6253_07_SE_FM3 Page xxvii Monday, January 17, 2011 5:27 PM

1

C
H

A
P

T
E

R

1.1

Why Program?

CONCEPT:

Computers can do many different jobs because they are programmable.

Think about some of the different ways that people use computers. In school, students use

computers for tasks such as writing papers, searching for articles, sending e-mail, and par-

ticipating in online classes. At work, people use computers to analyze data, make presen-

tations, conduct business transactions, communicate with customers and coworkers,

control machines in manufacturing facilities, and do many other things. At home, people

use computers for tasks such as paying bills, shopping online, social networking, and play-

ing computer games. And don t forget that smart phones, iPods

®

, car navigation systems,

and many other devices are computers as well. The uses of computers are almost limitless

in our everyday lives.

Computers can do such a wide variety of things because they can be programmed. This

means that computers are not designed to do just one job, but any job that their programs

tell them to do. A

program

 is a set of instructions that a computer follows to perform a

task. For example, Figure 1-1 shows screens using Microsoft Word and PowerPoint, two

commonly used programs.

TOPICS

1.1 Why Program?

1.2 Computer Systems: Hardware

and Software

1.3 Programs and Programming

Languages

1.4 What Is a Program Made of?

1.5 Input, Processing, and Output

1.6 The Programming Process

1.7 Procedural and Object-Oriented

Programming

1

Introduction to Computers
and Programming

M01_GADD6253_07_SE_C01 Page 1 Tuesday, January 4, 2011 7:31 PM

2

Chapter 1 Introduction to Computers and Programming

Programs are commonly referred to as

software

. Software is essential to a computer because

without software, a computer can do nothing. All of the software that we use to make our

computers useful is created by individuals known as programmers or software developers. A

programmer

, or

software

developer

, is a person with the training and skills necessary to design,

create, and test computer programs. Computer programming is an exciting and rewarding

career. Today, you will nd programmers working in business, medicine, government, law

enforcement, agriculture, academics, entertainment, and almost every other eld.

Computer programming is both an art and a science. It is an art because every aspect of a

program should be carefully designed. Listed below are a few of the things that must be

designed for any real-world computer program:

The logical flow of the instructions

The mathematical procedures

The appearance of the screens

The way information is presented to the user

The program s user-friendliness

Manuals and other forms of written documentation

There is also a scienti c, or engineering, side to programming. Because programs rarely

work right the rst time they are written, a lot of testing, correction, and redesigning is

required. This demands patience and persistence from the programmer. Writing software

demands discipline as well. Programmers must learn special languages like C++ because

computers do not understand English or other human languages. Languages such as C++

have strict rules that must be carefully followed.

Both the artistic and scienti c nature of programming make writing computer software

like designing a car: Both cars and programs should be functional, ef cient, powerful, easy

to use, and pleasing to look at.

Figure 1-1

A word processing

program and a presentation program

M01_GADD6253_07_SE_C01 Page 2 Tuesday, January 4, 2011 7:31 PM

1.2 Computer Systems: Hardware and Software

3

1.2

Computer Systems: Hardware and Software

CONCEPT:

All computer systems consist of similar hardware devices and software

components. This section provides an overview of standard computer

hardware and software organization.

Hardware

Hardware

 refers to the physical components that a computer is made of. A computer, as

we generally think of it, is not an individual device, but a system of devices. Like the

instruments in a symphony orchestra, each device plays its own part. A typical computer

system consists of the following major components:

1. The central processing unit (CPU)

2. Main memory

3. Secondary storage devices

4. Input devices

5. Output devices

The organization of a computer system is depicted in Figure 1-2.

Figure 1-2

Input

Devices

Output

Devices

Secondary

Storage Devices

Central Processing

Unit

Main Memory

(RAM)

M01_GADD6253_07_SE_C01 Page 3 Tuesday, January 4, 2011 7:31 PM

4

Chapter 1 Introduction to Computers and Programming

The CPU

When a computer is performing the tasks that a program tells it to do, we say that the com-

puter is

running

 or

executing

 the program. The

central processing unit

, or

CPU

, is the part

of a computer that actually runs programs. The CPU is the most important component in a

computer because without it, the computer could not run software.

In the earliest computers, CPUs were huge devices that weighed tons. They were made of

electrical and mechanical components such as vacuum tubes and switches. Today, CPUs are

small chips, known as

microprocessors

, that can be held in the palm of your hand. In addi-

tion to being much smaller than the old electromechanical CPUs in early computers, today s

microprocessors are also much more powerful.

The CPU s job is to fetch instructions, follow the instructions, and produce some result.

Internally, the central processing unit consists of two parts: the

control unit

 and the

arith-

metic and logic unit (ALU)

. The control unit coordinates all of the computer s operations. It

is responsible for determining where to get the next instruction and regulating the other

major components of the computer with control signals. The arithmetic and logic unit, as its

name suggests, is designed to perform mathematical operations. The organization of the

CPU is shown in Figure 1-3.

A program is a sequence of instructions stored in the computer s memory. When a com-

puter is running a program, the CPU is engaged in a process known formally as the

fetch/

decode/execute cycle

. The steps in the fetch/decode/execute cycle are as follows:

Fetch

The CPU s control unit fetches, from main memory, the next instruc-

tion in the sequence of program instructions.

Decode

The instruction is encoded in the form of a number. The control unit

decodes the instruction and generates an electronic signal.

Execute

The signal is routed to the appropriate component of the computer

(such as the ALU, a disk drive, or some other device). The signal causes

the component to perform an operation.

These steps are repeated as long as there are instructions to perform.

Figure 1-3

Central Processing Unit

Instruction

(Input)

Arithmetic and

Logic Unit

Control Unit

Result

(Output)

M01_GADD6253_07_SE_C01 Page 4 Tuesday, January 4, 2011 7:31 PM

1.2 Computer Systems: Hardware and Software

5

Main Memory

You can think of main memory as the computer s work area. This is where the computer

stores a program while the program is running, as well as the data that the program is

working with. For example, suppose you are using a word processing program to write an

essay for one of your classes. While you do this, both the word processing program and

the essay are stored in main memory.

Main memory is commonly known as

random-access memory

 or

RAM

. It is called this

because the CPU is able to quickly access data stored at any random location in RAM.

RAM is usually a

volatile

 type of memory that is used only for temporary storage while a

program is running. When the computer is turned off, the contents of RAM are erased.

Inside your computer, RAM is stored in small chips.

A computer s memory is divided into tiny storage locations known as bytes. One

byte

 is

enough memory to store only a letter of the alphabet or a small number. In order to do

anything meaningful, a computer must have lots of bytes. Most computers today have

millions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term

bit

stands for

binary digit

. Computer scientists usually think of bits as tiny switches that can

be either on or off. Bits aren t actual switches, however, at least not in the conventional

sense. In most computer systems, bits are tiny electrical components that can hold either a

positive or a negative charge. Computer scientists think of a positive charge as a switch in

the

on

 position and a negative charge as a switch in the

off

 position.

Each byte is assigned a unique number known as an

address

. The addresses are ordered

from lowest to highest. A byte is identi ed by its address in much the same way a post

of ce box is identi ed by an address. Figure 1-4 shows a group of memory cells with their

addresses. In the illustration, sample data is stored in memory. The number 149 is stored

in the cell with the address 16, and the number 72 is stored at address 23.

Secondary Storage

Secondary storage is a type of memory that can hold data for long periods of time even

when there is no power to the computer. Frequently used programs are stored in second-

ary memory and loaded into main memory as needed. Important information, such as

word processing documents, payroll data, and inventory gures, is saved to secondary

storage as well.

The most common type of secondary storage device is the disk drive. A

disk drive

 stores

data by magnetically encoding it onto a circular disk. Most computers have a disk drive

mounted inside their case. External disk drives, which connect to one of the computer s

Figure 1-4

0

10

20

1

11

21

2

12

22

3

13

23

4

14

24

5

15

25

6

16

26

7

17

27

8

18

28

9

19

29

149

72

M01_GADD6253_07_SE_C01 Page 5 Tuesday, January 4, 2011 7:31 PM

6

Chapter 1 Introduction to Computers and Programming

communication ports, are also available. External disk drives can be used to create backup

copies of important data or to move data to another computer.

In addition to external disk drives, many types of devices have been created for copying

data, and for moving it to other computers. For many years oppy disk drives were popu-

lar. A

oppy disk drive

 records data onto a small oppy disk, which can be removed from

the drive. The use of oppy disk drives has declined dramatically in recent years, in favor

of superior devices such as USB drives.

USB drives

 are small devices that plug into the

computer s USB (universal serial bus) port, and appear to the system as a disk drive. USB

drives, which use

ash memory

 to store data, are inexpensive, reliable, and small enough

to be carried in your pocket.

Optical devices such as the

CD

 (compact disc) and the

DVD

 (digital versatile disc) are

also popular for data storage. Data is not recorded magnetically on an optical disc, but is

encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect the

pits and thus read the encoded data. Optical discs hold large amounts of data, and

because recordable CD and DVD drives are now commonplace, they are good mediums

for creating backup copies of data.

Input Devices

Input is any information the computer collects from the outside world. The device that

collects the information and sends it to the computer is called an

input device

. Common

input devices are the keyboard, mouse, scanner, digital camera, and microphone. Disk

drives, CD/DVD drives, and USB drives can also be considered input devices because pro-

grams and information are retrieved from them and loaded into the computer s memory.

Output Devices

Output is any information the computer sends to the outside world. It might be a sales

report, a list of names, or a graphic image. The information is sent to an

output device

,

which formats and presents it. Common output devices are monitors, printers, and speak-

ers. Output sent to a monitor is sometimes called softcopy, while output sent to a

printer is called hardcopy. Disk drives, USB drives, and CD/DVD recorders can also be

considered output devices because the CPU sends them information to be saved.

Software

If a computer is to function, software is not optional. Everything that a computer does,

from the time you turn the power switch on until you shut the system down, is under the

control of software. There are two general categories of software: system software and

application software. Most computer programs clearly t into one of these two categories.

Let s take a closer look at each.

M01_GADD6253_07_SE_C01 Page 6 Tuesday, January 4, 2011 7:31 PM

1.2 Computer Systems: Hardware and Software

7

System Software

The programs that control and manage the basic operations of a computer are generally

referred to as

system software

. System software typically includes the following types of

programs:

Operating Systems

An operating system is the most fundamental set of programs on a computer. The

operating system controls the internal operations of the computer s hardware, man-

ages all the devices connected to the computer, allows data to be saved to and

retrieved from storage devices, and allows other programs to run on the computer.

Utility Programs

A

utility

program

 performs a specialized task that enhances the computer s

operation or safeguards data. Examples of utility programs are virus scanners,

file-compression programs, and data-backup programs.

Software Development Tools

The software tools that programmers use to create, modify, and test software are

referred to as

software development tools

. Compilers and integrated development

environments, which we discuss later in this chapter, are examples of programs

that fall into this category.

Application Software

Programs that make a computer useful for everyday tasks are known as

application

software

. These are the programs that people normally spend most of their time running

on their computers. Figure 1-1, at the beginning of this chapter, shows screens from two

commonly used applications Microsoft Word, a word processing program, and Microsoft

PowerPoint, a presentation program. Some other examples of application software are

spreadsheet programs, e-mail programs, Web browsers, and game programs.

Checkpoint

www.myprogramminglab.com

1.1 Why is the computer used by so many different people, in so many different

professions?

1.2 List the ve major hardware components of a computer system.

1.3 Internally, the CPU consists of what two units?

1.4 Describe the steps in the fetch/decode/execute cycle.

1.5 What is a memory address? What is its purpose?

1.6 Explain why computers have both main memory and secondary storage.

1.7 What are the two general categories of software?

1.8 What fundamental set of programs control the internal operations of the

computer s hardware?

1.9 What do you call a program that performs a specialized task, such as a virus

scanner, a le-compression program, or a data-backup program?

1.10 Word processing programs, spreadsheet programs, e-mail programs, Web browsers,

and game programs belong to what category of software?

M01_GADD6253_07_SE_C01 Page 7 Tuesday, January 4, 2011 7:31 PM

8

Chapter 1 Introduction to Computers and Programming

1.3

Programs and Programming Languages

CONCEPT:

A program is a set of instructions a computer follows in order to perform

a task. A programming language is a special language used to write

computer programs.

What Is a Program?

Computers are designed to follow instructions. A computer program is a set of instruc-

tions that tells the computer how to solve a problem or perform a task. For example, sup-

pose we want the computer to calculate someone s gross pay. Here is a list of things the

computer should do:

1. Display a message on the screen asking How many hours did you work?

2. Wait for the user to enter the number of hours worked. Once the user enters a

number, store it in memory.

3. Display a message on the screen asking How much do you get paid per hour?

4. Wait for the user to enter an hourly pay rate. Once the user enters a number, store it in

memory.

5. Multiply the number of hours by the amount paid per hour, and store the result in

memory.

6. Display a message on the screen that tells the amount of money earned. The message

must include the result of the calculation performed in Step 5.

Collectively, these instructions are called an

algorithm

. An algorithm is a set of well-

de ned steps for performing a task or solving a problem. Notice these steps are sequen-

tially ordered. Step 1 should be performed before Step 2, and so forth. It is important that

these instructions be performed in their proper sequence.

Although you and I might easily understand the instructions in the pay-calculating algo-

rithm, it is not ready to be executed on a computer. A computer s CPU can only process

instructions that are written in

machine language

. If you were to look at a machine lan-

guage program, you would see a stream of

binary numbers

 (numbers consisting of only 1s

and 0s). The binary numbers form machine language instructions, which the CPU inter-

prets as commands. Here is an example of what a machine language instruction might

look like:

1011010000000101

As you can imagine, the process of encoding an algorithm in machine language is very

tedious and dif cult. In addition, each different type of CPU has its own machine lan-

guage. If you wrote a machine language program for computer

A

 and then wanted to run

it on computer

B

, which has a different type of CPU, you would have to rewrite the pro-

gram in computer B s machine language.

Programming languages

, which use words instead of numbers, were invented to ease the task

of programming. A program can be written in a programming language, such as C++, which

is much easier to understand than machine language. Programmers save their programs in

text les, and then use special software to convert their programs to machine language.

M01_GADD6253_07_SE_C01 Page 8 Tuesday, January 4, 2011 7:31 PM

1.3 Programs and Programming Languages

9

Program 1-1 shows how the pay-calculating algorithm might be written in C++.

The Program Output with Example Input shows what the program will display on the
screen when it is running. In the example, the user enters 10 for the number of hours
worked and 15 for the hourly pay rate. The program displays the earnings, which are $150.

Programming Languages

In a broad sense, there are two categories of programming languages: low-level and
high-level. A low-level language is close to the level of the computer, which means it
resembles the numeric machine language of the computer more than the natural lan-
guage of humans. The easiest languages for people to learn are

high-level languages

.
They are called high-level because they are closer to the level of human-readability
than computer-readability. Figure 1-5 illustrates the concept of language levels.

Many high-level languages have been created. Table 1-1 lists a few of the well-known ones.

In addition to the high-level features necessary for writing applications such as payroll
systems and inventory programs, C++ also has many low-level features. C++ is based on

NOTE:

The line numbers that are shown in Program 1-1 are

not

 part of the program.
This book shows line numbers in all program listings to help point out speci c parts of
the program.

Program 1-1

 1 // This program calculates the user's pay.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 double hours, rate, pay;

 8

 9 // Get the number of hours worked.

 10 cout << "How many hours did you work? ";

 11 cin >> hours;

 12

 13 // Get the hourly pay rate.

 14 cout << "How much do you get paid per hour? ";

 15 cin >> rate;

 16

 17 // Calculate the pay.

 18 pay = hours * rate;

 19

 20 // Display the pay.

 21 cout << "You have earned $" << pay << endl;

 22 return 0;

 23 }

Program Output with Example Input Shown in Bold

How many hours did you work?

10 [Enter]

How much do you get paid per hour?

15 [Enter]

You have earned $150

M01_GADD6253_07_SE_C01 Page 9 Tuesday, January 4, 2011 7:31 PM

10

Chapter 1 Introduction to Computers and Programming

Figure 1-5

Table 1-1

Language Description

BASIC Beginners All-purpose Symbolic Instruction Code. A general programming language

originally designed to be simple enough for beginners to learn.

FORTRAN Formula Translator. A language designed for programming complex mathematical

algorithms.

COBOL Common Business-Oriented Language. A language designed for business applications.

Pascal A structured, general-purpose language designed primarily for teaching programming.

C A structured, general-purpose language developed at Bell Laboratories. C offers both

high-level and low-level features.

C++ Based on the C language, C++ offers object-oriented features not found in C. Also

invented at Bell Laboratories.

C# Pronounced C sharp. A language invented by Microsoft for developing applications

based on the Microsoft .NET platform.

Java An object-oriented language invented at Sun Microsystems. Java may be used to

develop programs that run over the Internet, in a Web browser.

JavaScript JavaScript can be used to write small programs that run in Web pages. Despite its name,

JavaScript is not related to Java.

Python Python is a general purpose language created in the early 1990s. It has become popular

in both business and academic applications.

Ruby Ruby is a general purpose language that was created in the 1990s. It is increasingly

becoming a popular language for programs that run on Web servers.

Visual

Basic

A Microsoft programming language and software development environment that

allows programmers to quickly create Windows-based applications.

Low level (machine language)
10100010 11101011

cout << "Enter the number ";
cout << "of hours worked: ";
cin >> hours;cout << "Enter the hourly ";
cout << "pay rate: ";cin >> payRate;

High level (Easily read by humans)

M01_GADD6253_07_SE_C01 Page 10 Tuesday, January 4, 2011 7:31 PM

1.3 Programs and Programming Languages 11

the C language, which was invented for purposes such as writing operating systems and

compilers. Since C++ evolved from C, it carries all of C s low-level capabilities with it.

C++ is popular not only because of its mixture of low- and high-level features, but also

because of its portability. This means that a C++ program can be written on one type of

computer and then run on many other types of systems. This usually requires the pro-

gram to be recompiled on each type of system, but the program itself may need little or

no change.

Source Code, Object Code, and Executable Code

When a C++ program is written, it must be typed into the computer and saved to a le. A

text editor, which is similar to a word processing program, is used for this task. The state-

ments written by the programmer are called source code, and the le they are saved in is

called the source le.

After the source code is saved to a le, the process of translating it to machine language

can begin. During the rst phase of this process, a program called the preprocessor reads

the source code. The preprocessor searches for special lines that begin with the # symbol.

These lines contain commands that cause the preprocessor to modify the source code in

some way. During the next phase the compiler steps through the preprocessed source

code, translating each source code instruction into the appropriate machine language

instruction. This process will uncover any syntax errors that may be in the program. Syn-

tax errors are illegal uses of key words, operators, punctuation, and other language ele-

ments. If the program is free of syntax errors, the compiler stores the translated machine

language instructions, which are called object code, in an object le.

Although an object le contains machine language instructions, it is not a complete pro-

gram. Here is why: C++ is conveniently equipped with a library of prewritten code for per-

forming common operations or sometimes-dif cult tasks. For example, the library contains

hardware-speci c code for displaying messages on the screen and reading input from the

keyboard. It also provides routines for mathematical functions, such as calculating the

square root of a number. This collection of code, called the run-time library, is extensive.

Programs almost always use some part of it. When the compiler generates an object le,

however, it does not include machine code for any run-time library routines the programmer

might have used. During the last phase of the translation process, another program called

the linker combines the object le with the necessary library routines. Once the linker has

nished with this step, an executable le is created. The executable le contains machine

language instructions, or executable code, and is ready to run on the computer.

Figure 1-6 illustrates the process of translating a C++ source le into an executable le.

The entire process of invoking the preprocessor, compiler, and linker can be initiated with

a single action. For example, on a Linux system, the following command causes the C++

program named hello.cpp to be preprocessed, compiled, and linked. The executable

code is stored in a le named hello.

g++ -o hello hello.cpp

NOTE: Programs written for speci c graphical environments often require signi cant

changes when moved to a different type of system. Examples of such graphical

environments are Windows, the X-Window System, and the Mac OS operating system.

M01_GADD6253_07_SE_C01 Page 11 Tuesday, January 4, 2011 7:31 PM

12

Chapter 1 Introduction to Computers and Programming

Appendix G explains how compiling works in .Net. You can download Appendix G from

the book s companion Web site at www.pearsonhighered.com/gaddis.

Many development systems, particularly those on personal computers, have

integrated

development environments (IDEs)

. These environments consist of a text editor, compiler,

debugger, and other utilities integrated into a package with a single set of menus. Prepro-

cessing, compiling, linking, and even executing a program is done with a single click of a

button, or by selecting a single item from a menu. Figure 1-7 shows a screen from the

Microsoft Visual Studio IDE.

Checkpoint

www.myprogramminglab.com

1.11 What is an algorithm?

1.12 Why were computer programming languages invented?

1.13 What is the difference between a high-level language and a low-level language?

1.14 What does

portability

 mean?

1.15 Explain the operations carried out by the preprocessor, compiler, and linker.

1.16 Explain what is stored in a source le, an object le, and an executable le.

1.17 What is an integrated development environment?

Figure 1-6

Source Code

Preprocessor

Modified
Source Code

Compiler

Object Code

Executable Code

Linker

Source code is entered
with a text editor by
the programmer.

#include <iostream>

using namespace std;

int main()

{

 cout<<"Hello World\n";

 return 0;

}

M01_GADD6253_07_SE_C01 Page 12 Wednesday, January 12, 2011 7:14 PM

1.4 What Is a Program Made of? 13

1.4 What Is a Program Made of?

CONCEPT: There are certain elements that are common to all programming languages.

Language Elements

All programming languages have a few things in common. Table 1-2 lists the common ele-

ments you will nd in almost every language.

Let s look at some speci c parts of Program 1-1 (the pay-calculating program) to see

examples of each element listed in the table above. For your convenience, Program 1-1 is

listed again.

Figure 1-7

M01_GADD6253_07_SE_C01 Page 13 Tuesday, January 4, 2011 7:31 PM

14 Chapter 1 Introduction to Computers and Programming

Key Words (Reserved Words)

Three of C++ s key words appear on lines 3 and 5: using, namespace, and int. The

word double, which appears on line 7, is also a C++ key word. These words, which are

always written in lowercase, each have a special meaning in C++ and can only be used for

their intended purposes. As you will see, the programmer is allowed to make up his or her

Table 1-2

Language

Element Description

Key Words Words that have a special meaning. Key words may only be used for their

intended purpose. Key words are also known as reserved words.

Programmer-De ned

Identi ers

Words or names de ned by the programmer. They are symbolic names that

refer to variables or programming routines.

Operators Operators perform operations on one or more operands. An operand is

usually a piece of data, like a number.

Punctuation Punctuation characters that mark the beginning or ending of a statement, or

separate items in a list.

Syntax Rules that must be followed when constructing a program. Syntax dictates

how key words and operators may be used, and where punctuation symbols

must appear.

Program 1-1

 1 // This program calculates the user's pay.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 double hours, rate, pay;

 8

 9 // Get the number of hours worked.

 10 cout << "How many hours did you work? ";

 11 cin >> hours;

 12

 13 // Get the hourly pay rate.

 14 cout << "How much do you get paid per hour? ";

 15 cin >> rate;

 16

 17 // Calculate the pay.

 18 pay = hours * rate;

 19

 20 // Display the pay.

 21 cout << "You have earned $" << pay << endl;

 22 return 0;

 23 }

M01_GADD6253_07_SE_C01 Page 14 Tuesday, January 4, 2011 7:31 PM

1.4 What Is a Program Made of? 15

own names for certain things in a program. Key words, however, are reserved and cannot

be used for anything other than their designated purposes. Part of learning a programming

language is learning what the key words are, what they mean, and how to use them.

Programmer-De ned Identi ers

The words hours, rate, and pay that appear in the program on lines 7, 11, 15, 18, and

21 are programmer-de ned identi ers. They are not part of the C++ language but rather

are names made up by the programmer. In this particular program, these are the names of

variables. As you will learn later in this chapter, variables are the names of memory loca-

tions that may hold data.

Operators

On line 18 the following code appears:

pay = hours * rate;

The = and * symbols are both operators. They perform operations on pieces of data

known as operands. The * operator multiplies its two operands, which in this example are

the variables hours and rate. The = symbol is called the assignment operator. It takes the

value of the expression on the right and stores it in the variable whose name appears on

the left. In this example, the = operator stores in the pay variable the result of the hours

variable multiplied by the rate variable. In other words, the statement says, Make the

pay variable equal to hours times rate, or pay is assigned the value of hours times

rate.

Punctuation

Notice that lines 3, 7, 10, 11, 14, 15, 18, 21, and 22 all end with a semicolon. A semico-

lon in C++ is similar to a period in English: It marks the end of a complete sentence (or

statement, as it is called in programming jargon). Semicolons do not appear at the end of

every line in a C++ program, however. There are rules that govern where semicolons are

required and where they are not. Part of learning C++ is learning where to place semico-

lons and other punctuation symbols.

Lines and Statements

Often, the contents of a program are thought of in terms of lines and statements. A line

is just that a single line as it appears in the body of a program. Program 1-1 is shown

with each of its lines numbered. Most of the lines contain something meaningful; however,

some of the lines are empty. The blank lines are only there to make the program more

readable.

NOTE: The #include <iostream> statement in line 2 is a preprocessor directive.

NOTE: In C++, key words are written in all lowercase.

M01_GADD6253_07_SE_C01 Page 15 Tuesday, January 4, 2011 7:31 PM

16 Chapter 1 Introduction to Computers and Programming

A statement is a complete instruction that causes the computer to perform some action.

Here is the statement that appears in line 10 of Program 1-1:

cout << "How many hours did you work? ";

This statement causes the computer to display the message How many hours did you

work? on the screen. Statements can be a combination of key words, operators, and pro-

grammer-de ned symbols. Statements often occupy only one line in a program, but some-

times they are spread out over more than one line.

Variables

A variable is a named storage location in the computer s memory for holding a piece of

information. The information stored in variables may change while the program is run-

ning (hence the name variable). Notice that in Program 1-1 the words hours, rate, and

pay appear in several places. All three of these are the names of variables. The hours vari-

able is used to store the number of hours the user has worked. The rate variable stores

the user s hourly pay rate. The pay variable holds the result of hours multiplied by rate,

which is the user s gross pay.

Variables are symbolic names that represent locations in the computer s random-access

memory (RAM). When information is stored in a variable, it is actually stored in RAM.

Assume a program has a variable named length. Figure 1-8 illustrates the way the vari-

able name represents a memory location.

In Figure 1-8, the variable length is holding the value 72. The number 72 is actually

stored in RAM at address 23, but the name length symbolically represents this storage

location. If it helps, you can think of a variable as a box that holds information. In Figure

1-8, the number 72 is stored in the box named length. Only one item may be stored in

the box at any given time. If the program stores another value in the box, it will take the

place of the number 72.

NOTE: Notice the variables in Program 1-1 have names that re ect their purpose. In

fact, it would be easy to guess what the variables were used for just by reading their

names. This is discussed further in Chapter 2.

Figure 1-8

0

10

20

1

11

21

2

12

22

3

13

23

4

14

24

5

15

25

6

16

26

7

17

27

8

18

28

9

19

29
72

length

M01_GADD6253_07_SE_C01 Page 16 Tuesday, January 4, 2011 7:31 PM

1.5 Input, Processing, and Output 17

Variable De nitions

In programming, there are two general types of data: numbers and characters. Numbers

are used to perform mathematical operations and characters are used to print data on the

screen or on paper.

Numeric data can be categorized even further. For instance, the following are all whole

numbers, or integers:

5

7

-129

32154

The following are real, or oating-point numbers:

3.14159

6.7

1.0002

When creating a variable in a C++ program, you must know what type of data the pro-

gram will be storing in it. Look at line 7 of Program 1-1:

double hours, rate, pay;

The word double in this statement indicates that the variables hours, rate, and pay will

be used to hold double precision oating-point numbers. This statement is called a vari-

able de nition. It is used to de ne one or more variables that will be used in the program,

and to indicate the type of data they will hold. The variable de nition causes the variables to

be created in memory, so all variables must be de ned before they can be used. If you

review the listing of Program 1-1, you will see that the variable de nitions come before

any other statements using those variables.

1.5 Input, Processing, and Output

CONCEPT: The three primary activities of a program are input, processing, and output.

Computer programs typically perform a three-step process of gathering input, performing

some process on the information gathered, and then producing output. Input is information

a program collects from the outside world. It can be sent to the program from the user, who

is entering data at the keyboard or using the mouse. It can also be read from disk les or

hardware devices connected to the computer. Program 1-1 allows the user to enter two pieces

NOTE: Programmers often use the term variable declaration to mean the same thing

as variable de nition. Strictly speaking, there is a difference between the two terms. A

de nition statement always causes a variable to be created in memory. Some types of

declaration statements, however, do not cause a variable to be created in memory. You

will learn more about declarations later in this book.

M01_GADD6253_07_SE_C01 Page 17 Tuesday, January 4, 2011 7:31 PM

18 Chapter 1 Introduction to Computers and Programming

of information: the number of hours worked and the hourly pay rate. Lines 11 and 15 use

the cin (pronounced see in) object to perform these input operations:

cin >> hours;

cin >> rate;

Once information is gathered from the outside world, a program usually processes it in

some manner. In Program 1-1, the hours worked and hourly pay rate are multiplied in line

18 and the result is assigned to the pay variable:

pay = hours * rate;

Output is information that a program sends to the outside world. It can be words or

graphics displayed on a screen, a report sent to the printer, data stored in a le, or infor-

mation sent to any device connected to the computer. Lines 10, 14, and 21 in Program 1-1

all perform output:

cout << "How many hours did you work? ";

cout << "How much do you get paid per hour? ";

cout << "You have earned $" << pay << endl;

These lines use the cout (pronounced see out) object to display messages on the com-

puter s screen. You will learn more details about the cin and cout objects in Chapter 2.

Checkpoint

 www.myprogramminglab.com

1.18 Describe the difference between a key word and a programmer-de ned identi er.

1.19 Describe the difference between operators and punctuation symbols.

1.20 Describe the difference between a program line and a statement.

1.21 Why are variables called variable ?

1.22 What happens to a variable s current contents when a new value is stored there?

1.23 What must take place in a program before a variable is used?

1.24 What are the three primary activities of a program?

1.6 The Programming Process

CONCEPT: The programming process consists of several steps, which include design,

creation, testing, and debugging activities.

Designing and Creating a Program

Now that you have been introduced to what a program is, it s time to consider the process

of creating a program. Quite often, when inexperienced students are given programming

assignments, they have trouble getting started because they don t know what to do rst. If

you nd yourself in this dilemma, the steps listed in Figure 1-9 may help. These are the

steps recommended for the process of writing a program.

M01_GADD6253_07_SE_C01 Page 18 Tuesday, January 4, 2011 7:31 PM

1.6 The Programming Process 19

The steps listed in Figure 1-9 emphasize the importance of planning. Just as there are good

ways and bad ways to paint a house, there are good ways and bad ways to create a pro-

gram. A good program always begins with planning.

With the pay-calculating program as our example, let s look at each of the steps in more

detail.

1. Clearly de ne what the program is to do.

This step requires that you identify the purpose of the program, the information that is to

be input, the processing that is to take place, and the desired output. Let s examine each of

these requirements for the example program:

Purpose To calculate the user s gross pay.

Input Number of hours worked, hourly pay rate.

Process Multiply number of hours worked by hourly pay rate. The result is the

user s gross pay.

Output Display a message indicating the user s gross pay.

2. Visualize the program running on the computer.

Before you create a program on the computer, you should rst create it in your mind. Step

2 is the visualization of the program. Try to imagine what the computer screen looks like

while the program is running. If it helps, draw pictures of the screen, with sample input

and output, at various points in the program. For instance, here is the screen produced by

the pay-calculating program:

In this step, you must put yourself in the shoes of the user. What messages should the pro-

gram display? What questions should it ask? By addressing these concerns, you will have

already determined most of the program s output.

Figure 1-9

1. Clearly de ne what the program is to do.

2. Visualize the program running on the computer.

3. Use design tools such as a hierarchy chart, owcharts,

or pseudocode to create a model of the program.

4. Check the model for logical errors.

5. Type the code, save it, and compile it.

6. Correct any errors found during compilation. Repeat

Steps 5 and 6 as many times as necessary.

7. Run the program with test data for input.

8. Correct any errors found while running the program.

Repeat Steps 5 through 8 as many times as necessary.

9. Validate the results of the program.

 How many hours did you work? 10

 How much do you get paid per hour? 15

 You have earned $150

M01_GADD6253_07_SE_C01 Page 19 Tuesday, January 4, 2011 7:31 PM

20 Chapter 1 Introduction to Computers and Programming

3. Use design tools such as a hierarchy chart, owcharts, or pseudocode to create a
model of the program.

While planning a program, the programmer uses one or more design tools to create a

model of the program. Three common design tools are hierarchy charts, owcharts, and

pseudocode. A hierarchy chart is a diagram that graphically depicts the structure of a pro-

gram. It has boxes that represent each step in the program. The boxes are connected in a

way that illustrates their relationship to one another. Figure 1-10 shows a hierarchy chart

for the pay-calculating program.

A hierarchy chart begins with the overall task, and then re nes it into smaller subtasks.

Each of the subtasks is then re ned into even smaller sets of subtasks, until each is small

enough to be easily performed. For instance, in Figure 1-10, the overall task Calculate

Gross Pay is listed in the top-level box. That task is broken into three subtasks. The rst

subtask, Get Payroll Data from User, is broken further into two subtasks. This process

of divide and conquer is known as top-down design.

A owchart is a diagram that shows the logical ow of a program. It is a useful tool for

planning each operation a program performs, and the order in which the operations are to

occur. For more information see Appendix D, Introduction to Flowcharting.

Pseudocode is a cross between human language and a programming language. Although

the computer can t understand pseudocode, programmers often nd it helpful to write an

algorithm in a language that s almost a programming language, but still very similar to

natural language. For example, here is pseudocode that describes the pay-calculating

program:

Get payroll data.

Calculate gross pay.

Display gross pay.

Although the pseudocode above gives a broad view of the program, it doesn t reveal all

the program s details. A more detailed version of the pseudocode follows.

Figure 1-10

Calculate

Gross Pay

Display

Gross Pay

Get Payroll Data

from User

Multiply Hours

Worked by

Pay Rate

Read Number of

Hours Worked

Read Hourly

Pay Rate

VideoNote

VideoNote

Introduction to

Flowcharting

Designing a

Program with

Pseudocode

M01_GADD6253_07_SE_C01 Page 20 Tuesday, January 4, 2011 7:31 PM

1.6 The Programming Process 21

Display How many hours did you work? .

Input hours.

Display How much do you get paid per hour? .

Input rate.

Store the value of hours times rate in the pay variable.

Display the value in the pay variable.

Notice the pseudocode contains statements that look more like commands than the

English statements that describe the algorithm in Section 1.4 (What Is a Program Made

of?). The pseudocode even names variables and describes mathematical operations.

4. Check the model for logical errors.

Logical errors are mistakes that cause the program to produce erroneous results. Once a

hierarchy chart, owchart, or pseudocode model of the program is assembled, it should be

checked for these errors. The programmer should trace through the charts or pseudocode,

checking the logic of each step. If an error is found, the model can be corrected before the

next step is attempted.

5. Type the code, save it, and compile it.

Once a model of the program (hierarchy chart, owchart, or pseudocode) has been cre-

ated, checked, and corrected, the programmer is ready to write source code on the com-

puter. The programmer saves the source code to a le, and begins the process of

translating it to machine language. During this step the compiler will nd any syntax

errors that may exist in the program.

6. Correct any errors found during compilation. Repeat Steps 5 and 6 as many times as
necessary.

If the compiler reports any errors, they must be corrected. Steps 5 and 6 must be repeated

until the program is free of compile-time errors.

7. Run the program with test data for input.

Once an executable le is generated, the program is ready to be tested for run-time errors.

A run-time error is an error that occurs while the program is running. These are usually

logical errors, such as mathematical mistakes.

Testing for run-time errors requires that the program be executed with sample data or

sample input. The sample data should be such that the correct output can be predicted. If

the program does not produce the correct output, a logical error is present in the program.

8. Correct any run-time errors found while running the program. Repeat Steps 5
through 8 as many times as necessary.

When run-time errors are found in a program, they must be corrected. You must identify

the step where the error occurred and determine the cause. Desk-checking is a process that

can help locate run-time errors. The term desk-checking means the programmer starts

reading the program, or a portion of the program, and steps through each statement. A

sheet of paper is often used in this process to jot down the current contents of all variables

and sketch what the screen looks like after each output operation. When a variable s con-

tents change, or information is displayed on the screen, this is noted. By stepping through

each statement, many errors can be located and corrected. If an error is a result of incor-

rect logic (such as an improperly stated math formula), you must correct the statement or

statements involved in the logic. If an error is due to an incomplete understanding of the

M01_GADD6253_07_SE_C01 Page 21 Tuesday, January 4, 2011 7:31 PM

22 Chapter 1 Introduction to Computers and Programming

program requirements, then you must restate the program purpose and modify the hierarchy

and/or owcharts, pseudocode, and source code. The program must then be saved, recompiled

and retested. This means Steps 5 though 8 must be repeated until the program reliably

produces satisfactory results.

9. Validate the results of the program.

When you believe you have corrected all the run-time errors, enter test data and determine

whether the program solves the original problem.

What Is Software Engineering?

The eld of software engineering encompasses the whole process of crafting computer

software. It includes designing, writing, testing, debugging, documenting, modifying, and

maintaining complex software development projects. Like traditional engineers, software

engineers use a number of tools in their craft. Here are a few examples:

Program specifications

Charts and diagrams of screen output

Hierarchy charts and flowcharts

Pseudocode

Examples of expected input and desired output

Special software designed for testing programs

Most commercial software applications are very large. In many instances one or more

teams of programmers, not a single individual, develop them. It is important that the pro-

gram requirements be thoroughly analyzed and divided into subtasks that are handled by

individual teams, or individuals within a team.

In Step 3 of the programming process, you were introduced to the hierarchy chart as a

tool for top-down design. The subtasks that are identi ed in a top-down design can easily

become modules, or separate components of a program. If the program is very large or

complex, a team of software engineers can be assigned to work on the individual modules.

As the project develops, the modules are coordinated to nally become a single software

application.

1.7 Procedural and Object-Oriented Programming

CONCEPT: Procedural programming and object-oriented programming are two ways

of thinking about software development and program design.

C++ is a language that can be used for two methods of writing computer programs: proce-

dural programming and object-oriented programming. This book is designed to teach you

some of both.

In procedural programming, the programmer constructs procedures (or functions, as they

are called in C++). The procedures are collections of programming statements that per-

form a speci c task. The procedures each contain their own variables and commonly

share variables with other procedures. This is illustrated by Figure 1-11.

M01_GADD6253_07_SE_C01 Page 22 Tuesday, January 4, 2011 7:31 PM

1.7 Procedural and Object-Oriented Programming 23

Procedural programming is centered on the procedure, or function. Object-oriented

programming (OOP), on the other hand, is centered on the object. An object is a program-

ming element that contains data and the procedures that operate on the data. It is a self-

contained unit. This is illustrated in Figure 1-12.

The objects contain, within themselves, both information and the ability to manipulate

the information. Operations are carried out on the information in an object by sending the

object a message. When an object receives a message instructing it to perform some opera-

tion, it carries out the instruction. As you study this text, you will encounter many other

aspects of object-oriented programming.

Checkpoint

 www.myprogramminglab.com

1.25 What four items should you identify when de ning what a program is to do?

1.26 What does it mean to visualize a program running ? What is the value of such

an activity?

1.27 What is a hierarchy chart?

1.28 Describe the process of desk-checking.

Figure 1-11

Figure 1-12

PROCEDURE A

 Variables

 Programming

END OF PROCEDURE A

PROCEDURE B

 Variables

 Programming

END OF PROCEDURE B

Program

PROCEDURE A

 Variables

 Programming

END OF PROCEDURE A

PROCEDURE B

 Variables

 Programming

END OF PROCEDURE B

Object A

Variables

PROCEDURE A

 Variables

 Programming

END OF PROCEDURE A

PROCEDURE B

 Variables

 Programming

END OF PROCEDURE B

Object B

Variables

PROCEDURE A

 Variables

 Programming

END OF PROCEDURE A

PROCEDURE B

 Variables

 Programming

END OF PROCEDURE B

Object C

Variables

Program

M01_GADD6253_07_SE_C01 Page 23 Tuesday, January 4, 2011 7:31 PM

24 Chapter 1 Introduction to Computers and Programming

1.29 Describe what a compiler does with a program s source code.

1.30 What is a run-time error?

1.31 Is a syntax error (such as misspelling a key word) found by the compiler or when

the program is running?

1.32 What is the purpose of testing a program with sample data or input?

1.33 Brie y describe the difference between procedural and object-oriented programming.

Review Questions and Exercises

Short Answer

1. Both main memory and secondary storage are types of memory. Describe the differ-

ence between the two.

2. What is the difference between system software and application software?

3. What type of software controls the internal operations of the computer s hardware?

4. Why must programs written in a high-level language be translated into machine lan-

guage before they can be run?

5. Why is it easier to write a program in a high-level language than in machine language?

6. Explain the difference between an object le and an executable le.

7. What is the difference between a syntax error and a logical error?

Fill-in-the-Blank

8. Computers can do many different jobs because they can be __________.

9. The job of the __________ is to fetch instructions, carry out the operations com-

manded by the instructions, and produce some outcome or resultant information.

10. Internally, the CPU consists of the __________ and the __________.

11. A(n) __________ is an example of a secondary storage device.

12. The two general categories of software are __________ and __________.

13. A program is a set of __________.

14. Since computers can t be programmed in natural human language, algorithms must be

written in a(n) __________ language.

15. __________ is the only language computers really process.

16. __________ languages are close to the level of humans in terms of readability.

17. __________ languages are close to the level of the computer.

18. A program s ability to run on several different types of computer systems is called

__________.

19. Words that have special meaning in a programming language are called __________.

20. Words or names de ned by the programmer are called __________.

21. __________ are characters or symbols that perform operations on one or more

operands.

M01_GADD6253_07_SE_C01 Page 24 Tuesday, January 4, 2011 7:31 PM

Review Questions and Exercises 25

22. __________ characters or symbols mark the beginning or ending of programming

statements, or separate items in a list.

23. The rules that must be followed when constructing a program are called __________.

24. A(n) __________ is a named storage location.

25. A variable must be __________ before it can be used in a program.

26. The three primary activities of a program are __________, __________, and

__________.

27. __________ is information a program gathers from the outside world.

28. __________ is information a program sends to the outside world.

29. A(n) __________ is a diagram that graphically illustrates the structure of a program.

Algorithm Workbench

Draw hierarchy charts or owcharts that depict the programs described below. (See

Appendix D for instructions on creating owcharts.)

30. Available Credit

The following steps should be followed in a program that calculates a customer s

available credit:

1. Display the message Enter the customer s maximum credit.

2. Wait for the user to enter the customer s maximum credit.

3. Display the message Enter the amount of credit used by the customer.

4. Wait for the user to enter the customer s credit used.

5. Subtract the used credit from the maximum credit to get the customer s available

credit.

6. Display a message that shows the customer s available credit.

31. Sales Tax

Design a hierarchy chart or owchart for a program that calculates the total of a retail

sale. The program should ask the user for:

The retail price of the item being purchased

The sales tax rate

Once these items have been entered, the program should calculate and display:

The sales tax for the purchase

The total of the sale

32. Account Balance

Design a hierarchy chart or owchart for a program that calculates the current bal-

ance in a savings account. The program must ask the user for:

The starting balance

The total dollar amount of deposits made

The total dollar amount of withdrawals made

The monthly interest rate

Once the program calculates the current balance, it should be displayed on the screen.

VideoNote

Designing

the Account

Balance

Program

M01_GADD6253_07_SE_C01 Page 25 Tuesday, January 4, 2011 7:31 PM

26 Chapter 1 Introduction to Computers and Programming

Predict the Result

Questions 33 35 are programs expressed as English statements. What would each display

on the screen if they were actual programs?

33. The variable x starts with the value 0.

The variable y starts with the value 5.

Add 1 to x.

Add 1 to y.

Add x and y, and store the result in y.

Display the value in y on the screen.

34. The variable j starts with the value 10.

The variable k starts with the value 2.

The variable l starts with the value 4.

Store the value of j times k in j.

Store the value of k times l in l.

Add j and l, and store the result in k.

Display the value in k on the screen.

35. The variable a starts with the value 1.

The variable b starts with the value 10.

The variable c starts with the value 100.

The variable x starts with the value 0.

Store the value of c times 3 in x.

Add the value of b times 6 to the value already in x.

Add the value of a times 5 to the value already in x.

Display the value in x on the screen.

Find the Error

36. The following pseudocode algorithm has an error. The program is supposed to ask the

user for the length and width of a rectangular room, and then display the room s area.

The program must multiply the width by the length in order to determine the area.

Find the error.

area = width * length.

Display What is the room s width? .

Input width.

Display What is the room s length? .

Input length.

Display area.

VideoNote

Predicting

the Result of

Problem 33

M01_GADD6253_07_SE_C01 Page 26 Tuesday, January 4, 2011 7:31 PM

27

C
H

A
P

T
E

R

2

Introduction to C++

2.1

The Parts of a C++ Program

CONCEPT:

C++ programs have parts and components that serve speci c purposes.

Every C++ program has an anatomy. Unlike human anatomy, the parts of C++ programs

are not always in the same place. Nevertheless, the parts are there and your rst step in

learning C++ is to learn what they are. We will begin by looking at Program 2-1.

Let s examine the program line by line. Here s the rst line:

// A simple C++ program

The

//

 marks the beginning of a

comment

. The compiler ignores everything from the

double slash to the end of the line. That means you can type anything you want on that

line and the compiler will never complain! Although comments are not required, they are

TOPICS

2.1 The Parts of a C++ Program

2.2 The

cout

 Object

2.3 The

#include

 Directive

2.4 Variables and Literals

2.5 Identi ers

2.6 Integer Data Types

2.7 The

char

 Data Type

2.8 The

string

 Class

2.9 Floating-Point Data Types

2.10 The

bool

 Data Type

2.11 Determining the Size

of a Data Type

2.12 Variable Assignments

and Initialization

2.13 Scope

2.14 Arithmetic Operators

2.15 Comments

2.16 Named Constants

2.17 Programming Style

2.18 If You Plan to Continue

in Computer Science: Standard

and Prestandard C++

M02_GADD6253_07_SE_C02 Page 27 Tuesday, January 4, 2011 7:49 PM

28

Chapter 2 Introduction to C++

very important to programmers. Most programs are much more complicated than the

example in Program 2-1, and comments help explain what s going on.

Line 2 looks like this:

#include <iostream>

Because this line starts with a #, it is called a

preprocessor directive

. The preprocessor reads

your program before it is compiled and only executes those lines beginning with a # symbol.

Think of the preprocessor as a program that sets up your source code for the compiler.

The

#include

 directive causes the preprocessor to include the contents of another le in

the program. The word inside the brackets,

iostream

, is the name of the le that is to be

included. The

iostream

 le contains code that allows a C++ program to display output

on the screen and read input from the keyboard. Because this program uses

cout

 to dis-

play screen output, the

iostream

 le must be included. The contents of the

iostream

 le

are included in the program at the point the

#include

 statement appears. The

iostream

le is called a

header le,

 so it should be included at the head, or top, of the program.

Line 3 reads:

using namespace std;

Programs usually contain several items with unique names. In this chapter you will learn

to create variables. In Chapter 6 you will learn to create functions. In Chapter 13 you will

learn to create objects. Variables, functions, and objects are examples of program entities

that must have names. C++ uses

namespaces

 to organize the names of program entities.

The statement

using namespace std;

 declares that the program will be accessing enti-

ties whose names are part of the namespace called

std

. (Yes, even namespaces have

names.) The reason the program needs access to the

std

 namespace is because every name

created by the

iostream

 le is part of that namespace. In order for a program to use the

entities in

iostream

, it must have access to the

std

namespace.

Line 5 reads:

int main()

Program 2-1

 1 // A simple C++ program

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 cout << "Programming is great fun!";

 8 return 0;

 9 }

The output of the program is shown below. This is what appears on the screen when the program runs.

Program Output

Programming is great fun!

M02_GADD6253_07_SE_C02 Page 28 Tuesday, January 4, 2011 7:49 PM

2.1 The Parts of a C++ Program

29

This marks the beginning of a function. A

function

 can be thought of as a group of one or

more programming statements that collectively has a name. The name of this function is

main

, and the set of parentheses that follows the name indicate that it is a function. The

word

int

 stands for integer. It indicates that the function sends an integer value back to

the operating system when it is nished executing.

Although most C++ programs have more than one function, every C++ program must

have a function called

main

. It is the starting point of the program. If you are ever reading

someone else s C++ program and want to nd where it starts, just look for the function

named

main

.

Line 6 contains a single, solitary character:

{

This is called a left-brace, or an opening brace, and it is associated with the beginning of

the function

main

. All the statements that make up a function are enclosed in a set of

braces. If you look at the third line down from the opening brace you ll see the closing

brace. Everything between the two braces is the contents of the function

main

.

After the opening brace you see the following statement in line 7:

cout << "Programming is great fun!";

To put it simply, this line displays a message on the screen. You will read more about

cout

and the

<<

 operator later in this chapter. The message Programming is great fun! is

printed without the quotation marks. In programming terms, the group of characters

inside the quotation marks is called a

string literal

 or

string constant.

At the end of the line is a semicolon. Just as a period marks the end of a sentence, a semi-

colon marks the end of a complete statement in C++. Comments are ignored by the com-

piler, so the semicolon isn t required at the end of a comment. Preprocessor directives, like

#include

 statements, simply end at the end of the line and never require semicolons. The

beginning of a function, like

int main()

, is not a complete statement, so you don t place

a semicolon there either.

NOTE:

C++ is a case-sensitive language. That means it regards uppercase letters as being

entirely different characters than their lowercase counterparts. In C++, the name of the

function

main

 must be written in all lowercase letters. C++ doesn t see Main the same

as main, or INT the same as int. This is true for all the C++ key words.

WARNING!

Make sure you have a closing brace for every opening brace in

your program!

NOTE:

This is the only line in the program that causes anything to be printed on the

screen. The other lines, like

#include <iostream>

 and

int main()

, are necessary for

the framework of your program, but they do not cause any screen output. Remember, a

program is a set of instructions for the computer. If something is to be displayed on the

screen, you must use a programming statement for that purpose.

M02_GADD6253_07_SE_C02 Page 29 Tuesday, January 4, 2011 7:49 PM

30

Chapter 2 Introduction to C++

It might seem that the rules for where to put a semicolon are not clear at all. Rather than

worry about it now, just concentrate on learning the parts of a program. You ll soon get a

feel for where you should and should not use semicolons.

Line 8 reads:

return 0;

This sends the integer value 0 back to the operating system upon the program s comple-

tion. The value 0 usually indicates that a program executed successfully.

Line 9 contains the closing brace:

}

This brace marks the end of the

main

 function. Since

main

 is the only function in this pro-

gram, it also marks the end of the program.

In the sample program you encountered several sets of special characters. Table 2-1 pro-

vides a short summary of how they were used.

Checkpoint

www.myprogramminglab.com

2.1 The following C++ program will not compile because the lines have been mixed

up.

int main()

}

// A crazy mixed up program

return 0;

#include <iostream>

cout << "In 1492 Columbus sailed the ocean blue.";

{

using namespace std;

Table 2-1 Special Characters

Character Name Description

 //

Double slash Marks the beginning of a comment.

 #

Pound sign Marks the beginning of a preprocessor directive.

 < >

Opening and closing brackets Encloses a lename when used with the

#include

 directive.

 ()

Opening and closing parentheses Used in naming a function, as in

int main()

 { }

Opening and closing braces Encloses a group of statements, such as the

contents of a function.

 " "

Opening and closing quotation marks Encloses a string of characters, such as a message

that is to be printed on the screen.

 ;

Semicolon Marks the end of a complete programming

statement.

M02_GADD6253_07_SE_C02 Page 30 Tuesday, January 4, 2011 7:49 PM

2.2 The

cout

 Object

31

When the lines are properly arranged the program should display the following

on the screen:

In 1492 Columbus sailed the ocean blue.

Rearrange the lines in the correct order. Test the program by entering it on the

computer, compiling it, and running it.

2.2

The

cout

 Object

CONCEPT: Use the cout object to display information on the computer s screen.

In this section you will learn to write programs that produce output on the screen. The

simplest type of screen output that a program can display is console output, which is

merely plain text. The word console is an old computer term. It comes from the days

when a computer operator interacted with the system by typing on a terminal. The termi-

nal, which consisted of a simple screen and keyboard, was known as the console.

On modern computers, running graphical operating systems such as Windows or Mac OS

X, console output is usually displayed in a window such as the one shown in Figure 2-1.

In C++ you use the cout object to produce console output. (You can think of the word

cout as meaning console output.)

cout is classi ed as a stream object, which means it works with streams of data. To print

a message on the screen, you send a stream of characters to cout. Let s look at line 7 from

Program 2-1:

cout << "Programming is great fun!";

Notice that the << operator is used to send the string Programming is great fun! to cout.

When the << symbol is used this way, it is called the stream insertion operator. The item

immediately to the right of the operator is sent to cout and then displayed on the screen.

Figure 2-1 A Console Window

VideoNote

Using cout

M02_GADD6253_07_SE_C02 Page 31 Tuesday, January 4, 2011 7:49 PM

32 Chapter 2 Introduction to C++

The stream insertion operator is always written as two less-than signs with no space

between them. Because you are using it to send a stream of data to the cout object, you

can think of the stream insertion operator as an arrow that must point toward cout. This

is illustrated in Figure 2-2.

Program 2-2 is another way to write the same program.

As you can see, the stream-insertion operator can be used to send more than one item to

cout. The output of this program is identical to that of Program 2-1. Program 2-3 shows

yet another way to accomplish the same thing.

An important concept to understand about Program 2-3 is that, although the output is

broken up into two programming statements, this program will still display the message

Figure 2-2

Program 2-2

 1 // A simple C++ program

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 cout << "Programming is " << "great fun!";

 8 return 0;

 9 }

Program Output

Programming is great fun!

Program 2-3

 1 // A simple C++ program

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 cout << "Programming is ";

 8 cout << "great fun!";

 9 return 0;

 10 }

Program Output

Programming is great fun!

cout << "Programming is great fun!";

cout "Programming is great fun!";

Think of the stream insertion operator as an

arrow that points toward cout.

M02_GADD6253_07_SE_C02 Page 32 Tuesday, January 4, 2011 7:49 PM

2.2 The cout Object 33

on a single line. Unless you specify otherwise, the information you send to cout is dis-

played in a continuous stream. Sometimes this can produce less-than-desirable results.

Program 2-4 is an example.

The layout of the actual output looks nothing like the arrangement of the strings in the

source code. First, notice there is no space displayed between the words sellers and

during, or between June: and Computer. cout displays messages exactly as they

are sent. If spaces are to be displayed, they must appear in the strings.

Second, even though the output is broken into ve lines in the source code, it comes out as

one long line of output. Because the output is too long to t on one line on the screen, it

wraps around to a second line when displayed. The reason the output comes out as one

long line is because cout does not start a new line unless told to do so. There are two

ways to instruct cout to start a new line. The rst is to send cout a stream manipulator

called endl (which is pronounced end-line or end-L). Program 2-5 is an example.

Program 2-4

 1 // An unruly printing program

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 cout << "The following items were top sellers";

 8 cout << "during the month of June:";

 9 cout << "Computer games";

 10 cout << "Coffee";

 11 cout << "Aspirin";

 12 return 0;

 13 }

Program Output

The following items were top sellersduring the month of June:Computer gamesCoff

eeAspirin

Program 2-5

 1 // A well-adjusted printing program

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 cout << "The following items were top sellers" << endl;

 8 cout << "during the month of June:" << endl;

 9 cout << "Computer games" << endl;

 10 cout << "Coffee" << endl;

 11 cout << "Aspirin" << endl;

 12 return 0;

 13 }

(program output continues)

M02_GADD6253_07_SE_C02 Page 33 Tuesday, January 4, 2011 7:49 PM

34 Chapter 2 Introduction to C++

Every time cout encounters an endl stream manipulator it advances the output to the

beginning of the next line for subsequent printing. The manipulator can be inserted any-

where in the stream of characters sent to cout, outside the double quotes. The following

statements show an example.

cout << "My pets are" << endl << "dog";

cout << endl << "cat" << endl << "bird" << endl;

Another way to cause cout to go to a new line is to insert an escape sequence in the string

itself. An escape sequence starts with the backslash character (\), and is followed by one

or more control characters. It allows you to control the way output is displayed by embed-

ding commands within the string itself. Program 2-6 is an example.

The newline escape sequence is \n. When cout encounters \n in a string, it doesn t print it

on the screen, but interprets it as a special command to advance the output cursor to the

next line. You have probably noticed inserting the escape sequence requires less typing

than inserting endl. That s why many programmers prefer it.

Program Output

The following items were top sellers

during the month of June:

Computer games

Coffee

Aspirin

NOTE: The last character in endl is the lowercase letter L, not the number one.

Program 2-6

 1 // Yet another well-adjusted printing program

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 cout << "The following items were top sellers\n";

 8 cout << "during the month of June:\n";

 9 cout << "Computer games\nCoffee";

 10 cout << "\nAspirin\n";

 11 return 0;

 12 }

Program Output

The following items were top sellers

during the month of June:

Computer games

Coffee

Aspirin

Program 2-5 (continued)

M02_GADD6253_07_SE_C02 Page 34 Tuesday, January 4, 2011 7:49 PM

2.2 The cout Object 35

A common mistake made by beginning C++ students is to use a forward slash (/) instead

of a backslash (\) when trying to write an escape sequence. This will not work. For exam-

ple, look at the following code.

// Error!

cout << "Four Score/nAnd seven/nYears ago./n";

In this code, the programmer accidentally wrote /n when he or she meant to write \n. The

cout object will simply display the /n characters on the screen. This code will display the

following output:

Four Score/nAnd seven/nYears ago./n

Another common mistake is to forget to put the \n inside quotation marks. For example,

the following code will not compile.

// Error! This code will not compile.

cout << "Good" << \n;

cout << "Morning" << \n;

This code will result in an error because the \n sequences are not inside quotation marks.

We can correct the code by placing the \n sequences inside the string literals, as shown here:

// This will work.

cout << "Good\n";

cout << "Morning\n";

There are many escape sequences in C++. They give you the ability to exercise greater con-

trol over the way information is output by your program. Table 2-2 lists a few of them.

When you type an escape sequence in a string, you type two characters (a backslash fol-

lowed by another character). However, an escape sequence is stored in memory as a single

character. For example, consider the following string literal:

"One\nTwo\nThree\n"

The diagram in Figure 2-3 breaks this string into its individual characters. Notice how

each of the \n escape sequences are considered one character.

Table 2-2 Common Escape Sequences

Escape

Sequence Name Description

 \n Newline Causes the cursor to go to the next line for subsequent printing.

 \t Horizontal tab Causes the cursor to skip over to the next tab stop.

 \a Alarm Causes the computer to beep.

 \b Backspace Causes the cursor to back up, or move left one position.

 \r Return Causes the cursor to go to the beginning of the current line, not the

next line.

 \\ Backslash Causes a backslash to be printed.

 \' Single quote Causes a single quotation mark to be printed.

 \" Double quote Causes a double quotation mark to be printed.

WARNING! When using escape sequences, do not put a space between the backslash

and the control character.

M02_GADD6253_07_SE_C02 Page 35 Tuesday, January 4, 2011 7:49 PM

36 Chapter 2 Introduction to C++

2.3 The #include Directive

CONCEPT: The #include directive causes the contents of another le to be inserted

into the program.

Now is a good time to expand our discussion of the #include directive. The following

line has appeared near the top of every example program.

#include <iostream>

The header le iostream must be included in any program that uses the cout object. This

is because cout is not part of the core of the C++ language. Speci cally, it is part of the

input output stream library. The header le, iostream, contains information describing

iostream objects. Without it, the compiler will not know how to properly compile a pro-

gram that uses cout.

Preprocessor directives are not C++ statements. They are commands to the preprocessor,

which runs prior to the compiler (hence the name preprocessor). The preprocessor s job

is to set programs up in a way that makes life easier for the programmer.

For example, any program that uses the cout object must contain the extensive setup infor-

mation found in iostream. The programmer could type all this information into the pro-

gram, but it would be too time consuming. An alternative would be to use an editor to cut

and paste the information into the program, but that would quickly become tiring as well.

The solution is to let the preprocessor insert the contents of iostream automatically.

An #include directive must always contain the name of a le. The preprocessor inserts

the entire contents of the le into the program at the point it encounters the #include

directive. The compiler doesn t actually see the #include directive. Instead it sees the code

that was inserted by the preprocessor, just as if the programmer had typed it there.

The code contained in header les is C++ code. Typically it describes complex objects like

cout. Later you will learn to create your own header les.

Checkpoint

 www.myprogramminglab.com

2.2 The following C++ program will not compile because the lines have been mixed up.

cout << "Success\n";

cout << " Success\n\n";

int main()

cout << "Success";

}

Figure 2-3

WARNING! Do not put semicolons at the end of processor directives. Because

preprocessor directives are not C++ statements, they do not require semicolons. In many

cases an error will result from a preprocessor directive terminated with a semicolon.

O n e \n T w o T\n h r e e \n

M02_GADD6253_07_SE_C02 Page 36 Tuesday, January 4, 2011 7:49 PM

2.4 Variables and Literals 37

using namespace std;

// It's a mad, mad program

#include <iostream>

cout << "Success\n";

{

return 0;

When the lines are properly arranged the program should display the following

on the screen:

Program Output
Success

Success Success

Success

Rearrange the lines in the correct order. Test the program by entering it on the

computer, compiling it, and running it.

2.3 Study the following program and show what it will print on the screen.

// The Works of Wolfgang

#include <iostream>

using namespace std;

int main()

{

 cout << "The works of Wolfgang\ninclude the following";

 cout << "\nThe Turkish March" << endl;

 cout << "and Symphony No. 40 ";

 cout << "in G minor." << endl;

 return 0;

}

2.4 On paper, write a program that will display your name on the rst line, your street

address on the second line, your city, state, and ZIP code on the third line, and

your telephone number on the fourth line. Place a comment with today s date at

the top of the program. Test your program by entering, compiling, and running it.

2.4 Variables and Literals

CONCEPT: Variables represent storage locations in the computer s memory. Literals

are constant values that are assigned to variables.

As you discovered in Chapter 1, variables allow you to store and work with data in the com-

puter s memory. They provide an interface to RAM. Part of the job of programming is to

determine how many variables a program will need and what types of information they will

hold. Program 2-7 is an example of a C++ program with a variable. Take a look at line 7:

int number;

This is called a variable de nition. It tells the compiler the variable s name and the type of

data it will hold. This line indicates the variable s name is number. The word int stands

for integer, so number will only be used to hold integer numbers. Later in this chapter you

will learn all the types of data that C++ allows.

VideoNote

Variable

De nitions

M02_GADD6253_07_SE_C02 Page 37 Tuesday, January 4, 2011 7:49 PM

38 Chapter 2 Introduction to C++

Notice that variable de nitions end with a semicolon. Now look at line 9:

number = 5;

This is called an assignment. The equal sign is an operator that copies the value on its right

(5) into the variable named on its left (number). After this line executes, number will be set

to 5.

Look at line 10.

cout << "The value in number is " << number << endl;

The second item sent to cout is the variable name number. When you send a variable

name to cout it prints the variable s contents. Notice there are no quotation marks

around number. Look at what happens in Program 2-8.

Program 2-7

 1 // This program has a variable.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 int number;

 8

 9 number = 5;

 10 cout << "The value in number is " << number << endl;

 11 return 0;

 12 }

Program Output

The value in number is 5

NOTE: You must have a de nition for every variable you intend to use in a program. In

C++, variable de nitions can appear at any point in the program. Later in this chapter,

and throughout the book, you will learn the best places to de ne variables.

NOTE: This line does not print anything on the computer s screen. It runs silently

behind the scenes, storing a value in RAM.

Program 2-8

 1 // This program has a variable.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 int number;

 8

M02_GADD6253_07_SE_C02 Page 38 Tuesday, January 4, 2011 7:49 PM

2.4 Variables and Literals 39

When double quotation marks are placed around the word number it becomes a string lit-

eral, and is no longer a variable name. When string literals are sent to cout they are

printed exactly as they appear inside the quotation marks. You ve probably noticed by

now that the endl stream manipulator has no quotation marks around it, for the same reason.

Sometimes a Number Isn t a Number

As shown in Program 2-8, just placing quotation marks around a variable name changes

the program s results. In fact, placing double quotation marks around anything that is not

intended to be a string literal will create an error of some type. For example, in Program

2-8 the number 5 was assigned to the variable number. It would have been incorrect to

perform the assignment this way:

number = "5";

In this line, 5 is no longer an integer, but a string literal. Because number was de ned as an

integer variable, you can only store integers in it. The integer 5 and the string literal 5

are not the same thing.

The fact that numbers can be represented as strings frequently confuses students who are

new to programming. Just remember that strings are intended for humans to read. They

are to be printed on computer screens or paper. Numbers, however, are intended primarily

for mathematical operations. You cannot perform math on strings. Before numbers can be

displayed on the screen, they must rst be converted to strings. (Fortunately, cout handles

the conversion automatically when you send a number to it.)

Literals

A variable is called a variable because its value may be changed. A literal, on the other

hand, is a value that does not change during the program s execution. Program 2-9 con-

tains both literals and a variable.

 9 number = 5;

 10 cout << "The value in number is " << "number" << endl;

 11 return 0;

 12 }

Program Output

The value in number is number

Program 2-9

 1 // This program has literals and a variable.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

(program continues)

M02_GADD6253_07_SE_C02 Page 39 Tuesday, January 4, 2011 7:49 PM

40 Chapter 2 Introduction to C++

Of course, the variable is apples. It is de ned as an integer. Table 2-3 lists the literals

found in the program.

What are literals used for? As you can see from this program, they are commonly used to

store known values in variables and display messages on the screen or a printout.

Checkpoint

 www.myprogramminglab.com

2.5 Examine the following program.

// This program uses variables and literals.

#include <iostream>

using namespace std;

int main()

{

int little;

int big;

little = 2;

big = 2000;

cout << "The little number is " << little << endl;

cout << "The big number is " << big << endl;

return 0;

}

List all the variables and literals that appear in the program.

2.6 What will the following program display on the screen?

#include <iostream>

using namespace std;

 7 int apples;

 8

 9 apples = 20;

 10 cout << "Today we sold " << apples << " bushels of apples.\n";

 11 return 0;

 12 }

Program Output

Today we sold 20 bushels of apples.

Table 2-3

Literal Type of Literal

20 Integer literal

"Today we sold " String literal

"bushels of apples.\n" String literal

0 Integer literal

NOTE: Literals are also called constants.

Program 2-9 (continued)

M02_GADD6253_07_SE_C02 Page 40 Tuesday, January 4, 2011 7:49 PM

2.5 Identifiers 41

int main()

{

int number;

number = 712;

cout << "The value is " << "number" << endl;

return 0;

}

2.5 Identi ers

CONCEPT: Choose variable names that indicate what the variables are used for.

An identi er is a programmer-de ned name that represents some element of a program.

Variable names are examples of identi ers. You may choose your own variable names in

C++, as long as you do not use any of the C++ key words. The key words make up the

core of the language and have speci c purposes. Table 2-4 shows a complete list of the

C++ key words. Note that they are all lowercase.

You should always choose names for your variables that give an indication of what the

variables are used for. You may be tempted to de ne variables with names like this:

int x;

The rather nondescript name, x, gives no clue as to the variable s purpose. Here is a better

example.

int itemsOrdered;

The name itemsOrdered gives anyone reading the program an idea of the variable s use.

This way of coding helps produce self-documenting programs, which means you get an

understanding of what the program is doing just by reading its code. Because real-world

programs usually have thousands of lines, it is important that they be as self-documenting

as possible.

Table 2-4 The C++ Key Words

and continue goto public try

and_eq default if register typedef

asm delete inline reinterpret_cast typeid

auto do int return typename

bitand double long short union

bitor dynamic_cast mutable signed unsigned

bool else namespace sizeof using

break enum new static virtual

case explicit not static_cast void

catch export not_eq struct volatile

char extern operator switch wchar_t

class false or template while

compl float or_eq this xor

const for private throw xor_eq

const_cast friend protected true

M02_GADD6253_07_SE_C02 Page 41 Tuesday, January 4, 2011 7:49 PM

42 Chapter 2 Introduction to C++

You probably have noticed the mixture of uppercase and lowercase letters in the name

itemsOrdered. Although all of C++ s key words must be written in lowercase, you may

use uppercase letters in variable names.

The reason the O in itemsOrdered is capitalized is to improve readability. Normally

items ordered is two words. Unfortunately you cannot have spaces in a variable name,

so the two words must be combined into one. When items and ordered are stuck

together you get a variable de nition like this:

int itemsordered;

Capitalization of the rst letter of the second word and succeeding words makes

itemsOrdered easier to read. It should be mentioned that this style of coding is not

required. You are free to use all lowercase letters, all uppercase letters, or any combination

of both. In fact, some programmers use the underscore character to separate words in a

variable name, as in the following.

int items_ordered;

Legal Identi ers

Regardless of which style you adopt, be consistent and make your variable names as sensi-

ble as possible. Here are some speci c rules that must be followed with all identi ers.

The first character must be one of the letters a through z, A through Z, or an

underscore character (_).

After the first character you may use the letters a through z or A through Z, the

digits 0 through 9, or underscores.

Uppercase and lowercase characters are distinct. This means ItemsOrdered is

not the same as itemsordered.

Table 2-5 lists variable names and tells whether each is legal or illegal in C++.

2.6 Integer Data Types

CONCEPT: There are many different types of data. Variables are classi ed according

to their data type, which determines the kind of information that may be

stored in them. Integer variables can only hold whole numbers.

Computer programs collect pieces of data from the real world and manipulate them in

various ways. There are many different types of data. In the realm of numeric information,

Table 2-5 Some Variable Names

Variable Name Legal or Illegal?

dayOfWeek Legal.

3dGraph Illegal. Variable names cannot begin with a digit.

_employee_num Legal.

June1997 Legal.

Mixture#3 Illegal. Variable names may only use letters, digits, or underscores.

M02_GADD6253_07_SE_C02 Page 42 Tuesday, January 4, 2011 7:49 PM

2.6 Integer Data Types 43

for example, there are whole numbers and fractional numbers. There are negative num-

bers and positive numbers. And there are numbers so large, and others so small, that they

don t even have a name. Then there is textual information. Names and addresses, for

instance, are stored as groups of characters. When you write a program you must deter-

mine what types of information it will be likely to encounter.

If you are writing a program to calculate the number of miles to a distant star, you ll need

variables that can hold very large numbers. If you are designing software to record micro-

scopic dimensions, you ll need to store very small and precise numbers. Additionally, if you

are writing a program that must perform thousands of intensive calculations, you ll want vari-

ables that can be processed quickly. The data type of a variable determines all of these factors.

Although C++ offers many data types, in the very broadest sense there are only two:

numeric and character. Numeric data types are broken into two additional categories:

integer and oating point. Integers are whole numbers like 12, 157, 34, and 2. Floating

point numbers have a decimal point, like 23.7, 189.0231, and 0.987. Additionally, the

integer and oating point data types are broken into even more classi cations. Before we

discuss the character data type, let s carefully examine the variations of numeric data.

Your primary considerations for selecting a numeric data type are:

The largest and smallest numbers that may be stored in the variable

How much memory the variable uses

Whether the variable stores signed or unsigned numbers

The number of decimal places of precision the variable has

The size of a variable is the number of bytes of memory it uses. Typically, the larger a vari-

able is, the greater the range it can hold.

Table 2-6 shows the C++ integer data types with their typical sizes and ranges.

Here are some examples of variable de nitions:

int days;

unsigned speed;

short month;

unsigned short amount;

long deficit;

unsigned long insects;

NOTE: The data type sizes and ranges shown in Table 2-6 are typical on many systems.

Depending on your operating system, the sizes and ranges may be different.

Table 2-6 Integer Data Types, Sizes, and Ranges

Data Type Size Range

short 2 bytes 32,768 to +32,767

unsigned short 2 bytes 0 to +65,535

int 4 bytes 2,147,483,648 to +2,147,483,647

unsigned int 4 bytes 0 to 4,294,967,295

long 4 bytes 2,147,483,648 to +2,147,483,647

unsigned long 4 bytes 0 to 4,294,967,295

M02_GADD6253_07_SE_C02 Page 43 Tuesday, January 4, 2011 7:49 PM

44 Chapter 2 Introduction to C++

Unsigned data types can only store nonnegative values. They can be used when you know

your program will not encounter negative values. For example, variables that hold ages or

weights would rarely hold numbers less than 0.

Notice in Table 2-6 that the int and long data types have the same sizes and ranges, and

that the unsigned int data type has the same size and range as the unsigned long data

type. This is not always true because the size of integers is dependent on the type of system

you are using. Here are the only guarantees:

Integers are at least as big as short integers.

Long integers are at least as big as integers.

Unsigned short integers are the same size as short integers.

Unsigned integers are the same size as integers.

Unsigned long integers are the same size as long integers.

Later in this chapter you will learn to use the sizeof operator to determine how large all

the data types are on your computer.

As mentioned before, variables are de ned by stating the data type key word followed by

the name of the variable. In Program 2-10 an integer, an unsigned integer, and a long inte-

ger have been de ned.

NOTE: An unsigned int variable can also be de ned using only the word unsigned.

For example, the following variable de nitions are equivalent.

 unsigned int days;

 unsigned days;

Program 2-10

 1 // This program has variables of several of the integer types.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 int checking;

 8 unsigned int miles;

 9 long days;

 10

 11 checking = -20;

 12 miles = 4276;

 13 days = 189000;

 14 cout << "We have made a long journey of " << miles;

 15 cout << " miles.\n";

 16 cout << "Our checking account balance is " << checking;

 17 cout << "\nAbout " << days << " days ago Columbus ";

 18 cout << "stood on this spot.\n";

 19 return 0;

 20 }

M02_GADD6253_07_SE_C02 Page 44 Tuesday, January 4, 2011 7:49 PM

2.6 Integer Data Types 45

In most programs you will need more than one variable of any given data type. If a pro-

gram uses two integers, length and width, they could be de ned separately, like this:

int length;

int width;

It is easier, however, to combine both variable de nitions on one line:

int length, width;

You can de ne several variables of the same type like this, simply separating their names

with commas. Program 2-11 illustrates this.

Integer and Long Integer Literals

Look at lines 9, 10, and 11 in Program 2-11:

floors = 15;

rooms = 300;

suites = 30;

Each of these lines contains an integer literal. In C++, integer literals are normally stored

in memory just as an int. On a system that uses 2 byte integers and 4 byte longs, the lit-

eral 50000 is too large to be stored as an int, so it is stored as a long.

Program Output

We have made a long journey of 4276 miles.

Our checking account balance is -20

About 189000 days ago Columbus stood on this spot.

Program 2-11

 1 // This program shows three variables defined on the same line.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 int floors, rooms, suites;

 8

 9 floors = 15;

 10 rooms = 300;

 11 suites = 30;

 12 cout << "The Grande Hotel has " << floors << " floors\n";

 13 cout << "with " << rooms << " rooms and " << suites;

 14 cout << " suites.\n";

 15 return 0;

 16 }

Program Output

The Grande Hotel has 15 floors

with 300 rooms and 30 suites.

M02_GADD6253_07_SE_C02 Page 45 Tuesday, January 4, 2011 7:49 PM

46 Chapter 2 Introduction to C++

One of the pleasing characteristics of the C++ language is that it allows you to control

almost every aspect of your program. If you need to change the way something is stored in

memory, the tools are provided to do that. For example, what if you are in a situation

where you have an integer literal, but you need it to be stored in memory as a long inte-

ger? (Rest assured, this is a situation that does arise.) C++ allows you to force an integer

literal to be stored as a long integer by placing the letter L at the end of the number. Here

is an example:

32L

On a computer that uses 2-byte integers and 4-byte long integers, this literal will use 4

bytes. This is called a long integer literal.

If You Plan to Continue in Computer Science: Hexadecimal
and Octal Literals

Programmers commonly express values in numbering systems other than decimal (or base

10). Hexadecimal (base 16) and octal (base 8) are popular because they make certain pro-

gramming tasks more convenient than decimal numbers do.

By default, C++ assumes that all integer literals are expressed in decimal. You express

hexadecimal numbers by placing 0x in front of them. (This is zero-x, not oh-x.) Here is

how the hexadecimal number F4 would be expressed in C++:

0xF4

Octal numbers must be preceded by a 0 (zero, not oh). For example, the octal 31 would be

written

031

Checkpoint

 www.myprogramminglab.com

2.7 Which of the following are illegal variable names, and why?

x

99bottles

july97

theSalesFigureForFiscalYear98

r&d

grade_report

2.8 Is the variable name Sales the same as sales? Why or why not?

NOTE: You can use either an uppercase or lowercase L. The lowercase l looks too much

like the number 1, so you should always use the uppercase L.

NOTE: You will not be writing programs for some time that require this type of

manipulation. It is important, however, that you understand this material. Good

programmers should develop the skills for reading other people s source code. You may nd

yourself reading programs that use items like long integer, hexadecimal, or octal literals.

M02_GADD6253_07_SE_C02 Page 46 Tuesday, January 4, 2011 7:49 PM

2.7 The char Data Type 47

2.9 Refer to the data types listed in Table 2-6 for these questions.

A) If a variable needs to hold numbers in the range 32 to 6,000, what data type

would be best?

B) If a variable needs to hold numbers in the range 40,000 to +40,000, what

data type would be best?

C) Which of the following literals uses more memory? 20 or 20L

2.10 On any computer, which data type uses more memory, an integer or an unsigned

integer?

2.7 The char Data Type

You might be wondering why there isn t a 1-byte integer data type. Actually there is. It is

called the char data type, which gets its name from the word character. As its name sug-

gests, it is primarily for storing characters, but strictly speaking, it is an integer data type.

The reason an integer data type is used to store characters is because characters are inter-

nally represented by numbers. Each printable character, as well as many nonprintable char-

acters, is assigned a unique number. The most commonly used method for encoding

characters is ASCII, which stands for the American Standard Code for Information Inter-

change. (There are other codes, such as EBCDIC, which is used by many IBM mainframes.)

When a character is stored in memory, it is actually the numeric code that is stored. When

the computer is instructed to print the value on the screen, it displays the character that

corresponds with the numeric code.

You may want to refer to Appendix B, which shows the ASCII character set. Notice that

the number 65 is the code for A, 66 is the code for B, and so on. Program 2-12 demon-

strates that when you work with characters, you are actually working with numbers.

NOTE: On some systems the char data type is larger than 1 byte.

Program 2-12

 1 // This program demonstrates the close relationship between

 2 // characters and integers.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 char letter;

 9

 10 letter = 65;

 11 cout << letter << endl;

 12 letter = 66;

 13 cout << letter << endl;

 14 return 0;

 15 }

(program output continues)

M02_GADD6253_07_SE_C02 Page 47 Tuesday, January 4, 2011 7:49 PM

48

Chapter 2 Introduction to C++

Figure 2-4 illustrates that when characters, such as A, B, and C, are stored in memory, it is

really the numbers 65, 66, and 67 that are stored.

Character and String Literals

Although Program 2-12 nicely illustrates the way characters are represented by numbers,

you do not have to work with the ASCII codes themselves. Program 2-13 is another ver-

sion that works that same way.

Program 2-13 assigns character literals to the variable

letter

. Any time a program works

with a character, it internally works with the code that represents that character, so this

program is still assigning the values 65 and 66 to

letter

.

Program Output

A

B

Figure 2-4

Program 2-13

 1 // This program uses character literals.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 char letter;

 8

 9 letter = 'A';

 10 cout << letter << endl;

 11 letter = 'B';

 12 cout << letter << endl;

 13 return 0;

 14 }

Program Output

A

B

Program 2-12

(continued)

is stored in memory as

A

65

B

66

C

67

M02_GADD6253_07_SE_C02 Page 48 Thursday, January 13, 2011 7:50 PM

2.7 The

char

 Data Type

49

Notice in lines 9 and 11 that the character literals are enclosed in single quotation marks.

It is important that you do not confuse character literals with string literals, which are

enclosed in double quotation marks. String literals cannot be assigned to

char

 variables,

because of the way string literals are stored internally.

Strings, which are a series of characters stored in consecutive memory locations, can be vir-

tually any length. This means that there must be some way for the program to know how

long a string is. In C++ an extra byte is appended to the end of string literals when they are

stored in memory. In this last byte, the number 0 is stored. It is called the

null terminator

 or

null character

, and it marks the end of the string.

Don t confuse the null terminator with the character 0 . If you look at Appendix B, you

will see that ASCII code 48 corresponds to the character 0 , whereas the null terminator is

the same as the ASCII code 0. If you want to print the character 0 on the screen, you use

ASCII code 48. If you want to mark the end of a string, however, you use ASCII code 0.

Let s look at an example of how a string literal is stored in memory. Figure 2-5 depicts the

way the string literal Sebastian would be stored.

First, notice the quotation marks are not stored with the string. They are simply a way of

marking the beginning and end of the string in your source code. Second, notice the very

last byte of the string. It contains the null terminator, which is represented by the \0 char-

acter. The addition of this last byte means that although the string Sebastian is 9 charac-

ters long, it occupies 10 bytes of memory.

The null terminator is another example of something that sits quietly in the background.

It doesn t print on the screen when you display a string, but nevertheless, it is there silently

doing its job.

Now let s compare the way a string and a

char

 are stored. Suppose you have the literals

A and A in a program. Figure 2-6 depicts their internal storage.

As you can see, A is a 1-byte element and A is a 2-byte element. Since characters are

really stored as ASCII codes, Figure 2-7 shows what is actually being stored in memory.

Figure 2-5

NOTE:

C++ automatically places the null terminator at the end of string literals.

Figure 2-6

S e b a s t i a n \0

A \0

A A is stored as

A is stored as

M02_GADD6253_07_SE_C02 Page 49 Thursday, January 13, 2011 7:50 PM

50 Chapter 2 Introduction to C++

Because char variables are only large enough to hold one character, you cannot assign string

literals to them. For example, the following code de nes a char variable named letter.

The character literal 'A' can be assigned to the variable, but the string literal "A" cannot.

char letter;

letter = 'A'; // This will work.

letter = "A"; // This will not work!

One nal topic about characters should be discussed. You have learned that some strings

look like a single character but really aren t. It is also possible to have a character that

looks like a string. A good example is the newline character, \n. Although it is represented

by two characters, a slash and an n, it is internally represented as one character. In fact, all

escape sequences, internally, are just 1 byte.

Program 2-14 shows the use of \n as a character literal, enclosed in single quotation

marks. If you refer to the ASCII chart in Appendix B, you will see that ASCII code 10 is

the linefeed character. This is the code C++ uses for the newline character.

Let s review some important points regarding characters and strings:

Printable characters are internally represented by numeric codes. Most computers

use ASCII codes for this purpose.

Characters normally occupy a single byte of memory.

Figure 2-7

Program 2-14

 1 // This program uses character literals.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 char letter;

 8

 9 letter = 'A';

 10 cout << letter << '\n';

 11 letter = 'B';

 12 cout << letter << '\n';

 13 return 0;

 14 }

Program Output

A

B

65 0

65 A is stored as

A is stored as

M02_GADD6253_07_SE_C02 Page 50 Tuesday, January 4, 2011 7:49 PM

2.8 The C++ string Class 51

Strings are consecutive sequences of characters that occupy consecutive bytes of

memory.

String literals are always stored in memory with a null terminator at the end. This

marks the end of the string.

Character literals are enclosed in single quotation marks.

String literals are enclosed in double quotation marks.

Escape sequences such as '\n' are stored internally as a single character.

2.8 The C++ string Class

CONCEPT: Standard C++ provides a special data type for storing and working with

strings.

Because a char variable can store only one character in its memory location, another data

type is needed for a variable able to hold an entire string. Although C++ does not have a

built-in data type able to do this, standard C++ provides something called the string

class that allows the programmer to create a string type variable.

Using the string Class

The rst step in using the string class is to #include the string header le. This is

accomplished with the following preprocessor directive:

#include <string>

The next step is to de ne a string type variable, called a string object. De ning a

string object is similar to de ning a variable of a primitive type. For example, the fol-

lowing statement de nes a string object named movieTitle.

string movieTitle;

You can assign a string literal to movieTitle with the assignment operator:

movieTitle = "Wheels of Fury";

You can use cout to display the value of the movieTitle object, as shown in the next

statement:

cout << "My favorite movie is " << movieTitle << endl;

Program 2-15 is a complete program that demonstrates the preceding statements.

Program 2-15

 1 // This program demonstrates the string class.

 2 #include <iostream>

 3 #include <string> // Required for the string class.

 4 using namespace std;

(program continues)

M02_GADD6253_07_SE_C02 Page 51 Tuesday, January 4, 2011 7:49 PM

52 Chapter 2 Introduction to C++

As you can see, working with string objects is similar to working with variables of

other types. Throughout this text we will continue to discuss string class features

and capabilities.

Checkpoint

 www.myprogramminglab.com

2.11 What are the ASCII codes for the following characters? (Refer to Appendix B)

C

F

W

2.12 Which of the following is a character literal?

'B'

"B"

2.13 Assuming the char data type uses 1 byte of memory, how many bytes do the fol-

lowing literals use?

'Q'

"Q"

"Sales"

'\n'

2.14 Write a program that has the following character variables: first, middle, and

last. Store your initials in these variables and then display them on the screen.

2.15 What is wrong with the following program statement?

char letter = "Z";

2.16 What header le must you include in order to use string objects?

2.17 Write a program that stores your name, address, and phone number in three sep-

arate string objects. Display the contents of the string objects on the screen.

 5

 6 int main()

 7 {

 8 string movieTitle;

 9

 10 movieTitle = "Wheels of Fury";

 11 cout << "My favorite movie is " << movieTitle << endl;

 12 return 0;

 13 }

Program Output

My favorite movie is Wheels of Fury

Program 2-15 (continued)

M02_GADD6253_07_SE_C02 Page 52 Tuesday, January 4, 2011 7:49 PM

2.9 Floating-Point Data Types 53

2.9 Floating-Point Data Types

CONCEPT: Floating-point data types are used to de ne variables that can hold real

numbers.

Whole numbers are not adequate for many jobs. If you are writing a program that works

with dollar amounts or precise measurements, you need a data type that allows fractional

values. In programming terms, these are called oating-point numbers.

Internally, oating-point numbers are stored in a manner similar to scienti c notation.

Take the number 47,281.97. In scienti c notation this number is 4.728197 * 104. (104 is

equal to 10,000, and 4.728197 * 10,000 is 47,281.97.) The rst part of the number,

4.728197, is called the mantissa. The mantissa is multiplied by a power of ten.

Computers typically use E notation to represent oating-point values. In E notation, the

number 47,281.97 would be 4.728197E4. The part of the number before the E is the

mantissa, and the part after the E is the power of 10. When a oating point number is

stored in memory, it is stored as the mantissa and the power of 10.

Table 2-7 shows other numbers represented in scienti c and E notation.

In C++ there are three data types that can represent oating-point numbers. They are

float

double

long double

The float data type is considered single precision. The double data type is usually twice

as big as float, so it is considered double precision. As you ve probably guessed, the long

double is intended to be larger than the double. Of course, the exact sizes of these data

types are dependent on the computer you are using. The only guarantees are:

A double is at least as big as a float.

A long double is at least as big as a double.

Table 2-8 shows the sizes and ranges of oating-point data types usually found on PCs.

Table 2-7 Floating Point Representations

Decimal Notation Scienti c Notation E Notation

247.91 2.4791 * 102 2.4791E2

0.00072 7.2 * 10 4 7.2E 4

2,900,000 2.9 * 106 2.9E6

Table 2-8 Floating Point Data Types on PCs

Data Type Key Word Description

Single precision float 4 bytes. Numbers between ±3.4E-38 and ±3.4E38

Double precision double 8 bytes. Numbers between ±1.7E-308 and ±1.7E308

Long double precision long double*

*Some compilers use 10 bytes for long doubles. This allows a range of ±3.4E-4932 to ±1.1E4832

8 bytes. Numbers between ±1.7E-308 and ±1.7E308

M02_GADD6253_07_SE_C02 Page 53 Tuesday, January 4, 2011 7:49 PM

54 Chapter 2 Introduction to C++

You will notice there are no unsigned oating point data types. On all machines, vari-

ables of the float, double, and long double data types can store positive or negative

numbers.

Floating Point Literals

Floating point literals may be expressed in a variety of ways. As shown in Program 2-16,

E notation is one method. When you are writing numbers that are extremely large or

extremely small, this will probably be the easiest way. E notation numbers may be

expressed with an uppercase E or a lowercase e. Notice that in the source code the literals

were written as 1.495979E11 and 1.989E30, but the program printed them as 1.49598e+

011 and 1.989e+30. The two sets of numbers are equivalent. (The plus sign in front of the

exponent is also optional.) In Chapter 3 you will learn to control the way cout displays E

notation numbers.

You can also express oating-point literals in decimal notation. The literal 1.495979E11

could have been written as

149597900000.00

Obviously the E notation is more convenient for lengthy numbers, but for numbers like

47.39, decimal notation is preferable to 4.739E1.

All of the following oating-point literals are equivalent:

1.4959E11

1.4959e11

1.4959E+11

1.4959e+11

149590000000.00

Program 2-16

 1 // This program uses floating point data types.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 float distance;

 8 double mass;

 9

 10 distance = 1.495979E11;

 11 mass = 1.989E30;

 12 cout << "The Sun is " << distance << " meters away.\n";

 13 cout << "The Sun\'s mass is " << mass << " kilograms.\n";

 14 return 0;

 15 }

Program Output

The Sun is 1.49598e+011 meters away.

The Sun's mass is 1.989e+030 kilograms.

M02_GADD6253_07_SE_C02 Page 54 Tuesday, January 4, 2011 7:49 PM

2.9 Floating-Point Data Types 55

Floating-point literals are normally stored in memory as doubles. But remember, C++

provides tools for handling just about any situation. Just in case you need to force a literal

to be stored as a float, you can append the letter F or f to the end of it. For example, the

following literals would be stored as floats:

1.2F

45.907f

If you want to force a value to be stored as a long double, append an L or l to it, as in

the following examples:

1034.56L

89.2l

The compiler won t confuse these with long integers because they have decimal points.

(Remember, the lowercase L looks so much like the number 1 that you should always use

the uppercase L when suf xing literals.)

Assigning Floating-Point Values to Integer Variables

When a oating-point value is assigned to an integer variable, the fractional part of the

value (the part after the decimal point) is discarded. For example, look at the following

code.

int number;

number = 7.5; // Assigns 7 to number

This code attempts to assign the oating-point value 7.5 to the integer variable number. As

a result, the value 7 will be assigned to number, with the fractional part discarded. When

part of a value is discarded, it is said to be truncated.

Assigning a oating-point variable to an integer variable has the same effect. For example,

look at the following code.

int i;

float f;

f = 7.5;

i = f; // Assigns 7 to i.

NOTE: Because oating-point literals are normally stored in memory as doubles, many

compilers issue a warning message when you assign a oating-point literal to a float

variable. For example, assuming num is a float, the following statement might cause the

compiler to generate a warning message:

 num = 14.725;

You can suppress the warning message by appending the f suf x to the oating-point

literal, as shown below:

 num = 14.725f;

M02_GADD6253_07_SE_C02 Page 55 Tuesday, January 4, 2011 7:49 PM

56 Chapter 2 Introduction to C++

When the float variable f is assigned to the int variable i, the value being assigned (7.5)

is truncated. After this code executes i will hold the value 7 and f will hold the value 7.5.

2.10 The bool Data Type

CONCEPT: Boolean variables are set to either true or false.

Expressions that have a true or false value are called Boolean expressions, named in

honor of English mathematician George Boole (1815 1864).

The bool data type allows you to create small integer variables that are suitable for hold-

ing true or false values. Program 2-17 demonstrates the de nition and assignment of a

bool variable.

As you can see from the program output, the value true is represented in memory by the

number 1, and false is represented by 0. You will not be using bool variables until

Chapter 4, however, so just remember they are useful for evaluating conditions that are

either true or false.

NOTE: When a oating-point value is truncated, it is not rounded. Assigning the value

7.9 to an int variable will result in the value 7 being stored in the variable.

WARNING! Floating-point variables can hold a much larger range of values than

integer variables can. If a oating-point value is being stored in an integer variable, and

the whole part of the value (the part before the decimal point) is too large for the integer

variable, an invalid value will be stored in the integer variable.

Program 2-17

 1 // This program demonstrates boolean variables.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 bool boolValue;

 8

 9 boolValue = true;

 10 cout << boolValue << endl;

 11 boolValue = false;

 12 cout << boolValue << endl;

 13 return 0;

 14 }

Program Output

1

0

M02_GADD6253_07_SE_C02 Page 56 Tuesday, January 4, 2011 7:49 PM

2.11 Determining the Size of a Data Type 57

2.11 Determining the Size of a Data Type

CONCEPT: The sizeof operator may be used to determine the size of a data type on

any system.

Chapter 1 discussed the portability of the C++ language. As you have seen in this chapter,

one of the problems of portability is the lack of common sizes of data types on all

machines. If you are not sure what the sizes of data types are on your computer, C++ pro-

vides a way to nd out.

A special operator called sizeof will report the number of bytes of memory used by any

data type or variable. Program 2-18 illustrates its use. The rst line that uses the operator

is line 10:

cout << "The size of an integer is " << sizeof(int);

The name of the data type or variable is placed inside the parentheses that follow the

operator. The operator returns the number of bytes used by that item. This operator

can be invoked anywhere you can use an unsigned integer, including in mathematical

operations.

Program 2-18

 1 // This program determines the size of integers, long

 2 // integers, and long doubles.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 long double apple;

 9

 10 cout << "The size of an integer is " << sizeof(int);

 11 cout << " bytes.\n";

 12 cout << "The size of a long integer is " << sizeof(long);

 13 cout << " bytes.\n";

 14 cout << "An apple can be eaten in " << sizeof(apple);

 15 cout << " bytes!\n";

 16 return 0;

 17 }

Program Output

The size of an integer is 4 bytes.

The size of a long integer is 4 bytes.

An apple can be eaten in 8 bytes!

M02_GADD6253_07_SE_C02 Page 57 Tuesday, January 4, 2011 7:49 PM

58 Chapter 2 Introduction to C++

Checkpoint

 www.myprogramminglab.com

2.18 Yes or No: Is there an unsigned oating point data type? If so, what is it?

2.19 How would the following number in scienti c notation be represented in E notation?

6.31 * 1017

2.20 Write a program that de nes an integer variable named age and a float variable

named weight. Store your age and weight, as literals, in the variables. The program

should display these values on the screen in a manner similar to the following:

Program Output

My age is 26 and my weight is 180 pounds.

(Feel free to lie to the computer about your age and your weight

it ll never know!)

2.12 Variable Assignments and Initialization

CONCEPT: An assignment operation assigns, or copies, a value into a variable. When

a value is assigned to a variable as part of the variable s de nition, it is

called an initialization.

As you have already seen in several examples, a value is stored in a variable with an

assignment statement. For example, the following statement copies the value 12 into the

variable unitsSold.

unitsSold = 12;

The = symbol is called the assignment operator. Operators perform operations on data.

The data that operators work with are called operands. The assignment operator has two

operands. In the previous statement, the operands are unitsSold and 12.

In an assignment statement, C++ requires the name of the variable receiving the assign-

ment to appear on the left side of the operator. The following statement is incorrect.

12 = unitsSold; // Incorrect!

In C++ terminology, the operand on the left side of the = symbol must be an lvalue. It is

called an lvalue because it is a value that may appear on the left side of an assignment

operator. An lvalue is something that identi es a place in memory whose contents may be

changed. Most of the time this will be a variable name. The operand on the right side of

the = symbol must be an rvalue. An rvalue is any expression that has a value. The assign-

ment statement takes the value of the rvalue and puts it in the memory location of the

object identi ed by the lvalue.

M02_GADD6253_07_SE_C02 Page 58 Tuesday, January 4, 2011 7:49 PM

2.13 Scope 59

You may also assign values to variables as part of the de nition. This is called initializa-

tion. Program 2-19 shows how it is done.

As you can see, this simpli es the program and reduces the number of statements that

must be typed by the programmer. Here are examples of other de nition statements that

perform initialization.

double interestRate = 12.9;

char stockode = 'D';

long customerNum = 459L;

Of course, there are always variations on a theme. C++ allows you to de ne several vari-

ables and only initialize some of them. Here is an example of such a de nition:

int flightNum = 89, travelTime, departure = 10, distance;

The variable flightNum is initialized to 89 and departure is initialized to 10. The vari-

ables travelTime and distance remain uninitialized.

2.13 Scope

CONCEPT: A variable s scope is the part of the program that has access to the variable.

Every variable has a scope. The scope of a variable is the part of the program where the

variable may be used. The rules that de ne a variable s scope are complex, and you will

only be introduced to the concept here. In other sections of the book we will revisit this

topic and expand on it.

The rst rule of scope you should learn is that a variable cannot be used in any part of the

program before the de nition. Program 2-20 illustrates this.

Program 2-19

 1 // This program shows variable initialization.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 int month = 2, days = 28;

 8

 9 cout << "Month " << month << " has " << days << " days.\n";

 10 return 0;

 11 }

Program Output

Month 2 has 28 days.

M02_GADD6253_07_SE_C02 Page 59 Tuesday, January 4, 2011 7:49 PM

60 Chapter 2 Introduction to C++

The program will not work because line 7 attempts to send the contents of the variable

value to cout before the variable is de ned. The compiler reads your program from top

to bottom. If it encounters a statement that uses a variable before the variable is de ned,

an error will result. To correct the program, the variable de nition must be put before any

statement that uses it.

2.14 Arithmetic Operators

CONCEPT: There are many operators for manipulating numeric values and

performing arithmetic operations.

C++ offers a multitude of operators for manipulating data. Generally, there are three types

of operators: unary, binary, and ternary. These terms re ect the number of operands an

operator requires.

Unary operators only require a single operand. For example, consider the following

expression:

-5

Of course, we understand this represents the value negative ve. The literal 5 is preceded

by the minus sign. The minus sign, when used this way, is called the negation operator.

Since it only requires one operand, it is a unary operator.

Binary operators work with two operands. The assignment operator is in this category.

Ternary operators, as you may have guessed, require three operands. C++ only has one

ternary operator, which will be discussed in Chapter 4.

Arithmetic operations are very common in programming. Table 2-9 shows the common

arithmetic operators in C++.

Program 2-20

 1 // This program can't find its variable.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 cout << value; // ERROR! value not defined yet!

 8

 9 int value = 100;

 10 return 0;

 11 }

VideoNote

Assignment

Statements and

Simple Math

Expressions

M02_GADD6253_07_SE_C02 Page 60 Tuesday, January 4, 2011 7:49 PM

2.14 Arithmetic Operators 61

Each of these operators works as you probably expect. The addition operator returns the
sum of its two operands. In the following assignment statement, the variable amount will
be assigned the value 12:

amount = 4 + 8;

The subtraction operator returns the value of its right operand subtracted from its left
operand. This statement will assign the value 98 to temperature:

temperature = 112 - 14;

The multiplication operator returns the product of its two operands. In the following
statement, markUp is assigned the value 3:

markUp = 12 * 0.25;

The division operator returns the quotient of its left operand divided by its right operand.
In the next statement, points is assigned the value 5:

points = 100 / 20;

It is important to note that when both of the division operator s operands are integers, the
result of the division will also be an integer. If the result has a fractional part, it will be
thrown away. We will discuss this behavior, which is known as integer division, in greater
detail later in this section.

The modulus operator, which only works with integer operands, returns the remainder of
an integer division. The following statement assigns 2 to leftOver:

leftOver = 17 % 3;

In Chapter 3 you will learn how to use these operators in more complex mathematical for-
mulas. For now we will concentrate on their basic usage. For example, suppose we need to
write a program that calculates and displays an employee s total wages for the week. The
regular hours for the work week are 40, and any hours worked over 40 are considered
overtime. The employee earns $18.25 per hour for regular hours, and $27.78 per hour for
overtime hours. The employee has worked 50 hours this week. The following pseudocode
algorithm shows the program s logic.

Regular wages = base pay rate * regular hours

Overtime wages = overtime pay rate * overtime hours

Total wages = regular wages + overtime wages

Display the total wages

Table 2-9 Fundamental Arithmetic Operators

Operator Meaning Type Example

 + Addition Binary total = cost + tax;

 Subtraction Binary cost = total - tax;

 * Multiplication Binary tax = cost * rate;

 / Division Binary salePrice = original / 2;

 % Modulus Binary remainder = value % 3;

M02_GADD6253_07_SE_C02 Page 61 Tuesday, January 4, 2011 7:49 PM

62 Chapter 2 Introduction to C++

Program 2-21 shows the C++ code for the program.

Let s take a closer look at the program. As mentioned in the comments, there are variables

for regular wages, base pay rate, regular hours worked, overtime wages, overtime pay

rate, overtime hours worked, and total wages.

Here is line 16, which multiplies basePayRate times regularHours and stores the result

in regularWages:

regularWages = basePayRate * regularHours;

Here is line 19, which multiplies overtimePayRate times overtimeHours and stores the

result in overtimeWages:

overtimeWages = overtimePayRate * overtimeHours;

Line 22 adds the regular wages and the overtime wages and stores the result in

totalWages:

totalWages = regularWages + overtimeWages;

Line 25 displays the message on the screen reporting the week s wages.

Program 2-21

 1 // This program calculates hourly wages, including overtime.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 double regularWages, // To hold regular wages

 8 basePayRate = 18.25, // Base pay rate

 9 regularHours = 40.0, // Hours worked less overtime

 10 overtimeWages, // To hold overtime wages

 11 overtimePayRate = 27.78, // Overtime pay rate

 12 overtimeHours = 10, // Overtime hours worked

 13 totalWages; // To hold total wages

 14

 15 // Calculate the regular wages.

 16 regularWages = basePayRate * regularHours;

 17

 18 // Calculate the overtime wages.

 19 overtimeWages = overtimePayRate * overtimeHours;

 20

 21 // Calculate the total wages.

 22 totalWages = regularWages + overtimeWages;

 23

 24 // Display the total wages.

 25 cout << "Wages for this week are $" << totalWages << endl;

 26 return 0;

 27 }

Program Output

Wages for this week are $1007.8

M02_GADD6253_07_SE_C02 Page 62 Tuesday, January 4, 2011 7:49 PM

2.14 Arithmetic Operators 63

Integer Division

When both operands of a division statement are integers, the statement will result in inte-

ger division. This means the result of the division will be an integer as well. If there is a
remainder, it will be discarded. For example, look at the following code:

double number;

number = 5 / 2;

This code divides 5 by 2 and assigns the result to the number variable. What will be stored
in number? You would probably assume that 2.5 would be stored in number because that
is the result your calculator shows when you divide 5 by 2. However, that is not what hap-
pens when the previous C++ code is executed. Because the numbers 5 and 2 are both inte-
gers, the fractional part of the result will be thrown away, or truncated. As a result, the
value 2 will be assigned to the number variable.

In the previous code, it doesn t matter that the number variable is declared as a double
because the fractional part of the result is discarded before the assignment takes place. In
order for a division operation to return a oating-point value, one of the operands must be
of a oating-point data type. For example, the previous code could be written as follows:

double number;

number = 5.0 / 2;

In this code, 5.0 is treated as a oating-point number, so the division operation will return
a oating-point number. The result of the division is 2.5.

In the Spotlight:

Calculating Percentages and Discounts

Determining percentages is a common calculation in computer programming. Although
the % symbol is used in general mathematics to indicate a percentage, most programming
languages (including C++) do not use the % symbol for this purpose. In a program, you
have to convert a percentage to a oating-point number, just as you would if you were
using a calculator. For example, 50 percent would be written as 0.5 and 2 percent would
be written as 0.02.

Let s look at an example. Suppose you earn $6,000 per month and you are allowed to
contribute a portion of your gross monthly pay to a retirement plan. You want to deter-
mine the amount of your pay that will go into the plan if you contribute 5 percent, 7 per-
cent, or 10 percent of your gross wages. To make this determination you write the
program shown in Program 2-22.

Program 2-22

 1 // This program calculates the amount of pay that

 2 // will be contributed to a retirement plan if 5%,

 3 // 7%, or 10% of monthly pay is withheld.

 4 #include <iostream>

 5 using namespace std;

 6

(program continues)

M02_GADD6253_07_SE_C02 Page 63 Tuesday, January 4, 2011 7:49 PM

64 Chapter 2 Introduction to C++

Line 11 de nes two variables: monthlyPay and contribution. The monthlyPay vari-
able, which is initialized with the value 6000.0, holds the amount of your monthly pay.
The contribution variable will hold the amount of a contribution to the retirement plan.

The statements in lines 14 through 16 calculate and display 5 percent of the monthly pay.
The calculation is done in line 14, where the monthlyPay variable is multiplied by 0.05.
The result is assigned to the contribution variable, which is then displayed in line 15.

Similar steps are taken in Lines 18 through 21, which calculate and display 7 percent of
the monthly pay, and lines 24 through 26, which calculate and display 10 percent of the
monthly pay.

Calculating a Percentage Discount

Another common calculation is determining a percentage discount. For example, suppose
a retail business sells an item that is regularly priced at $59.95, and is planning to have a
sale where the item s price will be reduced by 20 percent. You have been asked to write a
program to calculate the sale price of the item.

 7 int main()

 8 {

 9 // Variables to hold the monthly pay and the

 10 // amount of contribution.

 11 double monthlyPay = 6000.0, contribution;

 12

 13 // Calculate and display a 5% contribution.

 14 contribution = monthlyPay * 0.05;

 15 cout << "5 percent is $" << contribution

 16 << " per month.\n";

 17

 18 // Calculate and display a 7% contribution.

 19 contribution = monthlyPay * 0.07;

 20 cout << "7 percent is $" << contribution

 21 << " per month.\n";

 22

 23 // Calculate and display a 10% contribution.

 24 contribution = monthlyPay * 0.1;

 25 cout << "10 percent is $" << contribution

 26 << " per month.\n";

 27

 28 return 0;

 29 }

Program Output

5 percent is $300 per month.

7 percent is $420 per month.

10 percent is $600 per month.

Program 2-22 (continued)

M02_GADD6253_07_SE_C02 Page 64 Tuesday, January 4, 2011 7:49 PM

2.14 Arithmetic Operators 65

To determine the sale price you perform two calculations:

First, you get the amount of the discount, which is 20 percent of the item s regular

price.

Second, you subtract the discount amount from the item s regular price. This

gives you the sale price.

Program 2-23 shows how this is done in C++.

Line 11 de nes three variables. The regularPrice variable holds the item s regular price,

and is initialized with the value 59.95. The discount variable will hold the amount of the

discount once it is calculated. The salePrice variable will hold the item s sale price.

Line 14 calculates the amount of the 20 percent discount by multiplying regularPrice

by 0.2. The result is stored in the discount variable. Line 18 calculates the sale price by

subtracting discount from regularPrice. The result is stored in the salePrice vari-

able. The cout statements in lines 21 through 23 display the item s regular price, the

amount of the discount, and the sale price.

Program 2-23

 1 // This program calculates the sale price of an item

 2 // that is regularly priced at $59.95, with a 20 percent

 3 // discount subtracted.

 4 #include <iostream>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 // Variables to hold the regular price, the

 10 // amount of a discount, and the sale price.

 11 double regularPrice = 59.95, discount, salePrice;

 12

 13 // Calculate the amount of a 20% discount.

 14 discount = regularPrice * 0.2;

 15

 16 // Calculate the sale price by subtracting the

 17 // discount from the regular price.

 18 salePrice = regularPrice - discount;

 19

 20 // Display the results.

 21 cout << "Regular price: $" << regularPrice << endl;

 22 cout << "Discount amount: $" << discount << endl;

 23 cout << "Sale price: $" << salePrice << endl;

 24 return 0;

 25 }

Program Output

Regular price: $59.95

Discount amount: $11.99

Sale price: $47.96

M02_GADD6253_07_SE_C02 Page 65 Tuesday, January 4, 2011 7:49 PM

66 Chapter 2 Introduction to C++

In the Spotlight:

Using the Modulus Operator and Integer Division

The modulus operator (%) is surprisingly useful. For example, suppose you need to

extract the rightmost digit of a number. If you divide the number by 10, the remainder will

be the rightmost digit. For instance, 123 ÷ 10 = 12 with a remainder of 3. In a computer

program you would use the modulus operator to perform this operation. Recall that the

modulus operator divides an integer by another integer, and gives the remainder. This is

demonstrated in Program 2-24. The program extracts the rightmost digit of the number

12345.

Interestingly, the expression number % 100 will give you the rightmost two digits in number,

the expression number % 1000 will give you the rightmost three digits in number, etc.

The modulus operator (%) is useful in many other situations. For example, Program 2-25

converts 125 seconds to an equivalent number of minutes, and seconds.

Program 2-24

 1 // This program extracts the rightmost digit of a number.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 int number = 12345;

 8 int rightMost = number % 10;

 9

 10 cout << "The rightmost digit in "

 11 << number << " is "

 12 << rightMost << endl;

 13

 14 return 0;

 15 }

Program Output

The rightmost digit in 12345 is 5

Program 2-25

 1 // This program converts seconds to minutes and seconds.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 // The total seconds is 125.

 8 int totalSeconds = 125;

 9

M02_GADD6253_07_SE_C02 Page 66 Tuesday, January 4, 2011 7:49 PM

2.14 Arithmetic Operators 67

Let s take a closer look at the code:

Line 8 defines an int variable named totalSeconds, initialized with the value 125.

Line 11 declares the int variables minutes and seconds.

Line 14 calculates the number of minutes in the specified number of seconds.

There are 60 seconds in a minute, so this statement divides totalSeconds

by 60. Notice that we are performing integer division in this statement. Both

totalSeconds and the numeric literal 60 are integers, so the division operator

will return an integer result. This is intentional because we want the number of

minutes with no fractional part.

Line 17 calculates the number of remaining seconds. There are 60 seconds in a

minute, so this statement uses the % operator to divide the totalSeconds by 60,

and get the remainder of the division. The result is the number of remaining

seconds.

Lines 20 through 22 display the number of minutes and seconds.

Checkpoint

 www.myprogramminglab.com

2.21 Is the following assignment statement valid or invalid? If it is invalid, why?

72 = amount;

2.22 How would you consolidate the following de nitions into one statement?

int x = 7;

int y = 16;

int z = 28;

 10 // Variables for the minutes and seconds

 11 int minutes, seconds;

 12

 13 // Get the number of minutes.

 14 minutes = totalSeconds / 60;

 15

 16 // Get the remaining seconds.

 17 seconds = totalSeconds % 60;

 18

 19 // Display the results.

 20 cout << totalSeconds << " seconds is equivalent to:\n";

 21 cout << "Minutes: " << minutes << endl;

 22 cout << "Seconds: " << seconds << endl;

 23 return 0;

 24 }

Program Output

125 seconds is equivalent to:

Minutes: 2

Seconds: 5

2.14 Arithmetic Operators

M02_GADD6253_07_SE_C02 Page 67 Tuesday, January 4, 2011 7:49 PM

68 Chapter 2 Introduction to C++

2.23 What is wrong with the following program? How would you correct it?

#include <iostream>

using namespace std;

int main()

{

 number = 62.7;

 double number;

 cout << number << endl;

 return 0;

}

2.24 Is the following an example of integer division or oating-point division? What

value will be stored in portion?

portion = 70 / 3;

2.15 Comments

CONCEPT: Comments are notes of explanation that document lines or sections of a

program. Comments are part of the program, but the compiler ignores

them. They are intended for people who may be reading the source code.

It may surprise you that one of the most important parts of a program has absolutely no

impact on the way it runs. In fact, the compiler ignores this part of a program. Of course,

I m speaking of the comments.

As a beginning programmer, you might be resistant to the idea of liberally writing com-

ments in your programs. After all, it can seem more productive to write code that actually

does something! It is crucial, however, that you develop the habit of thoroughly annotat-

ing your code with descriptive comments. It might take extra time now, but it will almost

certainly save time in the future.

Imagine writing a program of medium complexity with about 8,000 to 10,000 lines of

C++ code. Once you have written the code and satisfactorily debugged it, you happily put

it away and move on to the next project. Ten months later you are asked to make a modi-

cation to the program (or worse, track down and x an elusive bug). You open the le

that contains your source code and stare at thousands of statements that now make no

sense at all. If only you had left some notes to yourself explaining the program s code. Of

course it s too late now. All that s left to do is decide what will take less time: guring out

the old program or completely rewriting it!

This scenario might sound extreme, but it s one you don t want to happen to you. Real

world programs are big and complex. Thoroughly documented code will make your life eas-

ier, not to mention the other programmers who may have to read your code in the future.

Single-Line Comments

You have already seen one way to place comments in a C++ program. You simply place

two forward slashes (//) where you want the comment to begin. The compiler ignores

M02_GADD6253_07_SE_C02 Page 68 Tuesday, January 4, 2011 7:49 PM

2.15 Comments 69

everything from that point to the end of the line. Program 2-26 shows that comments may

be placed liberally throughout a program.

In addition to telling who wrote the program and describing the purpose of variables,

comments can also be used to explain complex procedures in your code.

Multi-Line Comments

The second type of comment in C++ is the multi-line comment. Multi-line comments start

with /* (a forward slash followed by an asterisk) and end with */ (an asterisk followed by

a forward slash). Everything between these markers is ignored. Program 2-27 illustrates

how multi-line comments may be used. Notice that a multi-line comment starts in line 1

with the /* symbol, and it ends in line 6 with the */ symbol.

Program 2-26

 1 // PROGRAM: PAYROLL.CPP

 2 // Written by Herbert Dorfmann

 3 // This program calculates company payroll

 4 // Last modification: 8/20/2008

 5 #include <iostream>

 6 using namespace std;

 7

 8 int main()

 9 {

 10 double payRate; // Holds the hourly pay rate

 11 double hours; // Holds the hours worked

 12 int employNumber; // Holds the employee number

(The remainder of this program is left out.)

Program 2-27

 1 /*

 2 PROGRAM: PAYROLL.CPP

 3 Written by Herbert Dorfmann

 4 This program calculates company payroll

 5 Last modification: 8/20/2008

 6 */

 7

 8 #include <iostream>

 9 using namespace std;

 10

 11 int main()

 12 {

 13 double payRate; // Holds the hourly pay rate

 14 double hours; // Holds the hours worked

 15 int employNumber; // Holds the employee number

(The remainder of this program is left out.)

M02_GADD6253_07_SE_C02 Page 69 Tuesday, January 4, 2011 7:49 PM

70 Chapter 2 Introduction to C++

Unlike a comment started with //, a multi-line comment can span several lines. This

makes it more convenient to write large blocks of comments because you do not have to

mark every line. Consequently, the multi-line comment is inconvenient for writing single-

line comments because you must type both a beginning and ending comment symbol.

Remember the following advice when using multi-line comments:

Be careful not to reverse the beginning symbol with the ending symbol.

Be sure not to forget the ending symbol.

Both of these mistakes can be dif cult to track down, and will prevent the program from

compiling correctly.

2.16 Named Constants

CONCEPT: Literals may be given names that symbolically represent them in a

program.

Assume the following statement appears in a banking program that calculates data per-

taining to loans:

amount = balance * 0.069;

In such a program, two potential problems arise. First, it is not clear to anyone other than

the original programmer what 0.069 is. It appears to be an interest rate, but in some situ-

ations there are fees associated with loan payments. How can the purpose of this state-

ment be determined without painstakingly checking the rest of the program?

The second problem occurs if this number is used in other calculations throughout the

program and must be changed periodically. Assuming the number is an interest rate, what

if the rate changes from 6.9 percent to 7.2 percent? The programmer will have to search

through the source code for every occurrence of the number.

Both of these problems can be addressed by using named constants. A named constant is

like a variable, but its content is read-only, and cannot be changed while the program is

running. Here is a de nition of a named constant:

const double INTEREST_RATE = 0.069;

It looks just like a regular variable de nition except that the word const appears before

the data type name, and the name of the variable is written in all uppercase characters.

The key word const is a quali er that tells the compiler to make the variable read-only.

Its value will remain constant throughout the program s execution. It is not required that

the variable name be written in all uppercase characters, but many programmers prefer to

write them this way so they are easily distinguishable from regular variable names.

NOTE: Many programmers use a combination of single-line comments and multi-line

comments in their programs. Convenience usually dictates which style to use.

M02_GADD6253_07_SE_C02 Page 70 Tuesday, January 4, 2011 7:49 PM

2.16 Named Constants 71

An initialization value must be given when de ning a constant with the const quali er, or

an error will result when the program is compiled. A compiler error will also result if there

are any statements in the program that attempt to change the value of a named constant.

An advantage of using named constants is that they make programs more self-documenting.

The following statement

amount = balance * 0.069;

can be changed to read

amount = balance * INTEREST_RATE;

A new programmer can read the second statement and know what is happening. It is evi-

dent that balance is being multiplied by the interest rate. Another advantage to this

approach is that widespread changes can easily be made to the program. Let s say the

interest rate appears in a dozen different statements throughout the program. When the

rate changes, the initialization value in the de nition of the named constant is the only

value that needs to be modi ed. If the rate increases to 7.2%, the de nition is changed to

the following:

const double INTEREST_RATE = 0.072;

The program is then ready to be recompiled. Every statement that uses INTEREST_RATE

will then use the new value.

Named constants can also help prevent typographical errors in a program s code. For

example, suppose you use the number 3.14159 as the value of pi in a program that per-

forms various geometric calculations. Each time you type the number 3.14159 in the

program s code, there is a chance that you will make a mistake with one or more of the

digits. As a result, the program will not produce the correct results. To help prevent a mis-

take such as this, you can de ne a named constant for pi, initialized with the correct value,

and then use that constant in all of the formulas that require its value. Program 2-28

shows an example. It calculates the circumference of a circle that has a diameter of 10.

Program 2-28

 1 // This program calculates the circumference of a circle.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 // Constants

 8 const double PI = 3.14159;

 9 const double DIAMETER = 10.0;

 10

 11 // Variable to hold the circumference

 12 double circumference;

 13

 14 // Calculate the circumference.

 15 circumference = PI * DIAMETER;

 16

(program continues)

M02_GADD6253_07_SE_C02 Page 71 Tuesday, January 4, 2011 7:49 PM

72 Chapter 2 Introduction to C++

Let s take a closer look at the program. Line 8 de nes a constant double named PI, ini-

tialized with the value 3.14159. This constant will be used for the value of pi in the pro-

gram s calculation. Line 9 de nes a constant double named DIAMETER, initialized with the

value 10. This will be used for the circle s diameter. Line 12 de nes a double variable

named circumference, which will be used to hold the circle s circumference. Line 15 cal-

culates the circle s circumference by multiplying PI by DIAMETER. The result of the calcula-

tion is assigned to the circumference variable. Line 18 displays the circle s circumference.

Checkpoint

 www.myprogramminglab.com

2.25 Write statements using the const quali er to create named constants for the fol-

lowing literal values:

Literal Value Description

2.71828 Euler s number (known in mathematics as e)

5.256E5 Number of minutes in a year

32.2 The gravitational acceleration constant (in feet per second2)

9.8 The gravitational acceleration constant (in meters per second2)

1609 Number of meters in a mile

2.17 Programming Style

CONCEPT: Programming style refers to the way a programmer uses identi ers,

spaces, tabs, blank lines, and punctuation characters to visually arrange a

program s source code. These are some, but not all, of the elements of

programming style.

In Chapter 1 you learned that syntax rules govern the way a language may be used. The

syntax rules of C++ dictate how and where to place key words, semicolons, commas,

braces, and other components of the language. The compiler s job is to check for syntax

errors and, if there are none, generate object code.

When the compiler reads a program it processes it as one long stream of characters. The

compiler doesn t care that each statement is on a separate line, or that spaces separate

operators from operands. Humans, on the other hand, nd it dif cult to read programs

that aren t written in a visually pleasing manner. Consider Program 2-29 for example.

 17 // Display the circumference.

 18 cout << "The circumference is: " << circumference << endl;

 19 return 0;

 20 }

Program Output

The circumference is: 31.4159

Program 2-28 (continued)

M02_GADD6253_07_SE_C02 Page 72 Tuesday, January 4, 2011 7:49 PM

2.17 Programming Style 73

Although the program is syntactically correct (it doesn t violate any rules of C++), it is

very dif cult to read. The same program is shown in Program 2-30, written in a more rea-

sonable style.

Programming style refers to the way source code is visually arranged. Ideally, it is a consis-

tent method of putting spaces and indentions in a program so visual cues are created.

These cues quickly tell a programmer important information about a program.

For example, notice in Program 2-30 that inside the function main s braces each line is

indented. It is a common C++ style to indent all the lines inside a set of braces. You will

also notice the blank line between the variable de nitions and the cout statements. This is

intended to visually separate the de nitions from the executable statements.

Another aspect of programming style is how to handle statements that are too long to t

on one line. Because C++ is a free- owing language, it is usually possible to spread a state-

ment over several lines. For example, here is a cout statement that uses ve lines:

Program 2-29

 1 #include <iostream>

 2 using namespace std;int main(){double shares=220.0;

 3 double avgPrice=14.67;cout<<"There were "<<shares

 4 <<" shares sold at $"<<avgPrice<<" per share.\n";

 5 return 0;}

Program Output

There were 220 shares sold at $14.67 per share.

Program 2-30

 1 // This example is much more readable than Program 2-29.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 double shares = 220.0;

 8 double avgPrice = 14.67;

 9

 10 cout << "There were " << shares << " shares sold at $";

 11 cout << avgPrice << " per share.\n";

 12 return 0;

 13 }

Program Output

There were 220 shares sold at $14.67 per share.

NOTE: Although you are free to develop your own style, you should adhere to common

programming practices. By doing so, you will write programs that visually make sense to

other programmers.

M02_GADD6253_07_SE_C02 Page 73 Tuesday, January 4, 2011 7:49 PM

74 Chapter 2 Introduction to C++

cout << "The Fahrenheit temperature is "

 << fahrenheit

 << " and the Celsius temperature is "

 << celsius

 << endl;

This statement will work just as if it were typed on one line. Here is an example of vari-

able de nitions treated similarly:

int fahrenheit,

 celsius,

 kelvin;

There are many other issues related to programming style. They will be presented

throughout the book.

2.18
If You Plan to Continue in Computer Science:
Standard and Prestandard C++

CONCEPT: C++ programs written before the language became standardized may

appear slightly different from programs written today.

C++ is a standardized programming language, but it hasn t always been. The language has

evolved over the years and, as a result, there is a newer style and an older style of

writing C++ code. The newer style is the way programs are written with standard C++,

while the older style is the way programs were typically written using prestandard C++.

Although the differences between the older and newer styles are subtle, it is important that

you recognize them. When you go to work as a computer science professional, it is likely

that you will see programs written in the older style. It is also possible that your work-

place s programming tools only support the older conventions, and you may need to write

programs using the older style.

Older Style Header Files

In older style C++, all header les end with the .h extension. For example, in a pre-

standard C++ program the statement that includes the iostream.h header le is written as:

#include <iostream.h>

Absence of using namespace std;

Another difference between the newer and older styles is that older style programs typi-

cally do not use the using namespace std; statement. In fact, some older compilers do

not support namespaces at all, and will produce an error message if a program has that

statement.

M02_GADD6253_07_SE_C02 Page 74 Tuesday, January 4, 2011 7:49 PM

2.18 If You Plan to Continue in Computer Science: Standard and Prestandard C++ 75

Using #define Directives Instead of const De nitions

The older C-style method of creating named constants is with the #define preprocessor

directive. Although it is preferable to use the const modi er, there are programs with the

#define directive still in use. In addition, Chapter 13 teaches other uses of the #define

directive, so it is important to understand.

Let s look at an example. Program 2-31 is a modi ed version of Program 2-27. Instead

of using const de nitions, this program uses #define directives to create the PI and

DIAMETER named constants.

Remember, the preprocessor scans your program before it is compiled. It looks for direc-

tives, which are lines that begin with the # symbol. Preprocessor directives cause your

source code to be modi ed prior to being compiled. The #define directives in lines 5 and

6 read:

#define PI 3.14159

#define DIAMETER 10.0

These two directives create the named constants PI and DIAMETER, and specify their val-

ues. Anytime PI is used in the program, it will be replaced by the value 3.14159. Likewise,

any time DIAMETER is used in the program, it will be replaced by the value 10.0. So, Line

14, which reads

circumference = PI * DIAMETER;

will be modi ed by the preprocessor to read

circumference = 3.14159 * 10.0;

Program 2-31

 1 // This program calculates the circumference of a circle.

 2 #include <iostream>

 3 using namespace std;

 4

 5 #define PI 3.14159

 6 #define DIAMETER 10.0

 7

 8 int main()

 9 {

 10 // Variable to hold the circumference

 11 double circumference;

 12

 13 // Calculate the circumference.

 14 circumference = PI * DIAMETER;

 15

 16 // Display the circumference.

 17 cout << "The circumference is: " << circumference << endl;

 18 return 0;

 19 }

Program Output

The circumference is: 31.4159

M02_GADD6253_07_SE_C02 Page 75 Tuesday, January 4, 2011 7:49 PM

76 Chapter 2 Introduction to C++

It is important to realize the difference between const de nitions and constants created

with the #define directive. Constants that are created with the const key word exist in

memory just like variables. They have a data type and a speci c storage location in mem-

ory. They are like regular variables in every way except that you cannot change their value

while the program is running. Constants created with the #define directive, however, are

not variables at all, but text substitutions. Each occurrence of the named constant in your

source code is removed and the value of the constant is written in its place.

Be careful not to put a semicolon at the end of a #define directive. The semicolon will

actually become part of the constant s value. For example, if the #define directives in

lines 5 and 6 of Program 2-31 had been written like this:

#define PI 3.14159; // ERROR!

#define DIAMETER 10.0; // ERROR!

the mathematical statement in line 14

circumference = PI * DIAMETER;

would have been modi ed to read:

circumference = 3.14159; * 10.0;;

Because of the semicolons that were written at the end of the #define directives, the pre-

processor would have created a syntax error in line 14 and the compiler would have given

an error message when trying to process this statement.

Review Questions and Exercises

Short Answer

1. How many operands does each of the following types of operators require?

_______ Unary

_______ Binary

_______ Ternary

2. How may the float variables temp, weight, and age be de ned in one statement?

3. How may the int variables months, days, and years be de ned in one statement,

with months initialized to 2 and years initialized to 3?

4. Write assignment statements that perform the following operations with the variables

a, b, and c.

A) Adds 2 to a and stores the result in b.

B) Multiplies b times 4 and stores the result in a.

C) Divides a by 3.14 and stores the result in b.

D) Subtracts 8 from b and stores the result in a.

E) Stores the value 27 in a.

F) Stores the character K in c.

G) Stores the ASCII code for B in c.

NOTE: #define directives are intended for the preprocessor; C++ statements are intended for

the compiler. The preprocessor does not look for semicolons to terminate directives.

M02_GADD6253_07_SE_C02 Page 76 Tuesday, January 4, 2011 7:49 PM

Review Questions and Exercises 77

5. Is the following comment written using single-line or multi-line comment symbols?

/* This program was written by M. A. Codewriter*/

6. Is the following comment written using single-line or multi-line comment symbols?

// This program was written by M. A. Codewriter

7. Modify the following program so it prints two blank lines between each line of text.

#include <iostream>

using namespace std;

int main()

{

 cout << "Two mandolins like creatures in the";

 cout << "dark";

 cout << "Creating the agony of ecstasy.";

 cout << " - George Barker";

 return 0;

}

8. What will the following programs print on the screen?

A) #include <iostream>

using namespace std;

int main()

{

 int freeze = 32, boil = 212;

 freeze = 0;

 boil = 100;

 cout << freeze << endl << boil << endl;

 return 0;

}

B) #include <iostream>

using namespace std;

int main()

{

 int x = 0, y = 2;

 x = y * 4;

 cout << x << endl << y << endl;

 return 0;

}

C) #include <iostream>

using namespace std;

int main()

{

 cout << "I am the incredible";

 cout << "computing\nmachine";

 cout << "\nand I will\namaze\n";

 cout << "you.";

 return 0;

}

M02_GADD6253_07_SE_C02 Page 77 Tuesday, January 4, 2011 7:49 PM

78 Chapter 2 Introduction to C++

D) #include <iostream>

using namespace std;

int main()

{

 cout << "Be careful\n";

 cout << "This might/n be a trick ";

 cout << "question\n";

 return 0;

}

E) #include <iostream>

using namespace std;

int main()

{

 int a, x = 23;

 a = x % 2;

 cout << x << endl << a << endl;

 return 0;

}

Multiple Choice

9. Every complete statement ends with a

A) period

B) # symbol

C) semicolon

D) ending brace

10. Which of the following statements is correct?

A) #include (iostream)

B) #include {iostream}

C) #include <iostream>

D) #include [iostream]

E) All of the above

11. Every C++ program must have a

A) cout statement.

B) function main.

C) #include statement.

D) All of the above

12. Preprocessor directives begin with a

A) #

B) !

C) <

D) *

E) None of the above

M02_GADD6253_07_SE_C02 Page 78 Tuesday, January 4, 2011 7:49 PM

Review Questions and Exercises 79

13. The following data

72

'A'

"Hello World"

2.8712

are all examples of

A) Variables

B) Literals or constants

C) Strings

D) None of the above

14. A group of statements, such as the contents of a function, is enclosed in

A) Braces {}

B) Parentheses ()

C) Brackets <>

D) All of the above will do

15. Which of the following are not valid assignment statements? (Circle all that apply.)

A) total = 9;

B) 72 = amount;

C) profit = 129

D) letter = 'W';

16. Which of the following are not valid cout statements? (Circle all that apply.)

A) cout << "Hello World";

B) cout << "Have a nice day"\n;

C) cout < value;

D) cout << Programming is great fun;

17. Assume w = 5, x = 4, y = 8, and z = 2. What value will be stored in result in each of

the following statements?

A) result = x + y;

B) result = z * 2;

C) result = y / x;

D) result = y - z;

E) result = w % 2;

18. How would each of the following numbers be represented in E notation?

A) 3.287 * 106

B) -978.65 * 1012

C) 7.65491 * 10-3

D) -58710.23 * 10-4

19. The negation operator is

A) Unary

B) Binary

M02_GADD6253_07_SE_C02 Page 79 Tuesday, January 4, 2011 7:49 PM

80 Chapter 2 Introduction to C++

C) Ternary

D) None of the above

20. A(n) ___________ is like a variable, but its value is read-only and cannot be changed

during the program s execution.

A) secure variable

B) uninitialized variable

C) named constant

D) locked variable

21. When do preprocessor directives execute?

A) Before the compiler compiles your program

B) After the compiler compiles your program

C) At the same time as the compiler compiles your program

D) None of the above

True or False

22. T F A variable must be de ned before it can be used.

23. T F Variable names may begin with a number.

24. T F Variable names may be up to 31 characters long.

25. T F A left brace in a C++ program should always be followed by a right brace

later in the program.

26. T F You cannot initialize a named constant that is declared with the const

modi er.

Algorithm Workbench

27. Convert the following pseudocode to C++ code. Be sure to de ne the appropriate

variables.

Store 20 in the speed variable.

Store 10 in the time variable.

Multiply speed by time and store the result in the distance variable.

Display the contents of the distance variable.

28. Convert the following pseudocode to C++ code. Be sure to de ne the appropriate

variables.

Store 172.5 in the force variable.

Store 27.5 in the area variable.

Divide area by force and store the result in the pressure variable.

Display the contents of the pressure variable.

Find the Error

29. There are a number of syntax errors in the following program. Locate as many as

you can.

/ What's wrong with this program? /

#include iostream

using namespace std;

M02_GADD6253_07_SE_C02 Page 80 Tuesday, January 4, 2011 7:49 PM

Review Questions and Exercises 81

int main();

}

int a, b, c\\ Three integers

a = 3

b = 4

c = a + b

Cout < "The value of c is %d" < C;

return 0;

{

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. Sum of Two Numbers

Write a program that stores the integers 62 and 99 in variables, and stores the sum of
these two in a variable named total.

2. Sales Prediction

The East Coast sales division of a company generates 62 percent of total sales. Based
on that percentage, write a program that will predict how much the East Coast divi-
sion will generate if the company has $4.6 million in sales this year.

3. Sales Tax

Write a program that will compute the total sales tax on a $52 purchase. Assume the
state sales tax is 4 percent and the county sales tax is 2 percent.

4. Restaurant Bill

Write a program that computes the tax and tip on a restaurant bill for a patron with a
$44.50 meal charge. The tax should be 6.75 percent of the meal cost. The tip should
be 15 percent of the total after adding the tax. Display the meal cost, tax amount, tip
amount, and total bill on the screen.

5. Average of Values

To get the average of a series of values, you add the values up and then divide the sum by
the number of values. Write a program that stores the following values in ve different
variables: 28, 32, 37, 24, and 33. The program should rst calculate the sum of these ve
variables and store the result in a separate variable named sum. Then, the program
should divide the sum variable by 5 to get the average. Display the average on the screen.

6. Annual Pay

Suppose an employee gets paid every two weeks and earns $1700.00 each pay period. In a
year the employee gets paid 26 times. Write a program that de nes the following variables:

payAmount This variable will hold the amount of pay the employee earns each pay
period. Initialize the variable with 1700.0.

TIP: Use the double data type for all variables in this program.

VideoNote

Solving the

Restaurant Bill

Problem

Programming Challenges

M02_GADD6253_07_SE_C02 Page 81 Tuesday, January 4, 2011 7:49 PM

82 Chapter 2 Introduction to C++

payPeriods This variable will hold the number of pay periods in a year. Initialize
the variable with 26.

annualPay This variable will hold the employee s total annual pay, which will be
calculated.

The program should calculate the employee s total annual pay by multiplying the
employee s pay amount by the number of pay periods in a year, and store the result in
the annualPay variable. Display the total annual pay on the screen.

7. Ocean Levels

Assuming the ocean s level is currently rising at about 1.5 millimeters per year, write a
program that displays:

* The number of millimeters higher than the current level that the ocean s level will
be in 5 years

* The number of millimeters higher than the current level that the ocean s level will
be in 7 years

* The number of millimeters higher than the current level that the ocean s level will
be in 10 years

8. Total Purchase

A customer in a store is purchasing ve items. The prices of the ve items are:

Price of item 1 = $12.95
Price of item 2 = $24.95
Price of item 3 = $6.95
Price of item 4 = $14.95
Price of item 5 = $3.95

Write a program that holds the prices of the ve items in ve variables. Display each
item s price, the subtotal of the sale, the amount of sales tax, and the total. Assume
the sales tax is 6%.

9. Cyborg Data Type Sizes

You have been given a job as a programmer on a Cyborg supercomputer. In order to
accomplish some calculations, you need to know how many bytes the following data
types use: char, int, float, and double. You do not have any manuals, so you can t
look this information up. Write a C++ program that will determine the amount of
memory used by these types and display the information on the screen.

10. Miles per Gallon

A car holds 12 gallons of gasoline and can travel 350 miles before refueling. Write a
program that calculates the number of miles per gallon the car gets. Display the result
on the screen.

Hint: Use the following formula to calculate miles per gallon (MPG):

MPG = Miles Driven / Gallons of Gas Used

M02_GADD6253_07_SE_C02 Page 82 Tuesday, January 4, 2011 7:49 PM

Review Questions and Exercises 83

11. Distance per Tank of Gas

A car with a 20-gallon gas tank averages 21.5 miles per gallon when driven in town
and 26.8 miles per gallon when driven on the highway. Write a program that calcu-
lates and displays the distance the car can travel on one tank of gas when driven in
town and when driven on the highway.

Hint: The following formula can be used to calculate the distance:

Distance = Number of Gallons * Average Miles per Gallon

12. Land Calculation

One acre of land is equivalent to 43,560 square feet. Write a program that calculates
the number of acres in a tract of land with 389,767 square feet.

13. Circuit Board Price

An electronics company sells circuit boards at a 40 percent pro t. Write a program
that will calculate the selling price of a circuit board that costs $12.67. Display the
result on the screen.

14. Personal Information

Write a program that displays the following pieces of information, each on a separate line:

Your name
Your address, with city, state, and ZIP code
Your telephone number
Your college major

Use only a single cout statement to display all of this information.

15. Triangle Pattern

Write a program that displays the following pattern on the screen:

 *

16. Diamond Pattern

Write a program that displays the following pattern:

*

*

Programming Challenges

M02_GADD6253_07_SE_C02 Page 83 Tuesday, January 4, 2011 7:49 PM

84 Chapter 2 Introduction to C++

17. Stock Commission

Kathryn bought 600 shares of stock at a price of $21.77 per share. She must pay her
stock broker a 2 percent commission for the transaction. Write a program that calcu-
lates and displays the following:

* The amount paid for the stock alone (without the commission)
* The amount of the commission
* The total amount paid (for the stock plus the commission)

18. Energy Drink Consumption

A soft drink company recently surveyed 12,467 of its customers and found that
approximately 14 percent of those surveyed purchase one or more energy drinks per
week. Of those customers who purchase energy drinks, approximately 64 percent of
them prefer citrus avored energy drinks. Write a program that displays the following:

* The approximate number of customers in the survey who purchase one or more
energy drinks per week

* The approximate number of customers in the survey who prefer citrus flavored
energy drinks

M02_GADD6253_07_SE_C02 Page 84 Tuesday, January 4, 2011 7:49 PM

85

3

Expressions
and Interactivity

3.1

The

cin

 Object

CONCEPT:

The

cin

 object can be used to read data typed at the keyboard.

So far you have written programs with built-in data. Without giving the user an opportu-

nity to enter his or her own data, you have initialized the variables with the necessary

starting values. These types of programs are limited to performing their task with only a

single set of starting data. If you decide to change the initial value of any variable, the pro-

gram must be modi ed and recompiled.

In reality, most programs ask for values that will be assigned to variables. This means the

program does not have to be modi ed if the user wants to run it several times with differ-

ent sets of data. For example, a program that calculates payroll for a small business might

ask the user to enter the name of the employee, the hours worked, and the hourly pay rate.

When the paycheck for that employee has been printed, the program could start over

again and ask for the name, hours worked, and hourly pay rate of the next employee.

TOPICS

3.1 The

cin

 Object

3.2 Mathematical Expressions

3.3 When You Mix Apples and

Oranges: Type Conversion

3.4 Over ow and Under ow

3.5 Type Casting

3.6 Multiple Assignment and

Combined Assignment

3.7 Formatting Output

3.8 Working with Characters and

string

 Objects

3.9 More Mathematical Library

Functions

3.10 Focus on Debugging: Hand Tracing

a Program

3.11 Focus on Problem Solving:

A Case Study

VideoNote

C
H

A
P

T
E

R

Reading
Input
with

cin

M03_GADD6253_07_SE_C03 Page 85 Tuesday, January 4, 2011 8:29 PM

86

Chapter 3 Expressions and Interactivity

Just as

cout

 is C++ s standard output object,

cin

 is the standard input object. It reads

input from the console (or keyboard) as shown in Program 3-1.

Instead of calculating the area of one rectangle, this program can be used to get the area of

any rectangle. The values that are stored in the

length

 and

width

 variables are entered by

the user when the program is running. Look at lines 13 and 14:

cout << "What is the length of the rectangle? ";

cin >> length;

In line 13, the

cout

 object is used to display the question What is the length of the rect-

angle? This question is known as a

prompt

, and it tells the user what data he or she

should enter. Your program should always display a prompt before it uses

cin

 to read

input. This way, the user will know that he or she must type a value at the keyboard.

Line 14 uses the

cin

 object to read a value from the keyboard. The

>>

 symbol is the

stream extraction operator

. It gets characters from the stream object on its left and stores

them in the variable whose name appears on its right. In this line, characters are taken

from the

cin

 object (which gets them from the keyboard) and are stored in the

length

variable.

Gathering input from the user is normally a two-step process:

1. Use the

cout

 object to display a prompt on the screen.

2. Use the

cin

 object to read a value from the keyboard.

Program 3-1

 1 // This program asks the user to enter the length and width of

 2 // a rectangle. It calculates the rectangle's area and displays

 3 // the value on the screen.

 4 #include <iostream>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int length, width, area;

 10

 11 cout << "This program calculates the area of a ";

 12 cout << "rectangle.\n";

 13 cout << "What is the length of the rectangle? ";

 14 cin >> length;

 15 cout << "What is the width of the rectangle? ";

 16 cin >> width;

 17 area = length * width;

 18 cout << "The area of the rectangle is " << area << ".\n";

 19 return 0;

 20 }

Program Output with Example Input Shown in Bold

This program calculates the area of a rectangle.

What is the length of the rectangle?

10 [Enter]

What is the width of the rectangle?

20 [Enter]

The area of the rectangle is 200.

M03_GADD6253_07_SE_C03 Page 86 Tuesday, January 4, 2011 8:29 PM

3.1 The

cin

 Object

87

The prompt should ask the user a question, or tell the user to enter a speci c value. For

example, the code we just examined from Program 3-1 displays the following prompt:

What is the length of the rectangle?

When the user sees this prompt, he or she knows to enter the rectangle s length. After the

prompt is displayed, the program uses the

cin

 object to read a value from the keyboard

and store the value in the

length

 variable.

Notice that the

<<

 and

>>

 operators appear to point in the direction that data is owing.

In a statement that uses the

cout

 object, the

<<

 operator always points toward

cout

. This

indicates that data is owing from a variable or a literal to the

cout

 object. In a statement

that uses the

cin

 object, the

>>

 operator always points toward the variable that is receiv-

ing the value. This indicates that data is owing from

cin

 to a variable. This is illustrated

in Figure 3-1.

The

cin

 object causes a program to wait until data is typed at the keyboard and the

[Enter]

 key is pressed. No other lines in the program will be executed until

cin

 gets its

input.

cin

 automatically converts the data read from the keyboard to the data type of the vari-

able used to store it. If the user types 10, it is read as the characters 1 and 0 .

cin

 is

smart enough to know this will have to be converted to an

int

 value before it is stored in

the

length

 variable.

cin

 is also smart enough to know a value like 10.7 cannot be stored

in an integer variable. If the user enters a oating-point value for an integer variable,

cin

will not read the part of the number after the decimal point.

Entering Multiple Values

The

cin

 object may be used to gather multiple values at once. Look at Program 3-2,

which is a modi ed version of Program 3-1.

Line 15 waits for the user to enter two values. The rst is assigned to

length

 and the sec-

ond to

width

.

cin >> length >> width;

Figure 3-1

NOTE:

You must include the

iostream

 le in any program that uses

cin

.

Think of the << and >> operators as arrows that point in

the direction that data is flowing.

cin >> length;

cout << "What is the length of the rectangle? ";

cin length;

cout "What is the length of the rectangle? ";

M03_GADD6253_07_SE_C03 Page 87 Tuesday, January 4, 2011 8:29 PM

88

Chapter 3 Expressions and Interactivity

In the example output, the user entered 10 and 20, so 10 is stored in

length

 and 20 is

stored in

width

.

Notice the user separates the numbers by spaces as they are entered. This is how

cin

knows where each number begins and ends. It doesn t matter how many spaces are

entered between the individual numbers. For example, the user could have entered

10 20

cin

 will also read multiple values of different data types. This is shown in Program 3-3.

Program 3-2

 1 // This program asks the user to enter the length and width of

 2 // a rectangle. It calculates the rectangle's area and displays

 3 // the value on the screen.

 4 #include <iostream>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int length, width, area;

 10

 11 cout << "This program calculates the area of a ";

 12 cout << "rectangle.\n";

 13 cout << "Enter the length and width of the rectangle ";

 14 cout << "separated by a space.\n";

 15 cin >> length >> width;

 16 area = length * width;

 17 cout << "The area of the rectangle is " << area << endl;

 18 return 0;

 19 }

Program Output with Example Input Shown in Bold

This program calculates the area of a rectangle.

Enter the length and width of the rectangle separated by a space.

10 20 [Enter]

The area of the rectangle is 200

NOTE:

The

[Enter]

 key is pressed after the last number is entered.

Program 3-3

 1 // This program demonstrates how cin can read multiple values

 2 // of different data types.

 3 #include <iostream>

 4 using namespace std;

 5

M03_GADD6253_07_SE_C03 Page 88 Tuesday, January 4, 2011 8:29 PM

3.1 The

cin

 Object

89

As you can see in the example output, the values are stored in their respective variables.

But what if the user had responded in the following way?

Enter an integer, a double, and a character:

5.7 4 b [Enter]

When the user types values at the keyboard, those values are rst stored in an area of

memory known as the

keyboard buffer

. So, when the user enters the values 5.7, 4, and b,

they are stored in the keyboard buffer as shown in Figure 3-2.

When the user presses the Enter key,

cin

 reads the value 5 into the variable

whole

. It does

not read the decimal point because

whole

 is an integer variable. Next it reads .7 and stores

that value in the double variable fractional. The space is skipped and 4 is the next

value read. It is stored as a character in the variable letter. Because this cin statement

reads only three values, the b is left in the keyboard buffer. So, in this situation the pro-

gram would have stored 5 in whole, 0.7 in fractional, and the character 4 in letter.

It is important that the user enters values in the correct order.

Checkpoint

 www.myprogramminglab.com

3.1 What header le must be included in programs using cin?

3.2 TRUE or FALSE: cin requires the user to press the [Enter] key when nished

entering data.

 6 int main()

 7 {

 8 int whole;

 9 double fractional;

 10 char letter;

 11

 12 cout << "Enter an integer, a double, and a character: ";

 13 cin >> whole >> fractional >> letter;

 14 cout << "Whole: " << whole << endl;

 15 cout << "Fractional: " << fractional << endl;

 16 cout << "Letter: " << letter << endl;

 17 return 0;

 18 }

Program Output with Example Input Shown in Bold

Enter an integer, a double, and a character: 4 5.7 b [Enter]
Whole: 4

Fractional: 5.7

Letter: b

Figure 3-2

5 . 7 4 b [Enter]

cin begins

reading here.

Keyboard buffer

M03_GADD6253_07_SE_C03 Page 89 Tuesday, January 4, 2011 8:29 PM

90 Chapter 3 Expressions and Interactivity

3.3 Assume value is an integer variable. If the user enters 3.14 in response to the fol-

lowing programming statement, what will be stored in value?

cin >> value;

A) 3.14

B) 3

C) 0

D) Nothing. An error message is displayed.

3.4 A program has the following variable de nitions.

long miles;

int feet;

float inches;

Write one cin statement that reads a value into each of these variables.

3.5 The following program will run, but the user will have dif culty understanding

what to do. How would you improve the program?

// This program multiplies two numbers and displays the result.

#include <iostream>

using namespace std;

int main()

{

 double first, second, product;

 cin >> first >> second;

 product = first * second;

 cout << product;

 return 0;

}

3.6 Complete the following program skeleton so it asks for the user s weight (in

pounds) and displays the equivalent weight in kilograms.

#include <iostream>

using namespace std;

int main()

{

 double pounds, kilograms;

 // Write code here that prompts the user

 // to enter his or her weight and reads

 // the input into the pounds variable.

 // The following line does the conversion.

 kilograms = pounds / 2.2;

 // Write code here that displays the user's weight

 // in kilograms.

 return 0;

}

M03_GADD6253_07_SE_C03 Page 90 Tuesday, January 4, 2011 8:29 PM

3.2 Mathematical Expressions 91

3.2 Mathematical Expressions

CONCEPT: C++ allows you to construct complex mathematical expressions using

multiple operators and grouping symbols.

In Chapter 2 you were introduced to the basic mathematical operators, which are used to

build mathematical expressions. An expression is a programming statement that has a

value. Usually, an expression consists of an operator and its operands. Look at the follow-

ing statement:

sum = 21 + 3;

Since 21 + 3 has a value, it is an expression. Its value, 24, is stored in the variable sum.

Expressions do not have to be in the form of mathematical operations. In the following

statement, 3 is an expression.

number = 3;

Here are some programming statements where the variable result is being assigned the

value of an expression:

result = x;

result = 4;

result = 15 / 3;

result = 22 * number;

result = sizeof(int);

result = a + b + c;

In each of these statements, a number, variable name, or mathematical expression appears

on the right side of the = symbol. A value is obtained from each of these and stored in the

variable result. These are all examples of a variable being assigned the value of an

expression.

Program 3-4 shows how mathematical expressions can be used with the cout object.

Program 3-4

 1 // This program asks the user to enter the numerator

 2 // and denominator of a fraction and it displays the

 3 // decimal value.

 4

 5 #include <iostream>

 6 using namespace std;

 7

 8 int main()

 9 {

 10 double numerator, denominator;

 11

(program continues)

M03_GADD6253_07_SE_C03 Page 91 Tuesday, January 4, 2011 8:29 PM

92 Chapter 3 Expressions and Interactivity

The cout object will display the value of any legal expression in C++. In Program 3-4, the

value of the expression numerator / denominator is displayed.

Operator Precedence

It is possible to build mathematical expressions with several operators. The following

statement assigns the sum of 17, x, 21, and y to the variable answer.

answer = 17 + x + 21 + y;

Some expressions are not that straightforward, however. Consider the following statement:

outcome = 12 + 6 / 3;

What value will be stored in outcome? 6 is used as an operand for both the addition and

division operators. outcome could be assigned either 6 or 14, depending on whether the

addition operation or the division operation takes place rst. The answer is 14 because the

division operator has higher precedence than the addition operator.

Mathematical expressions are evaluated from left to right. When two operators share an

operand, the operator with the highest precedence works rst. Multiplication and division

have higher precedence than addition and subtraction, so the statement above works like

this:

A) 6 is divided by 3, yielding a result of 2

B) 12 is added to 2, yielding a result of 14

 12 cout << "This program shows the decimal value of ";

 13 cout << "a fraction.\n";

 14 cout << "Enter the numerator: ";

 15 cin >> numerator;

 16 cout << "Enter the denominator: ";

 17 cin >> denominator;

 18 cout << "The decimal value is ";

 19 cout << (numerator / denominator) << endl;

 20 return 0;

 21 }

Program Output with Example Input Shown in Bold
This program shows the decimal value of a fraction.

Enter the numerator: 3 [Enter]
Enter the denominator: 16 [Enter]
The decimal value is 0.1875

NOTE: The example input for Program 3-4 shows the user entering 3 and 16. Since

these values are assigned to double variables, they are stored as the double values 3.0

and 16.0.

NOTE: When sending an expression that consists of an operator to cout, it is always a

good idea to put parentheses around the expression. Some advanced operators will yield

unexpected results otherwise.

Program 3-4 (continued)

M03_GADD6253_07_SE_C03 Page 92 Tuesday, January 4, 2011 8:29 PM

3.2 Mathematical Expressions 93

It could be diagrammed in the following way:

outcome = 12 + 6 / 3

 \ /

outcome = 12 + 2

outcome = 14

Table 3-1 shows the precedence of the arithmetic operators. The operators at the top of

the table have higher precedence than the ones below them.

The multiplication, division, and modulus operators have the same precedence. This is

also true of the addition and subtraction operators. Table 3-2 shows some expressions

with their values.

Associativity

An operator's associativity is either left to right, or right to left. If two operators sharing

an operand have the same precedence, they work according to their associativity. Table 3-3

lists the associativity of the arithmetic operators. As an example, look at the following

expression:

5 3 + 2

Both the and + operators in this expression have the same precedence, and they have left

to right associativity. So, the operators will work from left to right. This expression is the

same as:

((5 3) + 2)

Here is another example:

12 / 6 * 4

Because the / and * operators have the same precedence, and they have left to right asso-

ciativity, they will work from left to right. This expression is the same as:

((12 / 6) * 4)

Table 3-1 Precedence of Arithmetic Operators (Highest to Lowest)

(unary negation) -

* / %

+ -

Table 3-2 Some Simple Expressions and Their Values

Expression Value

5 + 2 * 4 13

10 / 2 - 3 2

8 + 12 * 2 - 4 28

4 + 17 % 2 - 1 4

6 - 3 * 2 + 7 - 1 6

M03_GADD6253_07_SE_C03 Page 93 Tuesday, January 4, 2011 8:29 PM

94 Chapter 3 Expressions and Interactivity

Grouping with Parentheses

Parts of a mathematical expression may be grouped with parentheses to force some opera-

tions to be performed before others. In the following statement, the sum of a + b is divided

by 4.

result = (a + b) / 4;

Without the parentheses, however, b would be divided by 4 and the result added to a.

Table 3-4 shows more expressions and their values.

Converting Algebraic Expressions
to Programming Statements

In algebra it is not always necessary to use an operator for multiplication. C++, however,

requires an operator for any mathematical operation. Table 3-5 shows some algebraic

expressions that perform multiplication and the equivalent C++ expressions.

When converting some algebraic expressions to C++, you may have to insert parentheses that

do not appear in the algebraic expression. For example, look at the following expression:

To convert this to a C++ statement, a + b will have to be enclosed in parentheses:

x = (a + b) / c;

Table 3-6 shows more algebraic expressions and their C++ equivalents.

Table 3-3 Associativity of Arithmetic Operators

Operator Associativity

(unary negation) - Right to left

* / % Left to right

+ - Left to right

Table 3-4 More Simple Expressions and Their Values

Expression Value

(5 + 2) * 4 28

10 / (5 - 3) 5

8 + 12 * (6 - 2) 56

(4 + 17) % 2 - 1 0

(6 - 3) * (2 + 7) / 3 9

Table 3-5 Algebraic and C++ Multiplication Expressions

Algebraic Expression Operation C++ Equivalent

6B 6 times B 6 * B

(3)(12) 3 times 12 3 * 12

4xy 4 times x times y 4 * x * y

x
a b+

c
------------=

M03_GADD6253_07_SE_C03 Page 94 Tuesday, January 4, 2011 8:29 PM

3.2 Mathematical Expressions 95

No Exponents Please!

Unlike many programming languages, C++ does not have an exponent operator. Raising a

number to a power requires the use of a library function. The C++ library isn t a place where

you check out books, but a collection of specialized functions. Think of a library function as

a routine that performs a speci c operation. One of the library functions is called pow,

and its purpose is to raise a number to a power. Here is an example of how it s used:

area = pow(4.0, 2.0);

This statement contains a call to the pow function. The numbers inside the parentheses are

arguments. Arguments are data being sent to the function. The pow function always raises

the rst argument to the power of the second argument. In this example, 4 is raised to the

power of 2. The result is returned from the function and used in the statement where the

function call appears. In this case, the value 16 is returned from pow and assigned to the vari-

able area. This is illustrated in Figure 3-3.

The statement area = pow(4.0, 2.0) is equivalent to the following algebraic statement:

area = 42

Here is another example of a statement using the pow function. It assigns 3 times 63 to x:

x = 3 * pow(6.0, 3.0);

And the following statement displays the value of 5 raised to the power of 4:

cout << pow(5.0, 4.0);

It might be helpful to think of pow as a black box that you plug two numbers into, and

that then sends a third number out. The number that comes out has the value of the rst

number raised to the power of the second number, as illustrated in Figure 3-4:

Table 3-6 Algebraic and C++ Expressions

Algebraic Expression C++ Expression

y = x / 2 * 3;

z = 3 * b * c + 4;

a = (3 * x + 2) / (4 * a * 1)

Figure 3-3

y 3
x
2
---=

z 3bc 4+=

a
3x 2+

4a 1
----------------=

area = pow(4.0, 2.0) ;

 16.0

arguments

return value

M03_GADD6253_07_SE_C03 Page 95 Tuesday, January 4, 2011 8:29 PM

96 Chapter 3 Expressions and Interactivity

There are some guidelines that should be followed when the pow function is used. First,

the program must include the cmath header le. Second, the arguments that you pass to

the pow function should be doubles. Third, the variable used to store pow s return value

should be de ned as a double. For example, in the following statement the variable area

should be a double:

area = pow(4.0, 2.0);

Program 3-5 solves a simple algebraic problem. It asks the user to enter the radius of a circle

and then calculates the area of the circle. The formula is

which is expressed in the program as

area = PI * pow(radius, 2.0);

Figure 3-4

Program 3-5

 1 // This program calculates the area of a circle.

 2 // The formula for the area of a circle is Pi times

 3 // the radius squared. Pi is 3.14159.

 4 #include <iostream>

 5 #include <cmath> // needed for pow function

 6 using namespace std;

 7

 8 int main()

 9 {

 10 const double PI = 3.14159;

 11 double area, radius;

 12

 13 cout << "This program calculates the area of a circle.\n";

 14 cout << "What is the radius of the circle? ";

 15 cin >> radius;

 16 area = PI * pow(radius, 2.0);

 17 cout << "The area is " << area << endl;

 18 return 0;

 19 }

Program Output with Example Input Shown in Bold

This program calculates the area of a circle.

What is the radius of the circle? 10 [Enter]
The area is 314.159

pow function

Argument 1 x

Argument 2 y

x
y

Area *r
2

=

M03_GADD6253_07_SE_C03 Page 96 Tuesday, January 4, 2011 8:29 PM

3.2 Mathematical Expressions 97

In the Spotlight:

Calculating an Average

Determining the average of a group of values is a simple calculation: You add all of the

values and then divide the sum by the number of values. Although this is a straightfor-

ward calculation, it is easy to make a mistake when writing a program that calculates an

average. For example, let s assume that a, b, and c are double variables. Each of the vari-

ables holds a value and we want to calculate the average of those values. If we are careless,

we might write a statement such as the following to perform the calculation:

average = a + b + c / 3.0;

Can you see the error in this statement? When it executes, the division will take place rst.

The value in c will be divided by 3.0, and then the result will be added to the sum of a + b.

That is not the correct way to calculate an average. To correct this error we need to put

parentheses around a + b + c, as shown here:

average = (a + b + c) / 3.0;

Let s step through the process of writing a program that calculates an average. Suppose

you have taken three tests in your computer science class, and you want to write a pro-

gram that will display the average of the test scores. Here is the algorithm in pseudocode:

Get the rst test score.

Get the second test score.

Get the third test score.

Calculate the average by adding the three test scores and dividing the sum by 3.

Display the average.

In the rst three steps we prompt the user to enter three test scores. Let s say we store

those test scores in the double variables test1, test2, and test3. Then in the fourth

step we calculate the average of the three test scores. We will use the following statement

to perform the calculation and store the result in the average variable, which is a double:

average = (test1 + test2 + test3) / 3.0;

The last step is to display the average. Program 3-6 shows the program.

NOTE: Program 3-5 is presented as a demonstration of the pow function. In reality,

there is no reason to use the pow function in such a simple operation. The math statement

could just as easily be written as

 area = PI * radius * radius;

The pow function is useful, however, in operations that involve larger exponents.

M03_GADD6253_07_SE_C03 Page 97 Tuesday, January 4, 2011 8:29 PM

98 Chapter 3 Expressions and Interactivity

Checkpoint

 www.myprogramminglab.com

3.7 Complete the table below by writing the value of each expression in the Value

column.

Program 3-6

 1 // This program calculates the average

 2 // of three test scores.

 3 #include <iostream>

 4 #include <cmath>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 double test1, test2, test3; // To hold the scores

 10 double average; // To hold the average

 11

 12 // Get the three test scores.

 13 cout << "Enter the first test score: ";

 14 cin >> test1;

 15 cout << "Enter the second test score: ";

 16 cin >> test2;

 17 cout << "Enter the third test score: ";

 18 cin >> test3;

 19

 20 // Calculate the average of the scores.

 21 average = (test1 + test2 + test3) / 3.0;

 22

 23 // Display the average.

 24 cout << "The average score is: " << average << endl;

 25 return 0;

 26 }

Program Output with Example Input Shown in Bold

Enter the first test score: 90 [Enter]
Enter the second test score: 80 [Enter]
Enter the third test score: 100 [Enter]
The average score is 90

Expression Value

6 + 3 * 5

12 / 2 - 4

9 + 14 * 2 - 6

5 + 19 % 3 - 1

(6 + 2) * 3

14 / (11 - 4)

9 + 12 * (8 - 3)

(6 + 17) % 2 - 1

(9 - 3) * (6 + 9) / 3

M03_GADD6253_07_SE_C03 Page 98 Tuesday, January 4, 2011 8:29 PM

3.2 Mathematical Expressions 99

3.8 Write C++ expressions for the following algebraic expressions:

3.9 Study the following program and complete the table.

#include <iostream>

#include <cmath>

using namespace std;

int main()

{

 double value1, value2, value3;

 cout << "Enter a number: ";

 cin >> value1;

 value2 = 2 * pow(value1, 2.0);

 value3 = 3 + value2 / 2 - 1;

 cout << value3 << endl;

 return 0;

}

3.10 Complete the following program skeleton so it displays the volume of a cylindrical

fuel tank. The formula for the volume of a cylinder is

Volume = r
2
h

where

 is 3.14159

r is the radius of the tank

h is the height of the tank

#include <iostream>

#include <cmath>

using namespace std;

If the User Enters
The Program Will Display What Number
(Stored in value3)?

2

5

4.3

6

y 6x=

a 2b 4c+=

y x
2

=

g
x 2+

z
2

-------------=

y
x

2

z
2

-----=

M03_GADD6253_07_SE_C03 Page 99 Tuesday, January 4, 2011 8:29 PM

100 Chapter 3 Expressions and Interactivity

int main()

{

 double volume, radius, height;

 cout << "This program will tell you the volume of\n";

 cout << "a cylinder-shaped fuel tank.\n";

 cout << "How tall is the tank? ";

 cin >> height;

 cout << "What is the radius of the tank? ";

 cin >> radius;

 // You must complete the program.

}

3.3 When You Mix Apples and Oranges: Type Conversion

CONCEPT: When an operator s operands are of different data types, C++ will

automatically convert them to the same data type. This can affect the

results of mathematical expressions.

If an int is multiplied by a float, what data type will the result be? What if a double is

divided by an unsigned int? Is there any way of predicting what will happen in these

instances? The answer is yes. C++ follows a set of rules when performing mathematical

operations on variables of different data types. It s helpful to understand these rules to

prevent subtle errors from creeping into your programs.

Just like of cers in the military, data types are ranked. One data type outranks another if

it can hold a larger number. For example, a float outranks an int. Table 3-7 lists the

data types in order of their rank, from highest to lowest.

One exception to the ranking in Table 3-7 is when an int and a long are the same size. In

that case, an unsigned int outranks long because it can hold a higher value.

When C++ is working with an operator, it strives to convert the operands to the same

type. This automatic conversion is known as type coercion. When a value is converted to

a higher data type, it is said to be promoted. To demote a value means to convert it to a

lower data type. Let s look at the speci c rules that govern the evaluation of mathematical

expressions.

Rule 1: chars, shorts, and unsigned shorts are automatically promoted to int.

Table 3-7 Data Type Ranking

long double

double

float

unsigned long

long

unsigned int

int

M03_GADD6253_07_SE_C03 Page 100 Tuesday, January 4, 2011 8:29 PM

3.3 When You Mix Apples and Oranges: Type Conversion 101

You will notice that char, short, and unsigned short do not appear in Table 3-7. That s

because anytime they are used in a mathematical expression, they are automatically pro-

moted to an int. The only exception to this rule is when an unsigned short holds a

value larger than can be held by an int. This can happen on systems where shorts are the

same size as ints. In this case, the unsigned short is promoted to unsigned int.

Rule 2: When an operator works with two values of different data types, the lower-

ranking value is promoted to the type of the higher-ranking value.

In the following expression, assume that years is an int and interestRate is a float:

years * interestRate

Before the multiplication takes place, years will be promoted to a float.

Rule 3: When the nal value of an expression is assigned to a variable, it will be converted

to the data type of that variable.

In the following statement, assume that area is a long int, while length and width are

both ints:

area = length * width;

Since length and width are both ints, they will not be converted to any other data type. The

result of the multiplication, however, will be converted to long so it can be stored in area.

Watch out for situations where an expression results in a fractional value being assigned

to an integer variable. Here is an example:

int x, y = 4;

float z = 2.7;

x = y * z;

In the expression y * z, y will be promoted to float and 10.8 will result from the multi-

plication. Since x is an integer, however, 10.8 will be truncated and 10 will be stored in x.

Integer Division

When you divide an integer by another integer in C++, the result is always an integer. If

there is a remainder, it will be discarded. For example, in the following code, parts is

assigned the value 2.0:

double parts;

parts = 15 / 6;

Even though 15 divided by 6 is really 2.5, the .5 part of the result is discarded because we

are dividing an integer by an integer. It doesn t matter that parts is declared as a double

because the fractional part of the result is discarded before the assignment takes place. In

order for a division operation to return a oating-point value, at least one of the operands

must be of a oating-point data type. For example, the previous code could be written as:

double parts;

parts = 15.0 / 6;

In this code the literal value 15.0 is interpreted as a oating-point number, so the division

operation will return a oating-point number. The value 2.5 will be assigned to parts.

M03_GADD6253_07_SE_C03 Page 101 Tuesday, January 4, 2011 8:29 PM

102 Chapter 3 Expressions and Interactivity

3.4 Over ow and Under ow

CONCEPT: When a variable is assigned a value that is too large or too small in range

for that variable s data type, the variable over ows or under ows.

Trouble can arise when a variable is being assigned a value that is too large for its type.

Here is a statement where a, b, and c are all short integers:

a = b * c;

If b and c are set to values large enough, the multiplication will produce a number too big

to be stored in a. To prepare for this, a should have been de ned as an int, or a long

int.

When a variable is assigned a number that is too large for its data type, it over ows. Like-

wise, assigning a value that is too small for a variable causes it to under ow. Program 3-7

shows what happens when an integer over ows or under ows. (The output shown is from

a system with two-byte short integers.)

Typically, when an integer over ows, its contents wrap around to that data type s lowest

possible value. In Program 3-7, testVar wrapped around from 32,767 to 32,768 when

1 was added to it. When 1 was subtracted from testVar, it under owed, which caused its

Program 3-7

 1 // This program demonstrates integer overflow and underflow.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 // testVar is initialized with the maximum value for a short.

 8 short testVar = 32767;

 9

 10 // Display testVar.

 11 cout << testVar << endl;

 12

 13 // Add 1 to testVar to make it overflow.

 14 testVar = testVar + 1;

 15 cout << testVar << endl;

 16

 17 // Subtract 1 from testVar to make it underflow.

 18 testVar = testVar - 1;

 19 cout << testVar << endl;

 20 return 0;

 21 }

Program Output

32767

-32768

32767

M03_GADD6253_07_SE_C03 Page 102 Tuesday, January 4, 2011 8:29 PM

3.5 Type Casting 103

contents to wrap back around to 32,767. No warning or error message is given, so be

careful when working with numbers close to the maximum or minimum range of an inte-

ger. If an over ow or under ow occurs, the program will use the incorrect number, and

therefore produce incorrect results.

When oating-point variables over ow or under ow, the results depend upon how the

compiler is con gured. Your system may produce programs that do any of the following:

Produces an incorrect result and continues running.

Prints an error message and immediately stops when either floating point over-

flow or underflow occurs.

Prints an error message and immediately stops when floating point overflow

occurs, but stores a 0 in the variable when it underflows.

Gives you a choice of behaviors when overflow or underflow occurs.

You can nd out how your system reacts by compiling and running Program 3-8.

3.5 Type Casting

CONCEPT: Type casting allows you to perform manual data type conversion.

A type cast expression lets you manually promote or demote a value. The general format

of a type cast expression is

static_cast<DataType>(Value)

where Value is a variable or literal value that you wish to convert and DataType is the data

type you wish to convert Value to. Here is an example of code that uses a type cast expression:

double number = 3.7;

int val;

val = static_cast<int>(number);

Program 3-8

 1 // This program can be used to see how your system handles

 2 // floating point overflow and underflow.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 float test;

 9

 10 test = 2.0e38 * 1000; // Should overflow test.

 11 cout << test << endl;

 12 test = 2.0e-38 / 2.0e38; // Should underflow test.

 13 cout << test << endl;

 14 return 0;

 15 }

M03_GADD6253_07_SE_C03 Page 103 Tuesday, January 4, 2011 8:29 PM

104 Chapter 3 Expressions and Interactivity

This code de nes two variables: number, a double, and val, an int. The type cast expres-

sion in the third statement returns a copy of the value in number, converted to an int.

When a double is converted to an int, the fractional part is truncated so this statement

stores 3 in val. The original value in number is not changed, however.

Type cast expressions are useful in situations where C++ will not perform the desired conver-

sion automatically. Program 3-9 shows an example where a type cast expression is used to

prevent integer division from taking place. The statement that uses the type cast expression is

perMonth = static_cast<double>(books) / months;

The variable books is an integer, but its value is converted to a double before the division

takes place. Without the type cast expression in line 15, integer division would have been

performed resulting in an incorrect answer.

Program 3-10 further demonstrates the type cast expression.

Program 3-9

 1 // This program uses a type cast to avoid integer division.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 int books; // Number of books to read

 8 int months; // Number of months spent reading

 9 double perMonth; // Average number of books per month

 10

 11 cout << "How many books do you plan to read? ";

 12 cin >> books;

 13 cout << "How many months will it take you to read them? ";

 14 cin >> months;

 15 perMonth = static_cast<double>(books) / months;

 16 cout << "That is " << perMonth << " books per month.\n";

 17 return 0;

 18 }

Program Output with Example Input Shown in Bold

How many books do you plan to read? 30 [Enter]
How many months will it take you to read them? 7 [Enter]
That is 4.28571 books per month.

WARNING! In Program 3-9, the following statement would still have resulted in

integer division:

perMonth = static_cast<double>(books / months);

The result of the expression books / months is 4. When 4 is converted to a double, it is

4.0. To prevent the integer division from taking place, one of the operands should be

converted to a double prior to the division operation. This forces C++ to automatically

convert the value of the other operand to a double.

M03_GADD6253_07_SE_C03 Page 104 Tuesday, January 4, 2011 8:29 PM

3.5 Type Casting 105

Let s take a closer look at this program. In line 8 the int variable number is initialized

with the value 65. In line 11, number is sent to cout, causing 65 to be displayed. In line

15, a type cast expression is used to convert the value in number to the char data type.

Recall from Chapter 2 that characters are stored in memory as integer ASCII codes. The

number 65 is the ASCII code for the letter A , so this statement causes the letter A to be

displayed.

If You Plan to Continue in Computer Science:
C-Style and Prestandard Type Cast Expressions

C++ also supports two older methods of creating type cast expressions: the C-style form

and the prestandard C++ form. The C-style cast is the name of a data type enclosed in

parentheses, preceding the value that is to be converted. For example, the following state-

ment converts the value in number to an int.

val = (int)number;

The following statement shows another example.

perMonth = (double)books / months;

In this statement the value in the books variable is converted to a double before the divi-

sion takes place.

Program 3-10

 1 // This program uses a type cast expression to print a character

 2 // from a number.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 int number = 65;

 9

 10 // Display the value of the number variable.

 11 cout << number << endl;

 12

 13 // Display the value of number converted to

 14 // the char data type.

 15 cout << static_cast<char>(number) << endl;

 16 return 0;

 17 }

Program Output

65

A

NOTE: C++ provides several different type cast expressions. static_cast is the most

commonly used type cast expression, so we will primarily use it in this book.

M03_GADD6253_07_SE_C03 Page 105 Tuesday, January 4, 2011 8:29 PM

106 Chapter 3 Expressions and Interactivity

The prestandard C++ form of the type cast expression appears as a data type name fol-

lowed by a value inside a set of parentheses. Here is an example:

val = int(number);

The type cast in this statement returns a copy of the value in number, converted to an int.

Here is another example:

perMonth = double(books) / months;

Although the static_cast expression is preferable to either the C-style or the prestan-

dard C++ form of the type cast expression, you will probably see code in the workplace

that uses these older styles.

Checkpoint

 www.myprogramminglab.com

3.11 Assume the following variable de nitions:

int a = 5, b = 12;

double x = 3.4, z = 9.1;

What are the values of the following expressions?

A) b / a

B) x * a

C) static_cast<double>(b / a)

D) static_cast<double>(b) / a

E) b / static_cast<double>(a)

F) static_cast<double>(b) / static_cast<double>(a)

G) b / static_cast<int>(x)

H) static_cast<int>(x) * static_cast<int>(z)

I) static_cast<int>(x * z)

J) static_cast<double>(static_cast<int>(x) *

 static_cast<int>(z))

3.12 Complete the following program skeleton so it asks the user to enter a character.

Store the character in the variable letter. Use a type cast expression with the vari-

able in a cout statement to display the character s ASCII code on the screen.

#include <iostream>

using namespace std;

int main()

{

 char letter;

 // Finish this program

 // as specified above.

 return 0;

}

M03_GADD6253_07_SE_C03 Page 106 Tuesday, January 4, 2011 8:29 PM

3.6 Multiple Assignment and Combined Assignment 107

3.13 What will the following program display?

#include <iostream>

using namespace std;

int main()

{

 int integer1, integer2;

 double result;

 integer1 = 19;

 integer2 = 2;

 result = integer1 / integer2;

 cout << result << endl;

 result = static_cast<double>(integer1) / integer2;

 cout << result << endl;

 result = static_cast<double>(integer1 / integer2);

 cout << result << endl;

 return 0;

}

3.6 Multiple Assignment and Combined Assignment

CONCEPT: Multiple assignment means to assign the same value to several variables

with one statement.

C++ allows you to assign a value to multiple variables at once. If a program has several

variables, such as a, b, c, and d, and each variable needs to be assigned a value, such as

12, the following statement may be constructed:

a = b = c = d = 12;

The value 12 will be assigned to each variable listed in the statement.*

Combined Assignment Operators

Quite often, programs have assignment statements of the following form:

number = number + 1;

The expression on the right side of the assignment operator gives the value of number plus

1. The result is then assigned to number, replacing the value that was previously stored

there. Effectively, this statement adds 1 to number. In a similar fashion, the following

statement subtracts 5 from number.

number = number - 5;

* The assignment operator works from right to left. 12 is rst assigned to d, then to c, then to b,
then to a.

M03_GADD6253_07_SE_C03 Page 107 Tuesday, January 4, 2011 8:29 PM

108 Chapter 3 Expressions and Interactivity

If you have never seen this type of statement before, it might cause some initial confusion

because the same variable name appears on both sides of the assignment operator. Table

3-8 shows other examples of statements written this way.

These types of operations are very common in programming. For convenience, C++ offers

a special set of operators designed speci cally for these jobs. Table 3-9 shows the com-

bined assignment operators, also known as compound operators, and arithmetic assign-

ment operators.

As you can see, the combined assignment operators do not require the programmer to

type the variable name twice. Also, they give a clear indication of what is happening in the

statement. Program 3-11 uses combined assignment operators.

Table 3-8 (Assume x = 6)

Statement What It Does

Value of x

After the Statement

x = x + 4; Adds 4 to x 10

x = x - 3; Subtracts 3 from x 3

x = x * 10; Multiplies x by 10 60

x = x / 2; Divides x by 2 3

x = x % 4 Makes x the remainder of x / 4 2

Table 3-9

Operator Example Usage Equivalent to

+= x += 5; x = x + 5;

-= y -= 2; y = y - 2;

*= z *= 10; z = z * 10;

/= a /= b; a = a / b;

%= c %= 3; c = c % 3;

Program 3-11

 1 // This program tracks the inventory of three widget stores

 2 // that opened at the same time. Each store started with the

 3 // same number of widgets in inventory. By subtracting the

 4 // number of widgets each store has sold from its inventory,

 5 // the current inventory can be calculated.

 6 #include <iostream>

 7 using namespace std;

 8

 9 int main()

 10 {

 11 int begInv, // Beginning inventory for all stores

 12 sold, // Number of widgets sold

 13 store1, // Store 1's inventory

 14 store2, // Store 2's inventory

 15 store3; // Store 3's inventory

 16

 17 // Get the beginning inventory for all the stores.

 18 cout << "One week ago, 3 new widget stores opened\n";

M03_GADD6253_07_SE_C03 Page 108 Tuesday, January 4, 2011 8:29 PM

3.6 Multiple Assignment and Combined Assignment 109

More elaborate statements may be expressed with the combined assignment operators.

Here is an example:

result *= a + 5;

In this statement, result is multiplied by the sum of a + 5. When constructing such

statements, you must realize the precedence of the combined assignment operators is

lower than that of the regular math operators. The statement above is equivalent to

result = result * (a + 5);

 19 cout << "at the same time with the same beginning\n";

 20 cout << "inventory. What was the beginning inventory? ";

 21 cin >> begInv;

 22

 23 // Set each store's inventory.

 24 store1 = store2 = store3 = begInv;

 25

 26 // Get the number of widgets sold at store 1.

 27 cout << "How many widgets has store 1 sold? ";

 28 cin >> sold;

 29 store1 -= sold; // Adjust store 1's inventory.

 30

 31 // Get the number of widgets sold at store 2.

 32 cout << "How many widgets has store 2 sold? ";

 33 cin >> sold;

 34 store2 -= sold; // Adjust store 2's inventory.

 35

 36 // Get the number of widgets sold at store 3.

 37 cout << "How many widgets has store 3 sold? ";

 38 cin >> sold;

 39 store3 -= sold; // Adjust store 3's inventory.

 40

 41 // Display each store's current inventory.

 42 cout << "\nThe current inventory of each store:\n";

 43 cout << "Store 1: " << store1 << endl;

 44 cout << "Store 2: " << store2 << endl;

 45 cout << "Store 3: " << store3 << endl;

 46 return 0;

 47 }

Program Output with Example Input Shown in Bold

One week ago, 3 new widget stores opened

at the same time with the same beginning

inventory. What was the beginning inventory? 100 [Enter]
How many widgets has store 1 sold? 25 [Enter]
How many widgets has store 2 sold? 15 [Enter]
How many widgets has store 3 sold? 45 [Enter]

The current inventory of each store:

Store 1: 75

Store 2: 85

Store 3: 55

M03_GADD6253_07_SE_C03 Page 109 Tuesday, January 4, 2011 8:29 PM

110 Chapter 3 Expressions and Interactivity

which is different from

result = result * a + 5;

Table 3-10 shows other examples of such statements and their assignment statement

equivalencies.

Checkpoint

 www.myprogramminglab.com

3.14 Write a multiple assignment statement that assigns 0 to the variables total,

subtotal, tax, and shipping.

3.15 Write statements using combined assignment operators to perform the following:

A) Add 6 to x.

B) Subtract 4 from amount.

C) Multiply y by 4.

D) Divide total by 27.

E) Store in x the remainder of x divided by 7.

F) Add y * 5 to x.

G) Subtract discount times 4 from total.

H) Multiply increase by salesRep times 5.

I) Divide profit by shares minus 1000.

3.16 What will the following program display?

#include <iostream>

using namespace std;

int main()

{

 int unus, duo, tres;

 unus = duo = tres = 5;

 unus += 4;

 duo *= 2;

 tres -= 4;

 unus /= 3;

 duo += tres;

 cout << unus << endl;

 cout << duo << endl;

 cout << tres << endl;

 return 0;

}

Table 3-10

Example Usage Equivalent to

x += b + 5; x = x + (b + 5);

y -= a * 2; y = y - (a * 2);

z *= 10 - c; z = z * (10 - c);

a /= b + c; a = a / (b + c);

c %= d - 3; c = c % (d - 3);

M03_GADD6253_07_SE_C03 Page 110 Tuesday, January 4, 2011 8:29 PM

3.7 Formatting Output 111

3.7 Formatting Output

CONCEPT: The cout object provides ways to format data as it is being displayed.

This affects the way data appears on the screen.

The same data can be printed or displayed in several different ways. For example, all of

the following numbers have the same value, although they look different:

720

720.0

720.00000000

7.2e+2

+720.0

The way a value is printed is called its formatting. The cout object has a standard way of

formatting variables of each data type. Sometimes, however, you need more control over

the way data is displayed. Consider Program 3-12, for example, which displays three rows

of numbers with spaces between each one.

Unfortunately, the numbers do not line up in columns. This is because some of the num-

bers, such as 5 and 7, occupy one position on the screen, while others occupy two or three

positions. cout uses just the number of spaces needed to print each number.

Program 3-12

 1 // This program displays three rows of numbers.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 int num1 = 2897, num2 = 5, num3 = 837,

 8 num4 = 34, num5 = 7, num6 = 1623,

 9 num7 = 390, num8 = 3456, num9 = 12;

 10

 11 // Display the first row of numbers

 12 cout << num1 << " " << num2 << " " << num3 << endl;

 13

 14 // Display the second row of numbers

 15 cout << num4 << " " << num5 << " " << num6 << endl;

 16

 17 // Display the third row of numbers

 18 cout << num7 << " " << num8 << " " << num9 << endl;

 19 return 0;

 20 }

Program Output

2897 5 837

34 7 1623

390 3456 12

M03_GADD6253_07_SE_C03 Page 111 Tuesday, January 4, 2011 8:29 PM

112 Chapter 3 Expressions and Interactivity

To remedy this, cout offers a way of specifying the minimum number of spaces to use for

each number. A stream manipulator, setw, can be used to establish print elds of a speci-

ed width. Here is an example of how it is used:

value = 23;

cout << setw(5) << value;

The number inside the parentheses after the word setw speci es the eld width for the

value immediately following it. The eld width is the minimum number of character posi-

tions, or spaces, on the screen to print the value in. In the example above, the number 23

will be displayed in a eld of 5 spaces. Since 23 only occupies 2 positions on the screen,

3 blank spaces will be printed before it. To further clarify how this works, look at the

following statements:

value = 23;

cout << "(" << setw(5) << value << ")";

This will cause the following output:

(23)

Notice that the number occupies the last two positions in the eld. Since the number did

not use the entire eld, cout lled the extra 3 positions with blank spaces. Because the

number appears on the right side of the eld with blank spaces padding it in front, it is

said to be right-justi ed.

Program 3-13 shows how the numbers in Program 3-12 can be printed in columns that

line up perfectly by using setw.

Program 3-13

 1 // This program displays three rows of numbers.

 2 #include <iostream>

 3 #include <iomanip> // Required for setw

 4 using namespace std;

 5

 6 int main()

 7 {

 8 int num1 = 2897, num2 = 5, num3 = 837,

 9 num4 = 34, num5 = 7, num6 = 1623,

 10 num7 = 390, num8 = 3456, num9 = 12;

 11

 12 // Display the first row of numbers

 13 cout << setw(6) << num1 << setw(6)

 14 << num2 << setw(6) << num3 << endl;

 15

 16 // Display the second row of numbers

 17 cout << setw(6) << num4 << setw(6)

 18 << num5 << setw(6) << num6 << endl;

 19

 20 // Display the third row of numbers

 21 cout << setw(6) << num7 << setw(6)

 22 << num8 << setw(6) << num9 << endl;

 23 return 0;

 24 }

M03_GADD6253_07_SE_C03 Page 112 Tuesday, January 4, 2011 8:29 PM

3.7 Formatting Output 113

By printing each number in a eld of 6 positions, they are displayed in perfect columns.

Notice how a setw manipulator is used with each value because setw only establishes a

eld width for the value immediately following it. After that value is printed, cout goes

back to its default method of printing.

You might wonder what will happen if the number is too large to t in the eld, as in the

following statement:

value = 18397;

cout << setw(2) << value;

In cases like this, cout will print the entire number. setw only speci es the minimum num-

ber of positions in the print eld. Any number larger than the minimum will cause cout to

override the setw value.

You may specify the eld width of any type of data. Program 3-14 shows setw being used

with an integer, a oating-point number, and a string object.

Program Output

 2897 5 837

 34 7 1623

 390 3456 12

NOTE: A new header le, iomanip, is included in Program 3-13. It must be used in any

program that uses setw.

Program 3-14

 1 // This program demonstrates the setw manipulator being

 2 // used with values of various data types.

 3 #include <iostream>

 4 #include <iomanip>

 5 #include <string>

 6 using namespace std;

 7

 8 int main()

 9 {

 10 int intValue = 3928;

 11 double doubleValue = 91.5;

 12 string stringValue = "John J. Smith";

 13

 14 cout << "(" << setw(5) << intValue << ")" << endl;

 15 cout << "(" << setw(8) << doubleValue << ")" << endl;

 16 cout << "(" << setw(16) << stringValue << ")" << endl;

 17 return 0;

 18 }

(program output continues)

M03_GADD6253_07_SE_C03 Page 113 Tuesday, January 4, 2011 8:29 PM

114 Chapter 3 Expressions and Interactivity

Program 3-14 can be used to illustrate the following points:

The field width of a floating-point number includes a position for the decimal

point.

The field width of a string object includes all characters in the string, including

spaces.

The values printed in the field are right-justified by default. This means they are

aligned with the right side of the print field, and any blanks that must be used to

pad it are inserted in front of the value.

The setprecision Manipulator

Floating-point values may be rounded to a number of signi cant digits, or precision,

which is the total number of digits that appear before and after the decimal point. You can

control the number of signi cant digits with which oating-point values are displayed by

using the setprecision manipulator. Program 3-15 shows the results of a division oper-

ation displayed with different numbers of signi cant digits.

Program Output

(3928)

(91.5)

(John J. Smith)

Program 3-15

 1 // This program demonstrates how setprecision rounds a

 2 // floating point value.

 3 #include <iostream>

 4 #include <iomanip>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 double quotient, number1 = 132.364, number2 = 26.91;

 10

 11 quotient = number1 / number2;

 12 cout << quotient << endl;

 13 cout << setprecision(5) << quotient << endl;

 14 cout << setprecision(4) << quotient << endl;

 15 cout << setprecision(3) << quotient << endl;

 16 cout << setprecision(2) << quotient << endl;

 17 cout << setprecision(1) << quotient << endl;

 18 return 0;

 19 }

Program Output

4.91877

4.9188

4.919

4.92

4.9

5

Program 3-14 (continued)

VideoNote

Formatting
Numbers with
setprecision

M03_GADD6253_07_SE_C03 Page 114 Tuesday, January 4, 2011 8:29 PM

3.7 Formatting Output 115

The rst value is displayed in line 12 without the setprecision manipulator. (By default,

the system in the illustration displays oating-point values with 6 signi cant digits.) The

subsequent cout statements print the same value, but rounded to 5, 4, 3, 2, and 1 signi -

cant digits.

If the value of a number is expressed in fewer digits of precision than speci ed by

setprecision, the manipulator will have no effect. In the following statements, the value

of dollars only has four digits of precision, so the number printed by both cout state-

ments is 24.51.

double dollars = 24.51;

cout << dollars << endl; // Displays 24.51

cout << setprecision(5) << dollars << endl; // Displays 24.51

Table 3-11 shows how setprecision affects the way various values are displayed.

Unlike eld width, the precision setting remains in effect until it is changed to some other

value. As with all formatting manipulators, you must include the header le iomanip to

use setprecision.

Program 3-16 shows how the setw and setprecision manipulators may be combined to

fully control the way oating point numbers are displayed.

Table 3-11

Number Manipulator Value Displayed

28.92786 setprecision(3) 28.9

21 setprecision(5) 21

109.5 setprecision(4) 109.5

34.28596 setprecision(2) 34

Program 3-16

 1 // This program asks for sales figures for 3 days. The total

 2 // sales are calculated and displayed in a table.

 3 #include <iostream>

 4 #include <iomanip>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 double day1, day2, day3, total;

 10

 11 // Get the sales for each day.

 12 cout << "Enter the sales for day 1: ";

 13 cin >> day1;

 14 cout << "Enter the sales for day 2: ";

 15 cin >> day2;

 16 cout << "Enter the sales for day 3: ";

 17 cin >> day3;

 18

 19 // Calculate the total sales.

 20 total = day1 + day2 + day3;

(program continues)

M03_GADD6253_07_SE_C03 Page 115 Tuesday, January 4, 2011 8:29 PM

116 Chapter 3 Expressions and Interactivity

The fixed Manipulator

The setprecision manipulator can sometimes surprise you in an undesirable way. When

the precision of a number is set to a lower value, numbers tend to be printed in scienti c

notation. For example, here is the output of Program 3-16 with larger numbers being

input:

Another stream manipulator, fixed, forces cout to print the digits in xed-point nota-

tion, or decimal. Program 3-17 shows how the fixed manipulator is used.

 21

 22 // Display the sales figures.

 23 cout << "\nSales Figures\n";

 24 cout << "-------------\n";

 25 cout << setprecision(5);

 26 cout << "Day 1: " << setw(8) << day1 << endl;

 27 cout << "Day 2: " << setw(8) << day2 << endl;

 28 cout << "Day 3: " << setw(8) << day3 << endl;

 29 cout << "Total: " << setw(8) << total << endl;

 30 return 0;

 31 }

Program Output with Example Input Shown in Bold

Enter the sales for day 1: 321.57 [Enter]
Enter the sales for day 2: 269.62 [Enter]
Enter the sales for day 3: 307.77 [Enter]

Sales Figures

Day 1: 321.57

Day 2: 269.62

Day 3: 307.77

Total: 898.96

Program 3-16

Program Output with Example Input Shown in Bold

Enter the sales for day 1: 145678.99 [Enter]
Enter the sales for day 2: 205614.85 [Enter]
Enter the sales for day 3: 198645.22 [Enter]

Sales Figures

Day 1: 1.4568e+005

Day 2: 2.0561e+005

Day 3: 1.9865e+005

Total: 5.4994e+005

Program 3-16 (continued)

M03_GADD6253_07_SE_C03 Page 116 Tuesday, January 4, 2011 8:29 PM

3.7 Formatting Output 117

The statement in line 25 uses the fixed manipulator:

cout << setprecision(2) << fixed;

When the fixed manipulator is used, all oating point numbers that are subsequently

printed will be displayed in xed point notation, with the number of digits to the right of

the decimal point speci ed by the setprecision manipulator.

Program 3-17

 1 // This program asks for sales figures for 3 days. The total

 2 // sales are calculated and displayed in a table.

 3 #include <iostream>

 4 #include <iomanip>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 double day1, day2, day3, total;

 10

 11 // Get the sales for each day.

 12 cout << "Enter the sales for day 1: ";

 13 cin >> day1;

 14 cout << "Enter the sales for day 2: ";

 15 cin >> day2;

 16 cout << "Enter the sales for day 3: ";

 17 cin >> day3;

 18

 19 // Calculate the total sales.

 20 total = day1 + day2 + day3;

 21

 22 // Display the sales figures.

 23 cout << "\nSales Figures\n";

 24 cout << "-------------\n";

 25 cout << setprecision(2) << fixed;

 26 cout << "Day 1: " << setw(8) << day1 << endl;

 27 cout << "Day 2: " << setw(8) << day2 << endl;

 28 cout << "Day 3: " << setw(8) << day3 << endl;

 29 cout << "Total: " << setw(8) << total << endl;

 30 return 0;

 31 }

Program Output with Example Input Shown in Bold

Enter the sales for day 1: 1321.87 [Enter]
Enter the sales for day 2: 1869.26 [Enter]
Enter the sales for day 3: 1403.77 [Enter]

Sales Figures

Day 1: 1321.87

Day 2: 1869.26

Day 3: 1403.77

Total: 4594.90

M03_GADD6253_07_SE_C03 Page 117 Tuesday, January 4, 2011 8:29 PM

118 Chapter 3 Expressions and Interactivity

When the fixed and setprecision manipulators are used together, the value speci ed

by the setprecision manipulator will be the number of digits to appear after the deci-

mal point, not the number of signi cant digits. For example, look at the following code.

double x = 123.4567;

cout << setprecision(2) << fixed << x << endl;

Because the fixed manipulator is used, the setprecision manipulator will cause the

number to be displayed with two digits after the decimal point. The value will be dis-

played as 123.46.

The showpoint Manipulator

By default, oating-point numbers are not displayed with trailing zeroes, and oating-

point numbers that do not have a fractional part are not displayed with a decimal point.

For example, look at the following code.

double x = 123.4, y = 456.0;

cout << setprecision(6) << x << endl;

cout << y << endl;

The cout statements will produce the following output.

123.4

456

Although six signi cant digits are speci ed for both numbers, neither number is displayed

with trailing zeroes. If we want the numbers padded with trailing zeroes, we must use the

showpoint manipulator as shown in the following code.

double x = 123.4, y = 456.0;

cout << setprecision(6) << showpoint << x << endl;

cout << y << endl;

These cout statements will produce the following output.

123.400

456.000

The left and right Manipulators

Normally output is right justi ed. For example, look at the following code.

double x = 146.789, y = 24.2, z = 1.783;

cout << setw(10) << x << endl;

cout << setw(10) << y << endl;

cout << setw(10) << z << endl;

NOTE: With most compilers, trailing zeroes are displayed when the setprecision and

fixed manipulators are used together.

M03_GADD6253_07_SE_C03 Page 118 Tuesday, January 4, 2011 8:29 PM

3.7 Formatting Output 119

Each of the variables, x, y, and z, is displayed in a print eld of 10 spaces. The output of

the cout statements is

146.789

 24.2

 1.783

Notice that each value is right-justi ed, or aligned to the right of its print eld. You can cause

the values to be left-justi ed by using the left manipulator, as shown in the following code.

double x = 146.789, y = 24.2, z = 1.783;

cout << left << setw(10) << x << endl;

cout << setw(10) << y << endl;

cout << setw(10) << z << endl;

The output of these cout statements is

146.789

24.2

1.783

In this case, the numbers are aligned to the left of their print elds. The left manipulator

remains in effect until you use the right manipulator, which causes all subsequent output

to be right-justi ed.

Table 3-12 summarizes the manipulators we have discussed.

Checkpoint

 www.myprogramminglab.com

3.17 Write cout statements with stream manipulators that perform the following:

A) Display the number 34.789 in a eld of nine spaces with two decimal places

of precision.

B) Display the number 7.0 in a eld of ve spaces with three decimal places of

precision.

The decimal point and any trailing zeroes should be displayed.

C) Display the number 5.789e+12 in xed point notation.

D) Display the number 67 left justi ed in a eld of seven spaces.

Table 3-12

Stream Manipulator Description

setw(n) Establishes a print eld of n spaces.

fixed Displays oating-point numbers in xed point notation.

showpoint Causes a decimal point and trailing zeroes to be displayed, even if

there is no fractional part.

setprecision(n) Sets the precision of oating-point numbers.

left Causes subsequent output to be left justi ed.

right Causes subsequent output to be right justi ed.

M03_GADD6253_07_SE_C03 Page 119 Tuesday, January 4, 2011 8:29 PM

120 Chapter 3 Expressions and Interactivity

3.18 The following program will not compile because the lines have been mixed up.

#include <iomanip>

}

cout << person << endl;

string person = "Wolfgang Smith";

int main()

cout << person << endl;

{

#include <iostream>

return 0;

cout << left;

using namespace std;

cout << setw(20);

cout << right;

When the lines are properly arranged the program should display the following:

 Wolfgang Smith

Wolfgang Smith

Rearrange the lines in the correct order. Test the program by entering it on the

computer, compiling it, and running it.

3.19 The following program skeleton asks for an angle in degrees and converts it to

radians. The formatting of the nal output is left to you.

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

 const double PI = 3.14159;

 double degrees, radians;

 cout << "Enter an angle in degrees and I will convert it\n";

 cout << "to radians for you: ";

 cin >> degrees;

 radians = degrees * PI / 180;

 // Display the value in radians left justified, in fixed

 // point notation, with 4 places of precision, in a field

 // 5 spaces wide, making sure the decimal point is always

 // displayed.

 return 0;

}

3.8 Working with Characters and string Objects

CONCEPT: Special functions exist for working with characters and string objects.

Although it is possible to use cin with the >> operator to input strings, it can cause prob-

lems that you need to be aware of. When cin reads input, it passes over and ignores any

leading whitespace characters (spaces, tabs, or line breaks). Once it comes to the rst

M03_GADD6253_07_SE_C03 Page 120 Tuesday, January 4, 2011 8:29 PM

3.8 Working with Characters and string Objects 121

nonblank character and starts reading, it stops reading when it gets to the next whitespace

character. Program 3-18 illustrates this problem.

Notice that the user was never given the opportunity to enter the city. In the rst input

statement, when cin came to the space between Kate and Smith, it stopped reading, stor-

ing just Kate as the value of name. In the second input statement, cin used the leftover

characters it found in the keyboard buffer and stored Smith as the value of city.

To work around this problem, you can use a C++ function named getline. The getline

function reads an entire line, including leading and embedded spaces, and stores it in a

string object. The getline function looks like the following, where cin is the input

stream we are reading from and inputLine is the name of the string object receiving the

input.

getline(cin, inputLine);

Program 3-19 illustrates using the getline function.

Program 3-18

 1 // This program illustrates a problem that can occur if

 2 // cin is used to read character data into a string object.

 3 #include <iostream>

 4 #include <string>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 string name;

 10 string city;

 11

 12 cout << "Please enter your name: ";

 13 cin >> name;

 14 cout << "Enter the city you live in: ";

 15 cin >> city;

 16

 17 cout << "Hello, " << name << endl;

 18 cout << "You live in " << city << endl;

 19 return 0;

 20 }

Program Output with Example Input Shown in Bold

Please enter your name: Kate Smith [Enter]
Enter the city you live in: Hello, Kate

You live in Smith

Program 3-19

 1 // This program demonstrates using the getline function

 2 // to read character data into a string object.

 3 #include <iostream>

 4 #include <string>

 5 using namespace std;

 6

(program continues)

M03_GADD6253_07_SE_C03 Page 121 Tuesday, January 4, 2011 8:29 PM

122 Chapter 3 Expressions and Interactivity

Inputting a Character

Sometimes you want to read only a single character of input. For example, some programs

display a menu of items for the user to choose from. Often the selections are denoted by

the letters A, B, C, and so forth. The user chooses an item from the menu by typing a char-

acter. The simplest way to read a single character is with cin and the >> operator, as illus-

trated in Program 3-20.

 7 int main()

 8 {

 9 string name;

 10 string city;

 11

 12 cout << "Please enter your name: ";

 13 getline(cin, name);

 14 cout << "Enter the city you live in: ";

 15 getline(cin, city);

 16

 17 cout << "Hello, " << name << endl;

 18 cout << "You live in " << city << endl;

 19 return 0;

 20 }

Program Output with Example Input Shown in Bold

Please enter your name: Kate Smith [Enter]
Enter the city you live in: Raleigh [Enter]
Hello, Kate Smith

You live in Raleigh

Program 3-20

 1 // This program reads a single character into a char variable.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 char ch;

 8

 9 cout << "Type a character and press Enter: ";

 10 cin >> ch;

 11 cout << "You entered " << ch << endl;

 12 return 0;

 13 }

Program Output with Example Input Shown in Bold

Type a character and press Enter: A [Enter]
You entered A

Program 3-19 (continued)

M03_GADD6253_07_SE_C03 Page 122 Tuesday, January 4, 2011 8:29 PM

3.8 Working with Characters and string Objects 123

Using cin.get

As with string input, however, there are times when using cin >> to read a character does

not do what you want. For example, because it passes over all leading whitespace, it is

impossible to input just a blank or [Enter] with cin >>. The program will not continue

past the cin statement until some character other than the spacebar, tab key, or [Enter]

key has been pressed. (Once such a character is entered, the [Enter] key must still be

pressed before the program can continue to the next statement.) Thus, programs that ask

the user to "Press the Enter key to continue." cannot use the >> operator to read only

the pressing of the [Enter] key.

In those situations, the cin object has a built-in function named get that is helpful.

Because the get function is built into the cin object, we say that it is a member function

of cin. The get member function reads a single character, including any whitespace char-

acter. If the program needs to store the character being read, the get member function can

be called in either of the following ways. In both examples, assume that ch is the name of

a char variable that the character is being read into.

cin.get(ch);

ch = cin.get();

If the program is using the cin.get function simply to pause the screen until the [Enter]

key is pressed and does not need to store the character, the function can also be called like

this:

cin.get();

Program 3-21 illustrates all three ways to use the cin.get function.

Program 3-21

 1 // This program demonstrates three ways

 2 // to use cin.get() to pause a program.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 char ch;

 9

 10 cout << "This program has paused. Press Enter to continue.";

 11 cin.get(ch);

 12 cout << "It has paused a second time. Please press Enter again.";

 13 ch = cin.get();

 14 cout << "It has paused a third time. Please press Enter again.";

 15 cin.get();

 16 cout << "Thank you!";

 17 return 0;

 18 }

Program Output with Example Input Shown in Bold

This program has paused. Press Enter to continue. [Enter]
It has paused a second time. Please press Enter again. [Enter]
It has paused a third time. Please press Enter again. [Enter]
Thank you!

M03_GADD6253_07_SE_C03 Page 123 Tuesday, January 4, 2011 8:29 PM

124 Chapter 3 Expressions and Interactivity

Mixing cin >> and cin.get

Mixing cin >> with cin.get can cause an annoying and hard-to- nd problem. For example,

look at Program 3-22.

When this program runs, line 12 lets the user enter a number, but it appears as though the

statement in line 14 is skipped. This happens because cin >> and cin.get use slightly dif-

ferent techniques for reading data.

In the example run of the program, when line 12 executed, the user entered 100 and

pressed the [Enter] key. Pressing the [Enter] key causes a newline character ('\n') to be

stored in the keyboard buffer, as shown in Figure 3-5. The cin >> statement in line 12

begins reading the data that the user entered, and stops reading when it comes to the new-

line character. This is shown in Figure 3-6. The newline character is not read, but remains

in the keyboard buffer.

Program 3-22

 1 // This program demonstrates a problem that occurs

 2 // when you mix cin >> with cin.get().

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 char ch; // Define a character variable

 9 int number; // Define an integer variable

 10

 11 cout << "Enter a number: ";

 12 cin >> number; // Read an integer

 13 cout << "Enter a character: ";

 14 ch = cin.get(); // Read a character

 15 cout << "Thank You!\n";

 16 return 0;

 17 }

Program Output with Example Input Shown in Bold

Enter a number: 100 [Enter]
Enter a character: Thank You!

Figure 3-5

1 0 0 \n

Keyboard buffer

cin begins

reading here.

M03_GADD6253_07_SE_C03 Page 124 Tuesday, January 4, 2011 8:29 PM

3.8 Working with Characters and string Objects 125

When the cin.get function in line 14 executes, it begins reading the keyboard buffer

where the previous input operation stopped. That means that cin.get reads the newline

character, without giving the user a chance to enter any more input. You can remedy this

situation by using the cin.ignore function, described in the following section.

Using cin.ignore

To solve the problem previously described, you can use another of the cin object s mem-

ber functions named ignore. The cin.ignore function tells the cin object to skip one or

more characters in the keyboard buffer. Here is its general form:

cin.ignore(n, c);

The arguments shown in the parentheses are optional. If used, n is an integer and c is a

character. They tell cin to skip n number of characters, or until the character c is encoun-

tered. For example, the following statement causes cin to skip the next 20 characters or

until a newline is encountered, whichever comes rst:

cin.ignore(20,'\n');

If no arguments are used, cin will skip only the very next character. Here s an example:

cin.ignore();

Program 3-23, which is a modi ed version of Program 3-22, demonstrates the function.

Notice that a call to cin.ignore has been inserted in line 13, right after the cin >> statement.

Figure 3-6

Program 3-23

 1 // This program successfully uses both

 2 // cin >> and cin.get() for keyboard input.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 char ch;

 9 int number;

 10

(program continues)

1 0 0 \n

Keyboard buffer

cin stops reading here,

but does not read the \n

character.

M03_GADD6253_07_SE_C03 Page 125 Tuesday, January 4, 2011 8:29 PM

126 Chapter 3 Expressions and Interactivity

string Member Functions and Operators

C++ string objects also have a number of member functions. For example, if you want

to know the length of the string that is stored in a string object, you can call the object s

length member function. Here is an example of how to use it.

string state = "Texas";

int size = state.length();

The rst statement creates a string object named state, and initializes it with the string

"Texas". The second statement de nes an int variable named size, and initializes it

with the length of the string in the state object. After this code executes, the size variable

will hold the value 5.

Certain operators also work with string objects. One of them is the + operator. You have

already encountered the + operator to add two numeric quantities. Because strings cannot

be added, when this operator is used with string operands it concatenates them, or joins

them together. Assume we have the following de nitions and initializations in a program.

string greeting1 = "Hello ";

string greeting2;

string name1 = "World";

string name2 = "People";

The following statements illustrate how string concatenation works.

greeting2 = greeting1 + name1; // greeting2 now holds "Hello World"

greeting1 = greeting1 + name2; // greeting1 now holds "Hello People"

Notice that the string stored in greeting1 has a blank as its last character. If the blank

were not there, greeting2 would have been assigned the string "HelloWorld".

The last statement in the previous example could also have been written using the += com-

bined assignment operator, to achieve the same result:

greeting1 += name2;

You will learn about other useful string member functions and operators in Chapter 10.

 11 cout << "Enter a number: ";

 12 cin >> number;

 13 cin.ignore(); // Skip the newline character

 14 cout << "Enter a character: ";

 15 ch = cin.get();

 16 cout << "Thank You!\n";

 17 return 0;

 18 }

Program Output with Example Input Shown in Bold

Enter a number: 100 [Enter]
Enter a character: Z [Enter]
Thank You!

Program 3-23 (continued)

M03_GADD6253_07_SE_C03 Page 126 Tuesday, January 4, 2011 8:29 PM

3.9 More Mathematical Library Functions 127

3.9 More Mathematical Library Functions

CONCEPT: The C++ runtime library provides several functions for performing

complex mathematical operations.

Earlier in this chapter you learned to use the pow function to raise a number to a power.

The C++ library has numerous other functions that perform specialized mathematical

operations. These functions are useful in scienti c and special-purpose programs.

Table 3-13 shows several of these, each of which requires the cmath header le.

Each of these functions is as simple to use as the pow function. The following program seg-

ment demonstrates the sqrt function, which returns the square root of a number:

cout << "Enter a number: ";

cin >> num;

s = sqrt(num);

cout << "The square root of " << num << " is " << s << endl;

Table 3-13

Function Example Description

abs y = abs(x); Returns the absolute value of the argument. The argument and the

return value are integers.

cos y = cos(x); Returns the cosine of the argument. The argument should be an

angle expressed in radians. The return type and the argument are

doubles.

exp y = exp(x); Computes the exponential function of the argument, which is x. The

return type and the argument are doubles.

fmod y = fmod(x, z); Returns, as a double, the remainder of the rst argument divided by

the second argument. Works like the modulus operator, but the

arguments are doubles. (The modulus operator only works with

integers.) Take care not to pass zero as the second argument. Doing

so would cause division by zero.

log y = log(x); Returns the natural logarithm of the argument. The return type and

the argument are doubles.

log10 y = log10(x); Returns the base-10 logarithm of the argument. The return type and

the argument are doubles.

sin y = sin(x); Returns the sine of the argument. The argument should be an angle

expressed in radians. The return type and the argument are doubles.

sqrt y = sqrt(x); Returns the square root of the argument. The return type and

argument are doubles.

tan y = tan(x); Returns the tangent of the argument. The argument should be an

angle expressed in radians. The return type and the argument are

doubles.

M03_GADD6253_07_SE_C03 Page 127 Tuesday, January 4, 2011 8:29 PM

128 Chapter 3 Expressions and Interactivity

Here is the output of the program segment, with 25 as the number entered by the user:

Enter a number: 25

The square root of 25 is 5

Program 3-24 shows the sqrt function being used to nd the hypotenuse of a right triangle.

The program uses the following formula, taken from the Pythagorean theorem:

In the formula, c is the length of the hypotenuse, and a and b are the lengths of the other

sides of the triangle.

The following statement, taken from Program 3-24, calculates the square root of the sum

of the squares of the triangle s two sides:

c = sqrt(pow(a, 2.0) + pow(b, 2.0));

Notice that the following mathematical expression is used as the sqrt function s argument:

pow(a, 2.0) + pow(b, 2.0)

This expression calls the pow function twice: once to calculate the square of a and again to

calculate the square of b. These two squares are then added together, and the sum is sent

to the sqrt function.

Program 3-24

 1 // This program asks for the lengths of the two sides of a

 2 // right triangle. The length of the hypotenuse is then

 3 // calculated and displayed.

 4 #include <iostream>

 5 #include <iomanip> // For setprecision

 6 #include <cmath> // For the sqrt and pow functions

 7 using namespace std;

 8

 9 int main()

 10 {

 11 double a, b, c;

 12

 13 cout << "Enter the length of side a: ";

 14 cin >> a;

 15 cout << "Enter the length of side b: ";

 16 cin >> b;

 17 c = sqrt(pow(a, 2.0) + pow(b, 2.0));

 18 cout << "The length of the hypotenuse is ";

 19 cout << setprecision(2) << c << endl;

 20 return 0;

 21 }

Program Output with Example Input Shown in Bold

Enter the length of side a: 5.0 [Enter]
Enter the length of side b: 12.0 [Enter]
The length of the hypotenuse is 13

c a
2

b
2

+=

M03_GADD6253_07_SE_C03 Page 128 Tuesday, January 4, 2011 8:29 PM

3.9 More Mathematical Library Functions 129

Random Numbers

Some programming techniques require the use of randomly generated numbers. The C++

library has a function, rand(), for this purpose. (rand() requires the header le

cstdlib). The number returned by the function is an int. Here is an example of its usage:

y = rand();

After this statement executes, the variable y will contain a random number. In actuality,

the numbers produced by rand()are pseudorandom. The function uses an algorithm that

produces the same sequence of numbers each time the program is repeated on the same

system. For example, suppose the following statements are executed.

cout << rand() << endl;

cout << rand() << endl;

cout << rand() << endl;

The three numbers displayed will appear to be random, but each time the program runs,

the same three values will be generated. In order to randomize the results of rand(), the

srand() function must be used. srand() accepts an unsigned int argument, which acts

as a seed value for the algorithm. By specifying different seed values, rand() will generate

different sequences of random numbers.

A common practice for getting unique seed values is to call the time function, which is

part of the standard library. The time function returns the number of seconds that have

elapsed since midnight, January 1, 1970. The time function requires the ctime header

le, and you pass 0 as an argument to the function. Program 3-25 demonstrates. The pro-

gram should generate three different random numbers each time it is executed.

Program 3-25

 1 // This program demonstrates random numbers.

 2 #include <iostream>

 3 #include <cstdlib> // For rand and srand

 4 #include <ctime> // For the time function

 5 using namespace std;

 6

 7 int main()

 8 {

 9 // Get the system time.

 10 unsigned seed = time(0);

 11

 12 // Seed the random number generator.

 13 srand(seed);

 14

 15 // Display three random numbers.

 16 cout << rand() << endl;

 17 cout << rand() << endl;

 18 cout << rand() << endl;

 19 return 0;

 20 }

Program Output

23861

20884

21941

M03_GADD6253_07_SE_C03 Page 129 Tuesday, January 4, 2011 8:29 PM

130 Chapter 3 Expressions and Interactivity

Checkpoint

 www.myprogramminglab.com

3.20 Write a short description of each of the following functions:
cos log sin

exp log10 sqrt

fmod pow tan

3.21 Assume the variables angle1 and angle2 hold angles stored in radians. Write a

statement that adds the sine of angle1 to the cosine of angle2, and stores the

result in the variable x.

3.22 To nd the cube root (the third root) of a number, raise it to the power of 1 3. To

nd the fourth root of a number, raise it to the power of 1 4. Write a statement

that will nd the fth root of the variable x and store the result in the variable y.

3.23 The cosecant of the angle a is

Write a statement that calculates the cosecant of the angle stored in the variable a,

and stores it in the variable y.

3.10 Focus on Debugging: Hand Tracing a Program

Hand tracing is a debugging process where you pretend that you are the computer executing

a program. You step through each of the program s statements one by one. As you look at a

statement, you record the contents that each variable will have after the statement executes.

This process is often helpful in nding mathematical mistakes and other logic errors.

NOTE: If you wish to limit the range of the random number, use the following formula.

y = 1 + rand() % maxRange;

The maxRange value is the upper limit of the range. For example, if you wish to generate

a random number in the range of 1 through 100, use the following statement.

y = 1 + rand() % 100;

This is how the statement works: Look at the following expression.

rand() % 100

Assuming rand() returns 37894, the value of the expression above is 94. That is because

37894 divided by 100 is 378 with a remainder of 94. (The modulus operator returns the

remainder.) But, what if rand() returns a number that is evenly divisible by 100, such as

500? The expression above will return a 0. If we want a number in the range 1 100, we

must add 1 to the result. That is why we use the expression 1 + rand() % 100.

1
asin

M03_GADD6253_07_SE_C03 Page 130 Tuesday, January 4, 2011 8:29 PM

3.10 Focus on Debugging: Hand Tracing a Program 131

To hand trace a program you construct a chart with a column for each variable. The rows

in the chart correspond to the lines in the program. For example, Program 3-26 is shown

with a hand trace chart. The program uses the following four variables: num1, num2, num3,

and avg. Notice that the hand trace chart has a column for each variable and a row for

each line of code in function main.

This program, which asks the user to enter three numbers and then displays the average of

the numbers, has a bug. It does not display the correct average. The output of a sample

session with the program follows.

The correct average of 10, 20, and 30 is 20, not 40. To nd the error we will hand trace

the program. To hand trace this program, you step through each statement, observing the

operation that is taking place, and then record the contents of the variables after the state-

ment executes. After the hand trace is complete, the chart will appear as follows. We have

written question marks in the chart where we do not know the contents of a variable.

Program 3-26

 1 // This program asks for three numbers, then

 2 // displays the average of the numbers.

 3 #include <iostream>

 4 using namespace std;

 5 int main()

 6 { num1 num2 num3 avg

 7 double num1, num2, num3, avg;

 8 cout << "Enter the first number: ";

 9 cin >> num1;

 10 cout << "Enter the second number: ";

 11 cin >> num2;

 12 cout << "Enter the third number: ";

 13 cin >> num3;

 14 avg = num1 + num2 + num3 / 3;

 15 cout << "The average is " << avg << endl;

 16 return 0;

 17 }

Program Output with Example Input Shown in Bold

Enter the first number: 10 [Enter]
Enter the second number: 20 [Enter]
Enter the third number: 30 [Enter]
The average is 40

M03_GADD6253_07_SE_C03 Page 131 Tuesday, January 4, 2011 8:29 PM

132 Chapter 3 Expressions and Interactivity

Do you see the error? By examining the statement that performs the math operation in
line 14, we nd a mistake. The division operation takes place before the addition opera-
tions, so we must rewrite that statement as

avg = (num1 + num2 + num3) / 3;

Hand tracing is a simple process that focuses your attention on each statement in a program.
Often this helps you locate errors that are not obvious.

3.11 Focus on Problem Solving: A Case Study

General Crates, Inc. builds custom-designed wooden crates. With materials and labor, it
costs GCI $0.23 per cubic foot to build a crate. In turn, they charge their customers $0.50
per cubic foot for the crate. You have been asked to write a program that calculates the
volume (in cubic feet), cost, customer price, and pro t of any crate GCI builds.

Program 3-26 (with hand trace chart filled)

 1 // This program asks for three numbers, then

 2 // displays the average of the numbers.

 3 #include <iostream>

 4 using namespace std;

 5 int main()

 6 { num1 num2 num3 avg

 7 double num1, num2, num3, avg; ? ? ? ?

 8 cout << "Enter the first number: "; ? ? ? ?

 9 cin >> num1; 10 ? ? ?

 10 cout << "Enter the second number: "; 10 ? ? ?

 11 cin >> num2; 10 20 ? ?

 12 cout << "Enter the third number: "; 10 20 ? ?

 13 cin >> num3; 10 20 30 ?

 14 avg = num1 + num2 + num3 / 3; 10 20 30 40

 15 cout << "The average is " << avg << endl; 10 20 30 40

 16 return 0;

 17 }

M03_GADD6253_07_SE_C03 Page 132 Tuesday, January 4, 2011 8:29 PM

3.11 Focus on Problem Solving: A Case Study 133

Variables

Table 3-14 shows the named constants and variables needed.

Program Design

The program must perform the following general steps:

1. Ask the user to enter the dimensions of the crate (the crate s length, width, and height).

2. Calculate the crate s volume, the cost of building the crate, the customer s charge, and

the pro t made.

3. Display the data calculated in Step 2.

A general hierarchy chart for this program is shown in Figure 3-7.

Table 3-14

Constant or Variable Description

COST_PER_CUBIC_FOOT A named constant, declared as a double and initialized with the value

0.23. This represents the cost to build a crate, per cubic foot.

CHARGE_PER_CUBIC_FOOT A named constant, declared as a double and initialized with the value

0.5. This represents the amount charged for a crate, per cubic foot.

length A double variable to hold the length of the crate, which is input by

the user.

width A double variable to hold the width of the crate, which is input by

the user.

height A double variable to hold the height of the crate, which is input by

the user.

volume A double variable to hold the volume of the crate. The value stored

in this variable is calculated.

cost A double variable to hold the cost of building the crate. The value

stored in this variable is calculated.

charge A double variable to hold the amount charged to the customer for

the crate. The value stored in this variable is calculated.

profit A double variable to hold the pro t GCI makes from the crate. The

value stored in this variable is calculated.

Figure 3-7

Calculate Volume,

Cost, Customer

Charge, and Profit.

Display Calculated

Data.

Calculate Crate Volume,

Cost, Price, and Profit.

Get Crate

Dimensions.

M03_GADD6253_07_SE_C03 Page 133 Tuesday, January 4, 2011 8:29 PM

134 Chapter 3 Expressions and Interactivity

The Get Crate Dimensions step is shown in greater detail in Figure 3-8.

The Calculate Volume, Cost, Customer Charge, and Pro t step is shown in greater

detail in Figure 3-9.

The Display Calculated Data step is shown in greater detail in Figure 3-10.

Pseudocode for the program is as follows:

Ask the user to input the crate's length.

Ask the user to input the crate's width.

Ask the user to input the crate's height.

Calculate the crate's volume.

Calculate the cost of building the crate.

Calculate the customer's charge for the crate.

Calculate the profit made from the crate.

Display the crate's volume.

Figure 3-8

Figure 3-9

Figure 3-10

Get Crate Dimensions.

Get Length. Get Width. Get Height.

Calculate Volume, Cost,

Customer Charge, and

Profit.

Calculate the

Crate s Volume.
Calculate the

Crate s Cost.

Calculate the

Profit Made.
Calculate the

Customer Charge.

Display Calculated Data.

Display the

Crate s Volume.
Display the

Crate s Cost.

Display the

Profit Made.
Display the

Customer Charge.

M03_GADD6253_07_SE_C03 Page 134 Tuesday, January 4, 2011 8:29 PM

3.11 Focus on Problem Solving: A Case Study 135

Display the cost of building the crate.

Display the customer's charge for the crate.

Display the profit made from the crate.

Calculations

The following formulas will be used to calculate the crate s volume, cost, charge, and pro t:

volume = length + width + height

cost = volume + 0.23

charge = volume + 0.5

pro t = charge * cost

The Program

The last step is to expand the pseudocode into the nal program, which is shown in

Program 3-27.

Program 3-27

 1 // This program is used by General Crates, Inc. to calculate

 2 // the volume, cost, customer charge, and profit of a crate

 3 // of any size. It calculates this data from user input, which

 4 // consists of the dimensions of the crate.

 5 #include <iostream>

 6 #include <iomanip>

 7 using namespace std;

 8

 9 int main()

 10 {

 11 // Constants for cost and amount charged

 12 const double COST_PER_CUBIC_FOOT = 0.23;

 13 const double CHARGE_PER_CUBIC_FOOT = 0.5;

 14

 15 // Variables

 16 double length, // The crate's length

 17 width, // The crate's width

 18 height, // The crate's height

 19 volume, // The volume of the crate

 20 cost, // The cost to build the crate

 21 charge, // The customer charge for the crate

 22 profit; // The profit made on the crate

 23

 24 // Set the desired output formatting for numbers.

 25 cout << setprecision(2) << fixed << showpoint;

 26

(program continues)

M03_GADD6253_07_SE_C03 Page 135 Tuesday, January 4, 2011 8:29 PM

136

Chapter 3 Expressions and Interactivity

 27 // Prompt the user for the crate's length, width, and height

 28 cout << "Enter the dimensions of the crate (in feet):\n";

 29 cout << "Length: ";

 30 cin >> length;

 31 cout << "Width: ";

 32 cin >> width;

 33 cout << "Height: ";

 34 cin >> height;

 35

 36 // Calculate the crate's volume, the cost to produce it,

 37 // the charge to the customer, and the profit.

 38 volume = length * width * height;

 39 cost = volume * COST_PER_CUBIC_FOOT;

 40 charge = volume * CHARGE_PER_CUBIC_FOOT;

 41 profit = charge - cost;

 42

 43 // Display the calculated data.

 44 cout << "The volume of the crate is ";

 45 cout << volume << " cubic feet.\n";

 46 cout << "Cost to build: $" << cost << endl;

 47 cout << "Charge to customer: $" << charge << endl;

 48 cout << "Profit: $" << profit << endl;

 49 return 0;

 50 }

Program Output with Example Input Shown in Bold

Enter the dimensions of the crate (in feet):

Length:

10 [Enter]

Width:

8 [Enter]

Height:

4 [Enter]

The volume of the crate is 320.00 cubic feet.

Cost to build: $73.60

Charge to customer: $160.00

Profit: $86.40

Program Output with Different Example Input Shown in Bold

Enter the dimensions of the crate (in feet):

Length:

12.5 [Enter]

Width:

10.5 [Enter]

Height:

8 [Enter]

The volume of the crate is 1050.00 cubic feet.

Cost to build: $241.50

Charge to customer: $525.00

Profit: $283.50

Program 3-27

(continued)

M03_GADD6253_07_SE_C03 Page 136 Thursday, January 13, 2011 7:55 PM

137

Review Questions and Exercises

Short Answer

1. Assume that the following variables are de ned:

int age;

double pay;

char section;

Write a single cin statement that will read input into each of these variables.

2. Assume a string object has been de ned as follows:

string description;

A) Write a cin statement that reads in a one-word string.

B) Write a statement that reads in a string that can contain multiple words separated

by blanks.

3. What header les must be included in the following program?

int main()

{

 double amount = 89.7;

 cout << showpoint << fixed;

 cout << setw(8) << amount << endl;

 return 0;

}

4. Complete the following table by writing the value of each expression in the Value column.

5. Write C++ expressions for the following algebraic expressions:

Expression Value

28 / 4 - 2

6 + 12 * 2 - 8

4 + 8 * 2

6 + 17 % 3 - 2

2 + 22 * (9 - 7)

(8 + 7) * 2

(16 + 7) % 2 - 1

12 / (10 - 6)

(19 - 3) * (2 + 2) / 4

a 12x=

z 5x 14y 6k+ +=

y x
4

=

g
h 12+

4k
----------------=

c
a

3

b
2
k

4
------------=

Review Questions and Exercises

M03_GADD6253_07_SE_C03 Page 137 Tuesday, January 4, 2011 8:29 PM

138 Chapter 3 Expressions and Interactivity

6. Assume a program has the following variable de nitions:

int units;

float mass;

double weight;

and the following statement:

weight = mass * units;

Which automatic data type conversion will take place?

A) mass is demoted to an int, units remains an int, and the result of mass * units is

an int.

B) units is promoted to a float, mass remains a float, and the result of mass *

units is a float.

C) units is promoted to a float, mass remains a float, and the result of mass *

units is a double.

7. Assume a program has the following variable de nitions:

int a, b = 2;

float c = 4.2;

and the following statement:

a = b * c;

What value will be stored in a?

A) 8.4

B) 8

C) 0

D) None of the above

8. Assume that qty and salesReps are both integers. Use a type cast expression to

rewrite the following statement so it will no longer perform integer division.

unitsEach = qty / salesReps;

9. Rewrite the following variable de nition so the variable is a named constant.

int rate;

10. Complete the following table by writing statements with combined assignment opera-

tors in the right-hand column. The statements should be equivalent to the statements

in the left-hand column.

Statements with

Assignment Operator

Statements with

Combined Assignment Operator

x = x + 5;

total = total + subtotal;

dist = dist / rep;

ppl = ppl * period;

inv = inv - shrinkage;

num = num % 2;

M03_GADD6253_07_SE_C03 Page 138 Tuesday, January 4, 2011 8:29 PM

139

11. Write a multiple assignment statement that can be used instead of the following group

of assignment statements:

east = 1;

west = 1;

north = 1;

south = 1;

12. Write a cout statement so the variable divSales is displayed in a eld of 8 spaces, in

xed point notation, with a precision of 2 decimal places. The decimal point should

always be displayed.

13. Write a cout statement so the variable totalAge is displayed in a eld of 12 spaces,

in xed point notation, with a precision of 4 decimal places.

14. Write a cout statement so the variable population is displayed in a eld of 12

spaces, left-justi ed, with a precision of 8 decimal places. The decimal point should

always be displayed.

Fill-in-the-Blank

15. The __________ library function returns the cosine of an angle.

16. The __________ library function returns the sine of an angle.

17. The __________ library function returns the tangent of an angle.

18. The __________ library function returns the exponential function of a number.

19. The __________ library function returns the remainder of a oating point division.

20. The __________ library function returns the natural logarithm of a number.

21. The __________ library function returns the base-10 logarithm of a number.

22. The __________ library function returns the value of a number raised to a power.

23. The __________ library function returns the square root of a number.

24. The __________ le must be included in a program that uses the mathematical functions.

Algorithm Workbench

25. A retail store grants its customers a maximum amount of credit. Each customer s

available credit is his or her maximum amount of credit minus the amount of credit

used. Write a pseudocode algorithm for a program that asks for a customer s maxi-

mum amount of credit and amount of credit used. The program should then display

the customer s available credit.

After you write the pseudocode algorithm, convert it to a complete C++ program.

26. Write a pseudocode algorithm for a program that calculates the total of a retail sale.

The program should ask for the amount of the sale and the sales tax rate. The sales

tax rate should be entered as a oating-point number. For example, if the sales tax

rate is 6 percent, the user should enter 0.06. The program should display the amount

of sales tax and the total of the sale.

After you write the pseudocode algorithm, convert it to a complete C++ program.

Review Questions and Exercises

M03_GADD6253_07_SE_C03 Page 139 Tuesday, January 4, 2011 8:29 PM

140 Chapter 3 Expressions and Interactivity

27. Write a pseudocode algorithm for a program that asks the user to enter a golfer s

score for three games of golf, and then displays the average of the three scores.

After you write the pseudocode algorithm, convert it to a complete C++ program.

Find the Errors

Each of the following programs has some errors. Locate as many as you can.

28. using namespace std;

int main ()

{

 double number1, number2, sum;

 Cout << "Enter a number: ";

 Cin << number1;

 Cout << "Enter another number: ";

 Cin << number2;

 number1 + number2 = sum;

 Cout "The sum of the two numbers is " << sum

 return 0;

}

29. #include <iostream>

using namespace std;

int main()

{

 int number1, number2;

 float quotient;

 cout << "Enter two numbers and I will divide\n";

 cout << "the first by the second for you.\n";

 cin >> number1, number2;

 quotient = float<static_cast>(number1) / number2;

 cout << quotient

 return 0;

}

30. #include <iostream>;

using namespace std;

int main()

{

 const int number1, number2, product;

 cout << "Enter two numbers and I will multiply\n";

 cout << "them for you.\n";

 cin >> number1 >> number2;

 product = number1 * number2;

 cout << product

 return 0;

}

M03_GADD6253_07_SE_C03 Page 140 Tuesday, January 4, 2011 8:29 PM

141

31. #include <iostream>;

using namespace std;

main

{

 int number1, number2;

 cout << "Enter two numbers and I will multiply\n"

 cout << "them by 50 for you.\n"

 cin >> number1 >> number2;

 number1 =* 50;

 number2 =* 50;

 cout << number1 << " " << number2;

 return 0;

}

32. #include <iostream>;

using namespace std;

main

{

 double number, half;

 cout << "Enter a number and I will divide it\n"

 cout << "in half for you.\n"

 cin >> number1;

 half =/ 2;

 cout << fixedpoint << showpoint << half << endl;

 return 0;

}

33. #include <iostream>;

using namespace std;

int main()

{

 char name, go;

 cout << "Enter your name: ";

 getline >> name;

 cout << "Hi " << name << endl;

 return 0;

}

Predict the Output

What will each of the following programs display? (Some should be hand traced, and

require a calculator.)

34. (Assume the user enters 38700. Use a calculator.)
#include <iostream>

using namespace std;

Review Questions and Exercises

M03_GADD6253_07_SE_C03 Page 141 Tuesday, January 4, 2011 8:29 PM

142 Chapter 3 Expressions and Interactivity

int main()

{

 double salary, monthly;

 cout << "What is your annual salary? ";

 cin >> salary;

 monthly = static_cast<int>(salary) / 12;

 cout << "Your monthly wages are " << monthly << endl;

 return 0;

}

35. #include <iostream>

using namespace std;

int main()

{

 long x, y, z;

 x = y = z = 4;

 x += 2;

 y -= 1;

 z *= 3;

 cout << x << " " << y << " " << z << endl;

 return 0;

}

36. (Assume the user enters George Washington.)
#include <iostream>

#include <iomanip>

#include <string>

using namespace std;

int main()

{

 string userInput;

 cout << "What is your name? ";

 getline(cin, userInput);

 cout << "Hello " << userInput << endl;

 return 0;

}

37. (Assume the user enters 36720152. Use a calculator.)
#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

 long seconds;

 double minutes, hours, days, months, years;

 cout << "Enter the number of seconds that have\n";

 cout << "elapsed since some time in the past and\n";

 cout << "I will tell you how many minutes, hours,\n";

 cout << "days, months, and years have passed: ";

 cin >> seconds;

M03_GADD6253_07_SE_C03 Page 142 Tuesday, January 4, 2011 8:29 PM

143

 minutes = seconds / 60;

 hours = minutes / 60;

 days = hours / 24;

 years = days / 365;

 months = years * 12;

 cout << setprecision(4) << fixed << showpoint << right;

 cout << "Minutes: " << setw(6) << minutes << endl;

 cout << "Hours: " << setw(6) << hours << endl;

 cout << "Days: " << setw(6) << days << endl;

 cout << "Months: " << setw(6) << months << endl;

 cout << "Years: " << setw(6) << years << endl;

 return 0;

}

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. Miles per Gallon

Write a program that calculates a car s gas mileage. The program should ask the user
to enter the number of gallons of gas the car can hold, and the number of miles it can
be driven on a full tank. It should then display the number of miles that may be driven
per gallon of gas.

2. Stadium Seating

There are three seating categories at a stadium. For a softball game, Class A seats cost
$15, Class B seats cost $12, and Class C seats cost $9. Write a program that asks how
many tickets for each class of seats were sold, then displays the amount of income
generated from ticket sales. Format your dollar amount in xed-point notation, with
two decimal places of precision, and be sure the decimal point is always displayed.

3. Test Average

Write a program that asks for ve test scores. The program should calculate the aver-
age test score and display it. The number displayed should be formatted in xed-point
notation, with one decimal point of precision.

4. Average Rainfall

Write a program that calculates the average rainfall for three months. The program
should ask the user to enter the name of each month, such as June or July, and the
amount of rain (in inches) that fell each month. The program should display a mes-
sage similar to the following:

The average rainfall for June, July, and August is 6.72 inches.

5. Box Of ce

A movie theater only keeps a percentage of the revenue earned from ticket sales. The
remainder goes to the movie distributor. Write a program that calculates a theater s
gross and net box of ce pro t for a night. The program should ask for the name of
the movie, and how many adult and child tickets were sold. (The price of an adult
ticket is $6.00 and a child s ticket is $3.00.) It should display a report similar to

VideoNote

Solving the
Stadium
Seating
Problem

Programming Challenges

M03_GADD6253_07_SE_C03 Page 143 Tuesday, January 4, 2011 8:29 PM

144 Chapter 3 Expressions and Interactivity

Movie Name: Wheels of Fury
Adult Tickets Sold: 382
Child Tickets Sold: 127
Gross Box Of ce Pro t: $ 2673.00
Net Box Of ce Pro t: $ 534.60
Amount Paid to Distributor: $ 2138.40

6. How Many Widgets?

The Yukon Widget Company manufactures widgets that weigh 9.2 pounds each.
Write a program that calculates how many widgets are stacked on a pallet, based on
the total weight of the pallet. The program should ask the user how much the pallet
weighs by itself and with the widgets stacked on it. It should then calculate and dis-
play the number of widgets stacked on the pallet.

7. How Many Calories?

A bag of cookies holds 40 cookies. The calorie information on the bag claims that
there are 10 servings in the bag and that a serving equals 300 calories. Write a pro-
gram that asks the user to input how many cookies he or she actually ate and then
reports how many total calories were consumed.

8. How Much Insurance?

Many nancial experts advise that property owners should insure their homes or build-
ings for at least 80 percent of the amount it would cost to replace the structure. Write a
program that asks the user to enter the replacement cost of a building and then displays
the minimum amount of insurance he or she should buy for the property.

9. Automobile Costs

Write a program that asks the user to enter the monthly costs for the following
expenses incurred from operating his or her automobile: loan payment, insurance,
gas, oil, tires, and maintenance. The program should then display the total monthly
cost of these expenses, and the total annual cost of these expenses.

10. Celsius to Fahrenheit

Write a program that converts Celsius temperatures to Fahrenheit temperatures. The
formula is

F is the Fahrenheit temperature and C is the Celsius temperature.

11. Currency

Write a program that will convert U.S. dollar amounts to Japanese yen and to euros, stor-
ing the conversion factors in the constants YEN_PER_DOLLAR and EUROS_PER_DOLLAR.
To get the most up-to-date exchange rates, search the Internet using the term

NOTE: Assume the theater keeps 20 percent of the gross box of ce pro t.

F
9
5
---C 32+=

M03_GADD6253_07_SE_C03 Page 144 Tuesday, January 4, 2011 8:29 PM

145

currency exchange rate . If you cannot nd the most recent exchange rates, use
the following:

1 Dollar = 83.14 Yen
1 Dollar = 0.7337 Euros

Format your currency amounts in xed-point notation, with two decimal places of
precision, and be sure the decimal point is always displayed.

12. Monthly Sales Tax

A retail company must le a monthly sales tax report listing the sales for the month
and the amount of sales tax collected. Write a program that asks for the month, the
year, and the total amount collected at the cash register (that is, sales plus sales tax).
Assume the state sales tax is 4 percent and the county sales tax is 2 percent.

If the total amount collected is known and the total sales tax is 6 percent, the amount
of product sales may be calculated as:

S is the product sales and T is the total income (product sales plus sales tax).

The program should display a report similar to

Month: October

Total Collected: $ 26572.89

Sales: $ 25068.76

County Sales Tax: $ 501.38

State Sales Tax: $ 1002.75

Total Sales Tax: $ 1504.13

13. Property Tax

A county collects property taxes on the assessment value of property, which is 60 per-
cent of the property s actual value. If an acre of land is valued at $10,000, its assessment
value is $6,000. The property tax is then 64¢ for each $100 of the assessment value. The
tax for the acre assessed at $6,000 will be $38.40. Write a program that asks for the
actual value of a piece of property and displays the assessment value and property tax.

14. Senior Citizen Property Tax

Madison County provides a $5,000 homeowner exemption for its senior citizens.
For example, if a senior s house is valued at $158,000 its assessed value would be
$94,800, as explained above. However, he would only pay tax on $89,800. At last
year s tax rate of $2.64 for each $100 of assessed value, the property tax would be
$2,370.72. In addition to the tax break, senior citizens are allowed to pay their prop-
erty tax in four equal payments. The quarterly payment due on this property would
be $592.68. Write a program that asks the user to input the actual value of a piece of
property and the current tax rate for each $100 of assessed value. The program
should then calculate and report how much annual property tax a senior homeowner
will be charged for this property and what the quarterly tax bill will be.

S
T

1.06
-----------=

Programming Challenges

M03_GADD6253_07_SE_C03 Page 145 Tuesday, January 4, 2011 8:29 PM

146 Chapter 3 Expressions and Interactivity

15. Math Tutor

Write a program that can be used as a math tutor for a young student. The program

should display two random numbers to be added, such as

 247

 + 129

The program should then pause while the student works on the problem. When the

student is ready to check the answer, he or she can press a key and the program will

display the correct solution:

 247

 + 129

 376

16. Interest Earned

Assuming there are no deposits other than the original investment, the balance in a

savings account after one year may be calculated as

Principal is the balance in the savings account, Rate is the interest rate, and T is the

number of times the interest is compounded during a year (T is 4 if the interest is com-

pounded quarterly).

Write a program that asks for the principal, the interest rate, and the number of times

the interest is compounded. It should display a report similar to

Interest Rate: 4.25%

Times Compounded: 12

Principal: $ 1000.00

Interest: $ 43.34

Amount in Savings: $ 1043.34

17. Monthly Payments

The monthly payment on a loan may be calculated by the following formula:

Rate is the monthly interest rate, which is the annual interest rate divided by 12.

(12% annual interest would be 1 percent monthly interest.) N is the number of pay-

ments and L is the amount of the loan. Write a program that asks for these values and

displays a report similar to

Loan Amount: $ 10000.00

Monthly Interest Rate: 1%

Number of Payments: 36

Monthly Payment: $ 332.14

Amount Paid Back: $ 11957.15

Interest Paid: $ 1957.15

Amount Principal * 1
Rate

T
-------+

T

=

Payment
Rate * 1 Rate+()

N

1 Rate+()
N

1()

------------------------------ * L=

M03_GADD6253_07_SE_C03 Page 146 Tuesday, January 4, 2011 8:29 PM

147

18. Pizza Pi

Joe s Pizza Palace needs a program to calculate the number of slices a pizza of any size
can be divided into. The program should perform the following steps:

A) Ask the user for the diameter of the pizza in inches.

B) Calculate the number of slices that may be taken from a pizza of that size.

C) Display a message telling the number of slices.

To calculate the number of slices that may be taken from the pizza, you must know
the following facts:

Each slice should have an area of 14.125 inches.
To calculate the number of slices, simply divide the area of the pizza by 14.125.
The area of the pizza is calculated with this formula:

 Area = *r2

Make sure the output of the program displays the number of slices in xed point
notation, rounded to one decimal place of precision. Use a named constant for pi.

19. How Many Pizzas?

Modify the program you wrote in Programming Challenge 18 (Pizza Pi) so that it
reports the number of pizzas you need to buy for a party if each person attending is
expected to eat an average of four slices. The program should ask the user for the
number of people who will be at the party and for the diameter of the pizzas to be
ordered. It should then calculate and display the number of pizzas to purchase.

20. Angle Calculator

Write a program that asks the user for an angle, entered in radians. The program
should then display the sine, cosine, and tangent of the angle. (Use the sin, cos, and
tan library functions to determine these values.) The output should be displayed in

xed-point notation, rounded to four decimal places of precision.

21. Stock Transaction Program

Last month Joe purchased some stock in Acme Software, Inc. Here are the details of
the purchase:

The number of shares that Joe purchased was 1,000.
When Joe purchased the stock, he paid $32.87 per share.
Joe paid his stock broker a commission that amounted to 2% of the amount he
paid for the stock.

Two weeks later Joe sold the stock. Here are the details of the sale:

The number of shares that Joe sold was 1,000.
He sold the stock for $33.92 per share.
He paid his stock broker another commission that amounted to 2% of the
amount he received for the stock.

NOTE: * is the Greek letter pi. 3.14159 can be used as its value. The variable r is the
radius of the pizza. Divide the diameter by 2 to get the radius.

Programming Challenges

M03_GADD6253_07_SE_C03 Page 147 Tuesday, January 4, 2011 8:29 PM

148 Chapter 3 Expressions and Interactivity

Write a program that displays the following information:

* The amount of money Joe paid for the stock.

* The amount of commission Joe paid his broker when he bought the stock.

* The amount that Joe sold the stock for.

* The amount of commission Joe paid his broker when he sold the stock.

* Display the amount of profit that Joe made after selling his stock and paying the

two commissions to his broker. (If the amount of profit that your program dis-

plays is a negative number, then Joe lost money on the transaction.)

22. Word Game

Write a program that plays a word game with the user. The program should ask the

user to enter the following:

* His or her name

* His or her age

* The name of a city

* The name of a college

* A profession

* A type of animal

* A pet s name

After the user has entered these items, the program should display the following story,

inserting the user s input into the appropriate locations:

There once was a person named NAME who lived in CITY. At the age of

AGE, NAME went to college at COLLEGE. NAME graduated and went to work

as a PROFESSION. Then, NAME adopted a(n) ANIMAL named PETNAME. They

both lived happily ever after!

M03_GADD6253_07_SE_C03 Page 148 Tuesday, January 4, 2011 8:29 PM

149

C
H

A
P

T
E

R

4.1

Relational Operators

CONCEPT:

Relational operators allow you to compare numeric and

char

 values and

determine whether one is greater than, less than, equal to, or not equal to

another.

So far, the programs you have written follow this simple scheme:

Gather input from the user.

Perform one or more calculations.

Display the results on the screen.

Computers are good at performing calculations, but they are also quite adept at compar-

ing values to determine if one is greater than, less than, or equal to the other. These types

of operations are valuable for tasks such as examining sales gures, determining pro t and

TOPICS

4.1 Relational Operators

4.2 The

if

 Statement

4.3 Expanding the

if

 Statement

4.4 The

if/else

 Statement

4.5 Nested

if

 Statements

4.6 The

if/else

if

 Statement

4.7 Flags

4.8 Logical Operators

4.9 Checking Numeric Ranges

with Logical Operators

4.10 Menus

4.11 Focus on Software Engineering:

Validating User Input

4.12 Comparing Characters and Strings

4.13 The Conditional Operator

4.14 The

switch

 Statement

4.15 More About Blocks and Variable

Scope

4

Making Decisions

M04_GADD6253_07_SE_C04 Page 149 Tuesday, January 4, 2011 9:03 PM

150

Chapter 4 Making Decisions

loss, checking a number to ensure it is within an acceptable range, and validating the input

given by a user.

Numeric data is compared in C++ by using relational operators. Each relational operator

determines whether a speci c relationship exists between two values. For example, the

greater-than operator (>) determines if a value is greater than another. The equality opera-

tor (==) determines if two values are equal. Table 4-1 lists all of C++ s relational operators.

All of the relational operators are binary, which means they use two operands. Here is an

example of an expression using the greater-than operator:

x > y

This expression is called a

relational expression

. It is used to determine whether

x

 is

greater than

y

. The following expression determines whether

x

 is less than

y:

x < y

Table 4-2 shows examples of several relational expressions that compare the variables

x

 and

y.

The Value of a Relationship

So, how are relational expressions used in a program? Remember, all expressions have a

value. Relational expressions are also known as

Boolean expressions

, which means their

value can only be

true

 or

false

. If

x

 is greater than

y

, the expression

x

>

y

 will be true,

while the expression

y

==

x

 will be false.

Table 4-1

Relational Operators Meaning

>

<

>=

<=

==

!=

Greater than

Less than

Greater than or equal to

Less than or equal to

Equal to

Not equal to

Table 4-2

Expression What the Expression Means

x > y

x < y

x >= y

x <= y

x == y

x != y

Is

x

 greater than

y

?

Is

x

 less than

y

?

Is

x

 greater than or equal to

y

?

Is

x

 less than or equal to

y

?

Is

x

 equal to

y

?

Is

x

 not equal to

y

?

NOTE:

All the relational operators have left-to-right associativity. Recall that

associativity is the order in which an operator works with its operands.

M04_GADD6253_07_SE_C04 Page 150 Tuesday, January 4, 2011 9:03 PM

4.1 Relational Operators

151

The

==

 operator determines whether the operand on its left is equal to the operand on its

right. If both operands have the same value, the expression is true. Assuming that

a

 is 4,

the following expression is true:

a == 4

But the following is false:

a == 2

A couple of the relational operators actually test for two relationships. The

>=

 operator

determines whether the operand on its left is greater than

or

equal to the operand on the

right. Assuming that

a

is 4,

b

is 6, and

c

is 4, both of the following expressions are true:

b >= a

a >= c

But the following is false:

a >= 5

The

<=

 operator determines whether the operand on its left is less than

or

equal to the

operand on its right. Once again, assuming that

a

 is 4,

b

 is 6, and

c

 is 4, both of the fol-

lowing expressions are true:

a <= c

b <= 10

But the following is false:

b <= a

The last relational operator is

!=

, which is the not-equal operator. It determines whether

the operand on its left is not equal to the operand on its right, which is the opposite of the

==

 operator. As before, assuming

a

 is 4,

b

 is 6, and

c

 is 4, both of the following expres-

sions are true:

a != b

b != c

These expressions are true because

a

 is

not

 equal to

b

 and

b is not equal to c. But the fol-

lowing expression is false because a is equal to c:

a != c

Table 4-3 shows other relational expressions and their true or false values.

WARNING! Notice the equality operator is two = symbols together. Don t confuse this

operator with the assignment operator, which is one = symbol. The == operator determines

whether a variable is equal to another value, but the = operator assigns the value on the

operator s right to the variable on its left. There will be more about this later in the chapter.

M04_GADD6253_07_SE_C04 Page 151 Tuesday, January 4, 2011 9:03 PM

152

Chapter 4 Making Decisions

What Is Truth?

The question what is truth? is one you would expect to nd in a philosophy book, not a

C++ programming text. It s a good question for us to consider, though. If a relational

expression can be either true or false, how are those values represented internally in a pro-

gram? How does a computer store

true

in memory? How does it store

false

?

As you saw in Program 2-17, those two abstract states are converted to numbers. In C++,

relational expressions represent true states with the number 1 and false states with the

number 0.

To illustrate this more fully, look at Program 4-1.

Table 4-3 (Assume

x

 is 10 and

y

 is 7.)

Expression Value

x < y

False, because

x

 is not less than

y

.

x > y

True, because

x

 is greater than

y

.

x >= y

True, because

x

 is greater than or equal to

y

.

x <= y

False, because

x

 is not less than or equal to

y

.

y != x

True, because

y

 is not equal to

x

.

NOTE:

As you will see later in this chapter, 1 is not the only value regarded as true.

Program 4-1

 1 // This program displays the values of true and false states.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 bool trueValue, falseValue;

 8 int x = 5, y = 10;

 9

 10 trueValue = x < y;

 11 falseValue = y == x;

 12

 13 cout << "True is " << trueValue << endl;

 14 cout << "False is " << falseValue << endl;

 15 return 0;

 16 }

Program Output

True is 1

False is 0

M04_GADD6253_07_SE_C04 Page 152 Thursday, January 13, 2011 7:59 PM

4.1 Relational Operators 153

Let s examine the statements containing the relational expressions, in lines 10 and 11, a

little closer:

trueValue = x < y;

falseValue = y == x;

These statements may seem odd because they are assigning the value of a comparison to a

variable. In line 10 the variable trueValue is being assigned the result of x < y. Since x is

less than y, the expression is true, and the variable trueValue is assigned the value 1. In

line 11 the expression y == x is false, so the variable falseValue is set to 0. Table 4-4

shows examples of other statements using relational expressions and their outcomes.

When writing statements such as these, it sometimes helps to enclose the relational expres-

sion in parentheses, such as:

trueValue = (x < y);

falseValue = (y == x);

As interesting as relational expressions are, we ve only scratched the surface of how to use

them. In this chapter s remaining sections you will see how to get the most from relational

expressions by using them in statements that take action based on the results of the comparison.

Checkpoint

 www.myprogramminglab.com

4.1 Assuming x is 5, y is 6, and z is 8, indicate by circling the T or F whether each of

the following relational expressions is true or false:

A) x == 5 T F

B) 7 <= (x + 2) T F

C) z < 4 T F

D) (2 + x) != y T F

E) z != 4 T F

F) x >= 9 T F

G) x <= (y * 2) T F

NOTE: Relational expressions have a higher precedence than the assignment operator. In

the statement

z = x < y;

the expression x < y is evaluated rst, and then its value is assigned to z.

Table 4-4 (Assume x is 10, y is 7, and z, a, and b are ints or bools)

Statement Outcome

z = x < y z is assigned 0 because x is not less than y.

cout << (x > y); Displays 1 because x is greater than y.

a = x >= y; a is assigned 1 because x is greater than or equal to y.

cout << (x <= y); Displays 0 because x is not less than or equal to y.

b = y != x; b is assigned 1 because y is not equal to x.

M04_GADD6253_07_SE_C04 Page 153 Tuesday, January 4, 2011 9:03 PM

154 Chapter 4 Making Decisions

4.2 Indicate whether the following statements about relational expressions are correct

or incorrect.

A) x <= y is the same as y > x.

B) x != y is the same as y >= x.

C) x >= y is the same as y <= x.

4.3 Answer the following questions with a yes or no.

A) If it is true that x > y and it is also true that x < z, does that mean y < z is

true?

B) If it is true that x >= y and it is also true that z == x, does that mean that z

== y is true?

C) If it is true that x != y and it is also true that x != z, does that mean that

z != y is true?

4.4 What will the following program display?

#include <iostream>

using namespace std;

int main ()

{

 int a = 0, b = 2, x = 4, y = 0;

 cout << (a == b) << endl;

 cout << (a != y) << endl;

 cout << (b <= x) << endl;

 cout << (y > a) << endl;

 return 0;

}

4.2 The if Statement

CONCEPT: The if statement can cause other statements to execute only under

certain conditions.

You might think of the statements in a procedural program as individual steps taken as

you are walking down a road. To reach the destination, you must start at the beginning

and take each step, one after the other, until you reach the destination. The programs you

have written so far are like a path of execution for the program to follow.

The type of code in Figure 4-1 is called a sequence structure, because the statements are

executed in sequence, without branching off in another direction. Programs often need

more than one path of execution, however. Many algorithms require a program to execute

some statements only under certain circumstances. This can be accomplished with a deci-

sion structure.

In a decision structure s simplest form, a speci c action is taken only when a speci c condi-

tion exists. If the condition does not exist, the action is not performed. The owchart in

Figure 4-2 shows the logic of a decision structure. The diamond symbol represents a yes/no

VideoNote

The if

Statement

M04_GADD6253_07_SE_C04 Page 154 Tuesday, January 4, 2011 9:03 PM

4.2 The if Statement 155

question or a true/false condition. If the answer to the question is yes (or if the condition is

true), the program ow follows one path, which leads to an action being performed. If the

answer to the question is no (or the condition is false), the program ow follows another

path, which skips the action.

In the owchart, the action Wear a coat is performed only when it is cold outside. If it is

not cold outside, the action is skipped. The action is conditionally executed because it is

performed only when a certain condition (cold outside) exists. Figure 4-3 shows a more

elaborate owchart, where three actions are taken only when it is cold outside.

We perform mental tests like these every day. Here are some other examples:

If the car is low on gas, stop at a service station and get gas.

If it s raining outside, go inside.

If you re hungry, get something to eat.

Figure 4-1

Figure 4-2

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

// A program to calculate the area of a rectangle

#include <iostream>

using namespace std;

int main()

{

 double length, width, area;

 cout << "Enter the length of the rectangle: ";

 cin >> length;

 cout << "Enter the width of the rectangle: ";

 cin >> width;

 area = length * width;

 cout << "The area is: " << area << endl

 return 0;

}

Wear a coat.

Yes

No

Is it cold

outside?

M04_GADD6253_07_SE_C04 Page 155 Tuesday, January 4, 2011 9:03 PM

156 Chapter 4 Making Decisions

One way to code a decision structure in C++ is with the if statement. Here is the general

format of the if statement:

The if statement is simple in the way it works: If the value of the expression inside the

parentheses is true, the very next statement is executed. Otherwise, it is skipped. The

statement is conditionally executed because it only executes under the condition that the

expression in the parentheses is true. Program 4-2 shows an example of an if statement.

The user enters three test scores and the program calculates their average. If the average is

greater than 95, the program congratulates the user on obtaining a high score.

Figure 4-3

 if (expression)

 statement;

Program 4-2

 1 // This program averages three test scores

 2 #include <iostream>

 3 #include <iomanip>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int HIGH_SCORE = 95; // A high score is 95 or greater

 9 int score1, score2, score3; // To hold three test scores

 10 double average; // TO hold the average score

 11

Wear a coat.

No

YesIs it cold

outside?

Wear a hat.

Wear gloves.

M04_GADD6253_07_SE_C04 Page 156 Tuesday, January 4, 2011 9:03 PM

4.2 The if Statement 157

Lines 22 and 23 cause the congratulatory message to be printed:

if (average > HIGH_SCORE)

cout << "Congratulations! That's a high score!\n";

The cout statement in line 23 is executed only if the average is greater than 95, the value

of the HIGH_SCORE constant. If the average is not greater than 95, the cout statement is

skipped. Figure 4-4 shows the logic of this if statement.

Table 4-5 shows other examples of if statements and their outcomes.

 12 // Get the three test scores.

 13 cout << "Enter 3 test scores and I will average them: ";

 14 cin >> score1 >> score2 >> score3;

 15

 16 // Calculate and display the average score.

 17 average = (score1 + score2 + score3) / 3.0;

 18 cout << fixed << showpoint << setprecision(1);

 19 cout << "Your average is " << average << endl;

 20

 21 // If the average is a high score, congratulate the user.

 22 if (average > HIGH_SCORE)

 23 cout << "Congratulations! That's a high score!\n";

 24 return 0;

 25 }

Program Output with Example Input Shown in Bold

Enter 3 test scores and I will average them: 80 90 70 [Enter]
Your average is 80.0

Program Output with Different Example Input Shown in Bold

Enter 3 test scores and I will average them: 100 100 100 [Enter]
Your average is 100.0

Congratulations! That's a high score!

Figure 4-4

Display "Congratulations!

That's a high score!"

True

False

average

> HIGH_SCORE

M04_GADD6253_07_SE_C04 Page 157 Tuesday, January 4, 2011 9:03 PM

158 Chapter 4 Making Decisions

Be Careful with Semicolons

Semicolons do not mark the end of a line, but the end of a complete C++ statement. The

if statement isn t complete without the conditionally executed statement that comes after

it. So, you must not put a semicolon after the if (expression) portion of an if

statement.

If you inadvertently put a semicolon after the if part, the compiler will assume you are

placing a null statement there. The null statement is an empty statement that does noth-

ing. This will prematurely terminate the if statement, which disconnects it from the

statement that follows it. The statement following the if will always execute, as shown

in Program 4-3.

Table 4-5

Statement Outcome

if (hours > 40)

overTime = true;

Assigns true to the bool variable overTime only

if hours is greater than 40

if (value > 32)

cout << "Invalid number\n";

Displays the message Invalid number only if

value is greater than 32

if (overTime == true)

payRate *= 2;

Multiplies payRate by 2 only if overTime is

equal to true

Program 4-3

 1 // This program demonstrates how a misplaced semicolon

 2 // prematurely terminates an if statement.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 int x = 0, y = 10;

 9

 10 cout << "x is " << x << " and y is " << y << endl;

 11 if (x > y); // Error! Misplaced semicolon

 12 cout << "x is greater than y\n"; //This is always executed.

 13 return 0;

 14 }

Program Output

x is 0 and y is 10

x is greater than y

if (expression)

 statement;

No semicolon goes here.

Semicolon goes here.

M04_GADD6253_07_SE_C04 Page 158 Tuesday, January 4, 2011 9:03 PM

4.2 The if Statement 159

Programming Style and the if Statement

Even though if statements usually span more than one line, they are technically one long

statement. For instance, the following if statements are identical except in style:

if (a >= 100)

 cout << "The number is out of range.\n";

if (a >= 100) cout << "The number is out of range.\n";

In both the examples above, the compiler considers the if part and the cout statement as

one unit, with a semicolon properly placed at the end. Indention and spacing are for the

human readers of a program, not the compiler. Here are two important style rules you

should adopt for writing if statements:

The conditionally executed statement should appear on the line after the if

statement.

The conditionally executed statement should be indented one level from the

if statement.

By indenting the conditionally executed statement you are causing it to stand out visually.

This is so you can tell at a glance what part of the program the if statement executes.

This is a standard way of writing if statements and is the method you should use.

Comparing Floating-Point Numbers

Because of the way that oating-point numbers are stored in memory, rounding errors

sometimes occur. This is because some fractional numbers cannot be exactly represented

using binary. So, you should be careful when using the equality operator (==) to compare

oating point numbers. For example, Program 4-4 uses two double variables, a and b.

Both variables are initialized to the value 1.5. Then, the value 0.0000000000000001 is

added to a. This should make a s contents different than b s contents. Because of a round-

off error, however, the two variables are still the same.

NOTE: In most editors, each time you press the tab key, you are indenting one level.

NOTE: Indentation and spacing are for the human readers of a program, not the

compiler. Even though the cout statement following the if statement in Program 4-3 is

indented, the semicolon still terminates the if statement.

Program 4-4

 1 // This program demonstrates how floating-point

 2 // round-off errors can make equality operations unreliable.

 3 #include <iostream>

 4 using namespace std;

 5

(program continues)

M04_GADD6253_07_SE_C04 Page 159 Tuesday, January 4, 2011 9:03 PM

160 Chapter 4 Making Decisions

To prevent round-off errors from causing this type of problem, you should stick with

greater-than and less-than comparisons with oating-point numbers.

And Now Back to Truth

Now that you ve gotten your feet wet with relational expressions and if statements, let s

look at the subject of truth again. You have seen that a relational expression has the value

1 when it is true and 0 when false. In the world of the if statement, however, the concept

of truth is expanded. 0 is still false, but all values other than 0 are considered true. This

means that any value, even a negative number, represents true as long as it is not 0.

Just as in real life, truth is a complicated thing. Here is a summary of the rules you have

seen so far:

When a relational expression is true it has the value 1.

When a relational expression is false it has the value 0.

Any expression that has the value 0 is considered false by the if statement. This

includes the bool value false, which is equivalent to 0.

Any expression that has any value other than 0 is considered true by the if state-

ment. This includes the bool value true, which is equivalent to 1.

The fact that the if statement considers any nonzero value as true opens many possibili-

ties. Relational expressions are not the only conditions that may be tested. For example,

the following is a legal if statement in C++:

if (value)

cout << "It is True!";

The if statement above does not test a relational expression, but rather the contents of a

variable. If the variable, value, contains any number other than 0, the message It is

True! will be displayed. If value is set to 0, however, the cout statement will be

skipped. Here is another example:

if (x + y)

cout << "It is True!";

 6 int main()

 7 {

 8 double a = 1.5; // a is 1.5.

 9 double b = 1.5; // b is 1.5.

 10

 11 a += 0.0000000000000001; // Add a little to a.

 12 if (a == b)

 13 cout << "Both a and b are the same.\n";

 14 else

 15 cout << "a and b are not the same.\n";

 16

 17 return 0;

 18 }

Program Output

Both a and b are the same.

Program 4-4 (continued)

M04_GADD6253_07_SE_C04 Page 160 Tuesday, January 4, 2011 9:03 PM

4.2 The if Statement 161

In this statement the sum of x and y is tested like any other value in an if statement: 0 is

false and all other values are true. You may also use the return value of function calls as

conditional expressions. Here is an example that uses the pow function:

if (pow(a, b))

cout << "It is True!";

This if statement uses the pow function to raise a to the power of b. If the result is any-

thing other than 0, the cout statement is executed. This is a powerful programming tech-

nique that you will learn more about in Chapter 6.

Don t Confuse == With =

Earlier you saw a warning not to confuse the equality operator (==) with the assignment

operator (=), as in the following statement:

if (x = 2) //Caution here!

cout << "It is True!";

The statement above does not determine whether x is equal to 2, it assigns x the value 2!

Furthermore, the cout statement will always be executed because the expression x = 2 is

always true.

This occurs because the value of an assignment expression is the value being assigned to

the variable on the left side of the = operator. That means the value of the expression x = 2

is 2. Since 2 is a nonzero value, it is interpreted as a true condition by the if statement.

Program 4-5 is a version of Program 4-2 that attempts to test for a perfect average of 100.

The = operator, however, was mistakenly used in the if statement.

Program 4-5

 1 // This program averages 3 test scores. The if statement

 2 // uses the = operator, but the == operator was intended.

 3 #include <iostream>

 4 #include <iomanip>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int score1, score2, score3; // To hold three test scores

 10 double average; // TO hold the average score

 11

 12 // Get the three test scores.

 13 cout << "Enter 3 test scores and I will average them: ";

 14 cin >> score1 >> score2 >> score3;

 15

 16 // Calculate and display the average score.

 17 average = (score1 + score2 + score3) / 3.0;

 18 cout << fixed << showpoint << setprecision(1);

 19 cout << "Your average is " << average << endl;

 20

(program continues)

M04_GADD6253_07_SE_C04 Page 161 Tuesday, January 4, 2011 9:03 PM

162 Chapter 4 Making Decisions

Regardless of the average score, this program will print the message congratulating the

user on a perfect score.

Checkpoint

 www.myprogramminglab.com

4.5 Write an if statement that performs the following logic: if the variable x is equal

to 20, then assign 0 to the variable y.

4.6 Write an if statement that performs the following logic: if the variable price is

greater than 500, then assign 0.2 to the variable discountRate.

4.7 Write an if statement that multiplies payRate by 1.5 if hours is greater than 40.

4.8 TRUE or FALSE: Both of the following if statements perform the same operation.

if (sales > 10000)

 commissionRate = 0.15;

if (sales > 10000) commissionRate = 0.15;

4.9 TRUE or FALSE: Both of the following if statements perform the same operation.

if (calls == 20)

 rate *= 0.5;

if (calls = 20)

 rate *= 0.5;

4.3 Expanding the if Statement

CONCEPT: The if statement can conditionally execute a block of statements

enclosed in braces.

What if you want an if statement to conditionally execute a group of statements, not just

one line? For instance, what if the test averaging program needed to use several cout

 21 // Our intention is to congratulate the user

 22 // for having a perfect score. But, this doesn't work.

 23 if (average = 100) // WRONG! This is an assignment!

 24 cout << "Congratulations! That's a perfect score!\n";

 25 return 0;

 26 }

Program Output with Example Input Shown in Bold

Enter three test scores and I will average them: 80 90 70 [Enter]
Your average is 80.0

Congratulations! That's a perfect score!

Program 4-5 (continued)

M04_GADD6253_07_SE_C04 Page 162 Tuesday, January 4, 2011 9:03 PM

4.3 Expanding the if Statement 163

statements when a high score was reached? The answer is to enclose all of the condition-

ally executed statements inside a set of braces. Here is the format:

Program 4-6, another modi cation of the test-averaging program, demonstrates this type

of if statement.

 if (expression)

 {

 statement;

 statement;

 // Place as many statements here as necessary.

 }

Program 4-6

 1 // This program averages 3 test scores.

 2 // It demonstrates an if statement executing

 3 // a block of statements.

 4 #include <iostream>

 5 #include <iomanip>

 6 using namespace std;

 7

 8 int main()

 9 {

 10 const int HIGH_SCORE = 95; // A high score is 95 or greater

 11 int score1, score2, score3; // To hold three test scores

 12 double average; // TO hold the average score

 13

 14 // Get the three test scores.

 15 cout << "Enter 3 test scores and I will average them: ";

 16 cin >> score1 >> score2 >> score3;

 17

 18 // Calculate and display the average score.

 19 average = (score1 + score2 + score3) / 3.0;

 20 cout << fixed << showpoint << setprecision(1);

 21 cout << "Your average is " << average << endl;

 22

 23 // If the average is high, congratulate the user.

 24 if (average > HIGH_SCORE)

 25 {

 26 cout << "Congratulations!\n";

 27 cout << "That's a high score.\n";

 28 cout << "You deserve a pat on the back!\n";

 29 }

 30 return 0;

 31 }

Program Output with Example Input Shown in Bold

Enter 3 test scores and I will average them: 100 100 100 [Enter]
Your average is 100.0

Congratulations!

That's a high score.

You deserve a pat on the back!

(program output continues)

M04_GADD6253_07_SE_C04 Page 163 Tuesday, January 4, 2011 9:03 PM

164 Chapter 4 Making Decisions

Program 4-6 prints a more elaborate message when the average score is greater than 95.

The if statement was expanded to execute three cout statements when highScore is set

to true. Enclosing a group of statements inside a set of braces creates a block of code. The

if statement will execute all the statements in the block, in the order they appear, only

when average is greater than 95. Otherwise, the block will be skipped.

Notice all the statements inside the braces are indented. As before, this visually separates

the statements from lines that are not indented, making it more obvious they are part of

the if statement.

Don t Forget the Braces!

If you intend to conditionally execute a block of statements with an if statement, don t

forget the braces. Remember, without a set of braces, the if statement only executes the

very next statement. Program 4-7 shows the test-averaging program with the braces inad-

vertently left out of the if statement s block.

Program Output with Different Example Input Shown in Bold

Enter 3 test scores and I will average them: 80 90 70 [Enter]
Your average is 80.0

NOTE: Anytime your program has a block of code, all the statements inside the braces

should be indented.

Program 4-7

 1 // This program averages 3 test scores. The braces

 2 // were inadvertently left out of the if statement.

 3 #include <iostream>

 4 #include <iomanip>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 const int HIGH_SCORE = 95; // A high score is 95 or greater

 10 int score1, score2, score3; // To hold three test scores

 11 double average; // To hold the average score

 12

 13 // Get the three test scores.

 14 cout << "Enter 3 test scores and I will average them: ";

 15 cin >> score1 >> score2 >> score3;

 16

 17 // Calculate and display the average score.

 18 average = (score1 + score2 + score3) / 3.0;

 19 cout << fixed << showpoint << setprecision(1);

 20 cout << "Your average is " << average << endl;

 21

Program 4-6 (continued)

M04_GADD6253_07_SE_C04 Page 164 Tuesday, January 4, 2011 9:03 PM

4.3 Expanding the if Statement 165

The cout statements in lines 25 and 26 are always executed, even when average is not

greater than 95. Because the braces have been removed, the if statement only controls

execution of line 24. This is illustrated in Figure 4-5.

Checkpoint

 www.myprogramminglab.com

4.10 Write an if statement that performs the following logic: if the variable sales is

greater than 50,000, then assign 0.25 to the commissionRate variable, and assign

250 to the bonus variable.

4.11 The following code segment is syntactically correct, but it appears to contain a logic

error. Can you nd the error?

if (interestRate > .07)

 cout << "This account earns a $10 bonus.\n";

 balance += 10.0;

 22 // ERROR! This if statement is missing its braces!

 23 if (average > HIGH_SCORE)

 24 cout << "Congratulations!\n";

 25 cout << "That's a high score.\n";

 26 cout << "You deserve a pat on the back!\n";

 27 return 0;

 28 }

Program Output with Example Input Shown in Bold

Enter 3 test scores and I will average them: 80 90 70 [Enter]
Your average is 80

That's a high score.

You deserve a pat on the back!

Figure 4-5

if (average > HIGH_SCORE)

 cout << "Congratulations!\n";

 cout << "That's a high score.\n";

 cout << "You deserve a pat on the back!\n";

Only this statement is

conditionally executed.

These statements are

always executed.

M04_GADD6253_07_SE_C04 Page 165 Tuesday, January 4, 2011 9:03 PM

166 Chapter 4 Making Decisions

4.4 The if/else Statement

CONCEPT: The if/else statement will execute one group of statements if the

expression is true, or another group of statements if the expression

is false.

The if/else statement is an expansion of the if statement. Here is its format:

As with the if statement, an expression is evaluated. If the expression is true, a statement

or block of statements is executed. If the expression is false, however, a separate group of

statements is executed. Program 4-8 uses the if/else statement along with the modulus

operator to determine if a number is odd or even.

The else part at the end of the if statement speci es a statement that is to be executed when

the expression is false. When number % 2 does not equal 0, a message is printed indicating the

number is odd. Note that the program will only take one of the two paths in the if/else

statement. If you think of the statements in a computer program as steps taken down a road,

consider the if/else statement as a fork in the road. Instead of being a momentary detour,

like an if statement, the if/else statement causes program execution to follow one of two

exclusive paths. The owchart in Figure 4-6 shows the logic of this if/else statement.

 if (expression)

 statement or block

 else

 statement or block

Program 4-8

 1 // This program uses the modulus operator to determine

 2 // if a number is odd or even. If the number is evenly divisible

 3 // by 2, it is an even number. A remainder indicates it is odd.

 4 #include <iostream>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int number;

 10

 11 cout << "Enter an integer and I will tell you if it\n";

 12 cout << "is odd or even. ";

 13 cin >> number;

 14 if (number % 2 == 0)

 15 cout << number << " is even.\n";

 16 else

 17 cout << number << " is odd.\n";

 18 return 0;

 19 }

Program Output with Example Input Shown in Bold

Enter an integer and I will tell you if it

is odd or even. 17 [Enter]
17 is odd.

VideoNote

The if/else

Statement

M04_GADD6253_07_SE_C04 Page 166 Tuesday, January 4, 2011 9:03 PM

4.4 The if/else Statement 167

Notice the programming style used to construct the if/else statement. The word else is

at the same level of indention as if. The statement whose execution is controlled by else is

indented one level. This visually depicts the two paths of execution that may be followed.

Like the if part, the else part controls a single statement. If you wish to control more

than one statement with the else part, create a block by writing the lines inside a set of

braces. Program 4-9 shows this as a way of handling a classic programming problem: divi-

sion by zero.

Division by zero is mathematically impossible to perform and it normally causes a pro-

gram to crash. This means the program will prematurely stop running, sometimes with an

error message. Program 4-9 shows a way to test the value of a divisor before the division

takes place.

Figure 4-6

Program 4-9

 1 // This program asks the user for two numbers, num1 and num2.

 2 // num1 is divided by num2 and the result is displayed.

 3 // Before the division operation, however, num2 is tested

 4 // for the value 0. If it contains 0, the division does not

 5 // take place.

 6 #include <iostream>

 7 using namespace std;

 8

 9 int main()

 10 {

 11 double num1, num2, quotient;

 12

 13 // Get the first number.

 14 cout << "Enter a number: ";

 15 cin >> num1;

 16

 17 // Get the second number.

 18 cout << "Enter another number: ";

 19 cin >> num2;

 20

 21 // If num2 is not zero, perform the division.

 22 if (num2 == 0)

 23 {

(program continues)

Indicate that the

number is odd.

FalseTrue
number % 2

== 0

Indicate that the

number is even.

M04_GADD6253_07_SE_C04 Page 167 Tuesday, January 4, 2011 9:03 PM

168 Chapter 4 Making Decisions

The value of num2 is tested in line 22 before the division is performed. If the user enters 0,

the lines controlled by the if part execute, displaying a message which indicates that the

program cannot perform a division by zero. Otherwise, the else part takes control, which

divides num1 by num2 and displays the result.

Checkpoint

 www.myprogramminglab.com

4.12 TRUE or FALSE: The following if/else statements cause the same output to

display.

A) if (x > y)

 cout << "x is the greater.\n";

else

 cout << "x is not the greater.\n";

B) if (y <= x)

 cout << "x is not the greater.\n";

else

 cout << "x is the greater.\n";

4.13 Write an if/else statement that assigns 1 to x if y is equal to 100. Otherwise it

should assign 0 to x.

4.14 Write an if/else statement that assigns 0.10 to commissionRate unless

sales is greater than or equal to 50000.00, in which case it assigns 0.20 to

commissionRate.

 24 cout << "Division by zero is not possible.\n";

 25 cout << "Please run the program again and enter\n";

 26 cout << "a number other than zero.\n";

 27 }

 28 else

 29 {

 30 quotient = num1 / num2;

 31 cout << "The quotient of " << num1 << " divided by ";

 32 cout << num2 << " is " << quotient << ".\n";

 33 }

 34 return 0;

 35 }

Program Output with Example Input Shown in Bold

Enter a number: 10 [Enter]
Enter another number: 0 [Enter]
Division by zero is not possible.

Please run the program again and enter

a number other than zero.

Program 4-9 (continued)

M04_GADD6253_07_SE_C04 Page 168 Tuesday, January 4, 2011 9:03 PM

4.5 Nested if Statements 169

4.5 Nested if Statements

CONCEPT: To test more than one condition, an if statement can be nested inside

another if statement.

Sometimes an if statement must be nested inside another if statement. For example, con-

sider a banking program that determines whether a bank customer quali es for a special,

low interest rate on a loan. To qualify, two conditions must exist: (1) the customer must be

currently employed, and (2) the customer must have recently graduated from college (in

the past two years). Figure 4-7 shows a owchart for an algorithm that could be used in

such a program.

If we follow the ow of execution in the owchart, we see that the expression

employed == 'Y' is tested. If this expression is false, there is no need to perform further

tests; we know that the customer does not qualify for the special interest rate. If the

expression is true, however, we need to test the second condition. This is done with a

nested decision structure that tests the expression recentGrad == 'Y'. If this expression

is true, then the customer quali es for the special interest rate. If this expression is false,

then the customer does not qualify. Program 4-10 shows the code for the complete program.

Figure 4-7

M04_GADD6253_07_SE_C04 Page 169 Tuesday, January 4, 2011 9:03 PM

170 Chapter 4 Making Decisions

Look at the if statement that begins in line 21. It tests the expression employed == 'Y'.

If this expression is true, the if statement that begins in line 23 is executed. Otherwise the

program jumps to the return statement in line 29 and the program ends.

Notice in the second sample execution of Program 4-10 that the program output does not

inform the user whether he or she quali es for the special interest rate. If the user enters

an N (or any character other than Y) for employed or recentGrad, the program does

not print a message letting the user know that he or she does not qualify. An else state-

ment should be able to remedy this, as illustrated by Program 4-11.

Program 4-10

 1 // This program demonstrates the nested if statement.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 char employed, // Currently employed, Y or N

 8 recentGrad; // Recent graduate, Y or N

 9

 10 // Is the user employed and a recent graduate?

 11 cout << "Answer the following questions\n";

 12 cout << "with either Y for Yes or ";

 13 cout << "N for No.\n";

 14 cout << "Are you employed? ";

 15 cin >> employed;

 16 cout << "Have you graduated from college ";

 17 cout << "in the past two years? ";

 18 cin >> recentGrad;

 19

 20 // Determine the user's loan qualifications.

 21 if (employed == 'Y')

 22 {

 23 if (recentGrad == 'Y') //Nested if

 24 {

 25 cout << "You qualify for the special ";

 26 cout << "interest rate.\n";

 27 }

 28 }

 29 return 0;

 30 }

Program Output with Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y [Enter]
Have you graduated from college in the past two years? Y [Enter]
You qualify for the special interest rate.

Program Output with Different Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y [Enter]
Have you graduated from college in the past two years? N [Enter]

M04_GADD6253_07_SE_C04 Page 170 Tuesday, January 4, 2011 9:03 PM

4.5 Nested if Statements 171

Program 4-11

 1 // This program demonstrates the nested if statement.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 char employed, // Currently employed, Y or N

 8 recentGrad; // Recent graduate, Y or N

 9

 10 // Is the user employed and a recent graduate?

 11 cout << "Answer the following questions\n";

 12 cout << "with either Y for Yes or ";

 13 cout << "N for No.\n";

 14 cout << "Are you employed? ";

 15 cin >> employed;

 16 cout << "Have you graduated from college ";

 17 cout << "in the past two years? ";

 18 cin >> recentGrad;

 19

 20 // Determine the user's loan qualifications.

 21 if (employed == 'Y')

 22 {

 23 if (recentGrad == 'Y') // Nested if

 24 {

 25 cout << "You qualify for the special ";

 26 cout << "interest rate.\n";

 27 }

 28 else // Not a recent grad, but employed

 29 {

 30 cout << "You must have graduated from ";

 31 cout << "college in the past two\n";

 32 cout << "years to qualify.\n";

 33 }

 34 }

 35 else // Not employed

 36 {

 37 cout << "You must be employed to qualify.\n";

 38 }

 39 return 0;

 40 }

Program Output with Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? N [Enter]
Have you graduated from college in the past two years? Y [Enter]
You must be employed to qualify.

(program output continues)

M04_GADD6253_07_SE_C04 Page 171 Tuesday, January 4, 2011 9:03 PM

172 Chapter 4 Making Decisions

In this version of the program, both if statements have else clauses that inform the user

why he or she does not qualify for the special interest rate.

Programming Style and Nested Decision Structures

For readability and easier debugging, it s important to use proper alignment and indenta-

tion in a set of nested if statements. This makes it easier to see which actions are per-

formed by each part of the decision structure. For example, the following code is

functionally equivalent to lines 21 through 38 in Program 4-11. Although this code is log-

ically correct, it is very dif cult to read, and would be very dif cult to debug because it is

not properly indented.

 if (employed == 'Y')

 {

 if (recentGrad == 'Y') // Nested if

 {

 cout << "You qualify for the special ";

 cout << "interest rate.\n";

 }

 else // Not a recent grad, but employed

 {

 cout << "You must have graduated from ";

 cout << "college in the past two\n";

 cout << "years to qualify.\n";

 }

 }

 else // Not employed

 {

 cout << "You must be employed to qualify.\n";

 }

Proper indentation and alignment also makes it easier to see which if and else clauses

belong together, as shown in Figure 4-8.

Program Output with Different Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y [Enter]
Have you graduated from college in the past two years? N [Enter]
You must have graduated from college in the past two years to qualify.

Program Output with Different Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y [Enter]
Have you graduated from college in the past two years? Y [Enter]
You qualify for the special interest rate.

Program 4-11 (continued)

 Don t write code

like this!

M04_GADD6253_07_SE_C04 Page 172 Tuesday, January 4, 2011 9:03 PM

4.5 Nested if Statements 173

Testing a Series of Conditions

In the previous example you saw how a program can use nested decision structures to test

more than one condition. It is not uncommon for a program to have a series of conditions

to test, and then perform an action depending on which condition is true. One way to

accomplish this is to have a decision structure with numerous other decision structures

nested inside it. For example, consider the program presented in the following In the Spot-

light section.

In the Spotlight:

Multiple Nested Decision Structures

Dr. Suarez teaches a literature class and uses the following 10 point grading scale for all of

his exams:

Test Score Grade

90 and above A

80 89 B

70 79 C

60 69 D

Below 60 F

He has asked you to write a program that will allow a student to enter a test score and

then display the grade for that score. Here is the algorithm that you will use:

Ask the user to enter a test score.

Determine the grade in the following manner:

If the score is greater than or equal to 90, then the grade is A.

Otherwise, if the score is greater than or equal to 80, then the grade is B.

Otherwise, if the score is greater than or equal to 70, then the grade is C.

Otherwise, if the score is greater than or equal to 60, then the grade is D.

Otherwise, the grade is F.

Figure 4-8

M04_GADD6253_07_SE_C04 Page 173 Tuesday, January 4, 2011 9:03 PM

174 Chapter 4 Making Decisions

You decide that the process of determining the grade will require several nested decisions

structures, as shown in Figure 4-9. Program 4-12 shows the code for the complete pro-

gram. The code for the nested decision structures is in lines 17 through 45.

Figure 4-9 Nested decision structure to determine a grade

Program 4-12

 1 // This program uses nested if/else statements to assign a

 2 // letter grade (A, B, C, D, or F) to a numeric test score.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 // Constants for grade thresholds

 9 const int A_SCORE = 90,

 10 B_SCORE = 80,

 11 C_SCORE = 70,

 12 D_SCORE = 60;

 13

 14 int testScore; // To hold a numeric test score

 15

 16 // Get the numeric test score.

 17 cout << "Enter your numeric test score and I will\n";

TrueFalse
score

>= 90

TrueFalse
score

>= 80

TrueFalse
score

>= 70

TrueFalse
score

>= 60

Display "Your

grade is F."

Display "Your

grade is D."

Display "Your

grade is C."

Display "Your

grade is B."

Display "Your

grade is A."

M04_GADD6253_07_SE_C04 Page 174 Tuesday, January 4, 2011 9:03 PM

4.5 Nested if Statements 175

Checkpoint

 www.myprogramminglab.com

4.15 If you executed the following code, what would it display if the user enters 5?

What if the user enters 15? What if the user enters 30? What if the user enters -1?

 18 cout << "tell you the letter grade you earned: ";

 19 cin >> testScore;

 20

 21 // Determine the letter grade.

 22 if (testScore >= A_SCORE)

 23 {

 24 cout << "Your grade is A.\n";

 25 }

 26 else

 27 {

 28 if (testScore >= B_SCORE)

 29 {

 30 cout << "Your grade is B.\n";

 31 }

 32 else

 33 {

 34 if (testScore >= C_SCORE)

 35 {

 36 cout << "Your grade is C.\n";

 37 }

 38 else

 39 {

 40 if (testScore >= D_SCORE)

 41 {

 42 cout << "Your grade is D.\n";

 43 }

 44 else

 45 {

 46 cout << "Your grade is F.\n";

 47 }

 48 }

 49 }

 50 }

 51

 52 return 0;

 53 }

Program Output with Example Input Shown in Bold

Enter your numeric test score and I will

tell you the letter grade you earned: 78 [Enter]
Your grade is C.

Program Output with Different Example Input Shown in Bold

Enter your numeric test score and I will

tell you the letter grade you earned: 84 [Enter]
Your grade is B.

4.5 Nested if Statement

M04_GADD6253_07_SE_C04 Page 175 Tuesday, January 4, 2011 9:03 PM

176 Chapter 4 Making Decisions

 int number;

 cout << "Enter a number: ";

 cin >> number;

 if (number > 0)

 {

 cout << "Zero\n";

 if (number > 10)

 {

 cout << "Ten\n";

 if (number > 20)

 {

 cout << "Twenty\n";

 }

 }

 }

4.6 The if/else if Statement

CONCEPT: The if/else if statement tests a series of conditions. It is often simpler to

test a series of conditions with the if/else if statement than with a set of

nested if/else statements.

Even though Program 4-12 is a simple example, the logic of the nested decision structure is

fairly complex. In C++, and many other languages, you can alternatively test a series of condi-

tions using the if/else if statement. The if/else if statement makes certain types of

nested decision logic simpler to write. Here is the general format of the if/else if statement:

 if (expression_1)

 {

 statement
 statement
 etc.
 }

 else if (expression_2)

 {

 statement
 statement
 etc.
 }

 Insert as many else if clauses as necessary

 else

 {

 statement
 statement
 etc.
 }

VideoNote

The if/else

if Statement

If expression_1 is true these state-
ments are executed, and the rest of the
structure is ignored.

Otherwise, if expression_2 is true these
statements are executed, and the rest of
the structure is ignored.

These statements are executed if
none of the expressions above
are true.

M04_GADD6253_07_SE_C04 Page 176 Tuesday, January 4, 2011 9:03 PM

4.6 The if/else if Statement 177

When the statement executes, expression_1 is tested. If expression_1 is true, the block

of statements that immediately follows is executed, and the rest of the structure is ignored.

If expression_1 is false, however, the program jumps to the very next else if clause

and tests expression_2. If it is true, the block of statements that immediately follows is

executed, and then the rest of the structure is ignored. This process continues, from the

top of the structure to the bottom, until one of the expressions is found to be true. If none

of the expressions are true, the last else clause takes over and the block of statements

immediately following it is executed.

The last else clause, which does not have an if statement following it, is referred to as

the trailing else. The trailing else is optional, but in most cases you will use it.

Program 4-13 shows an example of the if/else if statement. This program is a modi ca-

tion of Program 4-12, which appears in the previous In the Spotlight section.

NOTE: The general format shows braces surrounding each block of conditionally

executed statements. As with other forms of the if statement, the braces are required only

when more than one statement is conditionally executed.

Program 4-13

 1 // This program uses an if/else if statement to assign a

 2 // letter grade (A, B, C, D, or F) to a numeric test score.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 // Constants for grade thresholds

 9 const int A_SCORE = 90,

 10 B_SCORE = 80,

 11 C_SCORE = 70,

 12 D_SCORE = 60;

 13

 14 int testScore; // To hold a numeric test score

 15

 16 // Get the numeric test score.

 17 cout << "Enter your numeric test score and I will\n"

 18 << "tell you the letter grade you earned: ";

 19 cin >> testScore;

 20

 21 // Determine the letter grade.

 22 if (testScore >= A_SCORE)

 23 cout << "Your grade is A.\n";

 24 else if (testScore >= B_SCORE)

 25 cout << "Your grade is B.\n";

 26 else if (testScore >= C_SCORE)

 27 cout << "Your grade is C.\n";

 28 else if (testScore >= D_SCORE)

 29 cout << "Your grade is D.\n";

 30 else

 31 cout << "Your grade is F.\n";

 32

 33 return 0;

 34 }

(program output continues)

M04_GADD6253_07_SE_C04 Page 177 Tuesday, January 4, 2011 9:03 PM

178 Chapter 4 Making Decisions

Let s analyze how the if/else if statement in lines 22 through 31 works. First, the

expression testScore >= A_SCORE is tested in line 22:

* if (testScore >= A_SCORE)

cout << "Your grade is A.\n";

 else if (testScore >= B_SCORE)

cout << "Your grade is B.\n";

 else if (testScore >= C_SCORE)

cout << "Your grade is C.\n";

 else if (testScore >= D_SCORE)

 cout << "Your grade is D.\n";

else

cout << "Your grade is F.\n";

If testScore is greater than or equal to 90, the message "Your grade is A.\n" is dis-

played and the rest of the if/else if statement is skipped. If testScore is not greater

than or equal to 90, the else clause in line 24 takes over and causes the next if state-

ment to be executed:

if (testScore >= A_SCORE)

 cout << "Your grade is A.\n";

* else if (testScore >= B_SCORE)

cout << "Your grade is B.\n";

 else if (testScore >= C_SCORE)

cout << "Your grade is C.\n";

else if (testScore >= D_SCORE)

 cout << "Your grade is D.\n";

else

cout << "Your grade is F.\n";

The rst if statement handles all of the grades greater than or equal to 90, so when this

if statement executes, testScore will have a value of 89 or less. If testScore is greater

than or equal to 80, the message "Your grade is B.\n" is displayed and the rest of the

if/else if statement is skipped. This chain of events continues until one of the expres-

sions is found to be true, or the last else clause at the end of the statement is encountered.

Notice the alignment and indentation that is used with the if/else if statement: The

starting if clause, the else if clauses, and the trailing else clause are all aligned, and

the conditionally executed statements are indented.

Using the Trailing else To Catch Errors

The trailing else clause, which appears at the end of the if/else if statement, is optional,

but in many situations you will use it to catch errors. For example, Program 4-13 will assign

Program Output with Example Input Shown in Bold

Enter your numeric test score and I will

tell you the letter grade you earned: 78 [Enter]
Your grade is C.

Program Output with Different Example Input Shown in Bold

Enter your numeric test score and I will

tell you the letter grade you earned: 84 [Enter]
Your grade is B.

Program 4-13 (continued)

M04_GADD6253_07_SE_C04 Page 178 Tuesday, January 4, 2011 9:03 PM

4.6 The if/else if Statement 179

a grade to any number that is entered as the test score, including negative numbers. If a

negative test score is entered, however, the user has probably made a mistake. We can

modify the code as shown in Program 4-14 so the trailing else clause catches any test score

that is less then 0 and displays an error message.

The if/else if Statement Compared
to a Nested Decision Structure

You never have to use the if/else if statement because its logic can be coded with

nested if/else statements. However, a long series of nested if/else statements has two

particular disadvantages when you are debugging code:

Program 4-14

 1 // This program uses an if/else if statement to assign a

 2 // letter grade (A, B, C, D, or F) to a numeric test score.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 // Constants for grade thresholds

 9 const int A_SCORE = 90,

 10 B_SCORE = 80,

 11 C_SCORE = 70,

 12 D_SCORE = 60;

 13

 14 int testScore; // To hold a numeric test score

 15

 16 // Get the numeric test score.

 17 cout << "Enter your numeric test score and I will\n"

 18 << "tell you the letter grade you earned: ";

 19 cin >> testScore;

 20

 21 // Determine the letter grade.

 22 if (testScore >= A_SCORE)

 23 cout << "Your grade is A.\n";

 24 else if (testScore >= B_SCORE)

 25 cout << "Your grade is B.\n";

 26 else if (testScore >= C_SCORE)

 27 cout << "Your grade is C.\n";

 28 else if (testScore >= D_SCORE)

 29 cout << "Your grade is D.\n";

 30 else if (testScore >= 0)

 31 cout << "Your grade is F.\n";

 32 else

 33 cout << "Invalid test score.\n";

 34

 35 return 0;

 36 }

Program Output with Example Input Shown in Bold

Enter your numeric test score and I will

tell you the letter grade you earned: 1 [Enter]
Invalid test score.

M04_GADD6253_07_SE_C04 Page 179 Tuesday, January 4, 2011 9:03 PM

180 Chapter 4 Making Decisions

The code can grow complex and become difficult to understand.

Because indenting is important in nested statements, a long series of nested if/

else statements can become too long to be displayed on the computer screen

without horizontal scrolling. Also, long statements tend to wrap around when

printed on paper, making the code even more difficult to read.

The logic of an if/else if statement is usually easier to follow than that of a long series

of nested if/else statements. And, because all of the clauses are aligned in an if/else

if statement, the lengths of the lines in the statement tend to be shorter.

Checkpoint

 www.myprogramminglab.com

4.16 What will the following code display?

int funny = 7, serious = 15;

funny = serious % 2;

if (funny != 1)

{

 funny = 0;

 serious = 0;

}

else if (funny == 2)

{

 funny = 10;

 serious = 10;

}

else

{

 funny = 1;

 serious = 1;

}

cout << funny << "" << serious << endl;

4.17 The following code is used in a bookstore program to determine how many dis-

count coupons a customer gets. Complete the table that appears after the program.

int numBooks, numCoupons;

cout << "How many books are being purchased? ";

cin >> numBooks;

if (numBooks < 1)

 numCoupons = 0;

else if (numBooks < 3)

 numCoupons = 1;

else if (numBooks < 5)

 numCoupons = 2;

else

 numCoupons = 3;

cout << "The number of coupons to give is "

 << numCoupons << endl;

M04_GADD6253_07_SE_C04 Page 180 Tuesday, January 4, 2011 9:03 PM

4.7 Flags 181

4.7 Flags

CONCEPT: A ag is a Boolean or integer variable that signals when

a condition exists.

A ag is typically a bool variable that signals when some condition exists in the program.

When the ag variable is set to false, it indicates that the condition does not exist. When

the ag variable is set to true, it means the condition does exist.

For example, suppose a program that calculates sales commissions has a bool variable,

de ned and initialized as shown here:

bool salesQuotaMet = false;

In the program, the salesQuotaMet variable is used as a ag to indicate whether a salesper-

son has met the sales quota. When we de ne the variable, we initialize it with false because

we do not yet know if the salesperson has met the sales quota. Assuming a variable named

sales holds the amount of sales, code similar to the following might be used to set the value

of the salesQuotaMet variable:

if (sales >= QUOTA_AMOUNT)

 salesQuotaMet = true;

else

 salesQuotaMet = false;

As a result of this code, the salesQuotaMet variable can be used as a ag to indicate

whether the sales quota has been met. Later in the program we might test the ag in the

following way:

if (salesQuotaMet)

 cout << "You have met your sales quota!\n";

This code displays You have met your sales quota! if the bool variable salesQuotaMet is

true. Notice that we did not have to use the == operator to explicitly compare the

salesQuotaMet variable with the value true. This code is equivalent to the following:

if (salesQuotaMet == true)

 cout << "You have met your sales quota!\n";

Integer Flags

Integer variables may also be used as ags. This is because in C++ the value 0 is consid-

ered false, and any nonzero value is considered true. In the sales commission program

If the customer purchases

this many books This many coupons are given.

1

3

4

5

10

M04_GADD6253_07_SE_C04 Page 181 Tuesday, January 4, 2011 9:03 PM

182 Chapter 4 Making Decisions

previously described, we could de ne the salesQuotaMet variable with the following

statement:

int salesQuotaMet = 0; // 0 means false.

As before, we initialize the variable with 0 because we do not yet know if the sales quota has

been met. After the sales have been calculated, we can use code similar to the following to set

the value of the salesQuotaMet variable:

if (sales >= QUOTA_AMOUNT)

 salesQuotaMet = 1;

else

 salesQuotaMet = 0;

Later in the program we might test the ag in the following way:

if (salesQuotaMet)

 cout << "You have met your sales quota!\n";

4.8 Logical Operators

CONCEPT: Logical operators connect two or more relational expressions into one

or reverse the logic of an expression.

In the previous section you saw how a program tests two conditions with two if state-

ments. In this section you will see how to use logical operators to combine two or more

relational expressions into one. Table 4-6 lists C++ s logical operators.

The && Operator

The && operator is known as the logical AND operator. It takes two expressions as oper-

ands and creates an expression that is true only when both sub-expressions are true. Here

is an example of an if statement that uses the && operator:

if (temperature < 20 && minutes > 12)

 cout << "The temperature is in the danger zone.";

In the statement above the two relational expressions are combined into a single expres-

sion. The cout statement will only be executed if temperature is less than 20 AND

minutes is greater than 12. If either relational test is false, the entire expression is false

and the cout statement is not executed.

Table 4-6

Operator Meaning Effect

&& AND Connects two expressions into one. Both expressions must be true for

the overall expression to be true.

|| OR Connects two expressions into one. One or both expressions must be

true for the overall expression to be true. It is only necessary for one to

be true, and it does not matter which.

! NOT The ! operator reverses the truth of an expression. It makes a true

expression false, and a false expression true.

M04_GADD6253_07_SE_C04 Page 182 Tuesday, January 4, 2011 9:03 PM

4.8 Logical Operators 183

Table 4-7 shows a truth table for the && operator. The truth table lists all the possible com-

binations of values that two expressions may have, and the resulting value returned by the

&& operator connecting the two expressions.

As the table shows, both sub-expressions must be true for the && operator to return a

true value.

The && operator can be used to simplify programs that otherwise would use nested if

statements. Program 4-15 performs a similar operation as Program 4-11, which quali es a

bank customer for a special interest rate. This program uses a logical operator.

TIP: You must provide complete expressions on both sides of the && operator. For

example, the following is not correct because the condition on the right side of the &&

operator is not a complete expression.

temperature > 0 && < 100

The expression must be rewritten as

temperature > 0 && temperature < 100

Table 4-7

Expression Value of Expression

true && false

false && true

false && false

true && true

false (0)

false (0)

false (0)

true (1)

NOTE: If the sub-expression on the left side of an && operator is false, the expression on

the right side will not be checked. Since the entire expression is false if only one of the sub-

expressions is false, it would waste CPU time to check the remaining expression. This is

called short circuit evaluation.

Program 4-15

 1 // This program demonstrates the && logical operator.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 char employed, // Currently employed, Y or N

 8 recentGrad; // Recent graduate, Y or N

 9

 10 // Is the user employed and a recent graduate?

 11 cout << "Answer the following questions\n";

 12 cout << "with either Y for Yes or N for No.\n";

 13

(program continues)

M04_GADD6253_07_SE_C04 Page 183 Tuesday, January 4, 2011 9:03 PM

184 Chapter 4 Making Decisions

The message You qualify for the special interest rate is displayed only

when both the expressions employed == 'Y' and recentGrad == 'Y' are true. If

either of these is false, the message You must be employed and have graduated

from college in the past two years to qualify. is printed.

 14 cout << "Are you employed? ";

 15 cin >> employed;

 16

 17 cout << "Have you graduated from college "

 18 << "in the past two years? ";

 19 cin >> recentGrad;

 20

 21 // Determine the user's loan qualifications.

 22 if (employed == 'Y' && recentGrad == 'Y')

 23 {

 24 cout << "You qualify for the special "

 25 << "interest rate.\n";

 26 }

 27 else

 28 {

 29 cout << "You must be employed and have\n"

 30 << "graduated from college in the\n"

 31 << "past two years to qualify.\n";

 32 }

 33 return 0;

 34 }

Program Output with Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y [Enter]
Have you graduated from college in the past two years? N [Enter]
You must be employed and have

graduated from college in the

past two years to qualify.

Program Output with Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? N [Enter]
Have you graduated from college in the past two years? Y [Enter]
You must be employed and have

graduated from college in the

past two years to qualify.

Program Output with Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y [Enter]
Have you graduated from college in the past two years? Y [Enter]
You qualify for the special interest rate.

Program 4-15 (continued)

M04_GADD6253_07_SE_C04 Page 184 Tuesday, January 4, 2011 9:03 PM

4.8 Logical Operators 185

The || Operator

The || operator is known as the logical OR operator. It takes two expressions as oper-
ands and creates an expression that is true when either of the sub-expressions are true.
Here is an example of an if statement that uses the || operator:

if (temperature < 20 || temperature > 100)

cout << "The temperature is in the danger zone.";

The cout statement will be executed if temperature is less than 20 OR temperature is
greater than 100. If either relational test is true, the entire expression is true and the cout
statement is executed.

Table 4-8 shows a truth table for the || operator.

All it takes for an OR expression to be true is for one of the sub-expressions to be true. It
doesn t matter if the other sub-expression is false or true.

Program 4-16 performs different tests to qualify a person for a loan. This one deter-
mines if the customer earns at least $35,000 per year, or has been employed for more
than ve years.

NOTE: Although it is similar, Program 4-15 is not the logical equivalent of Program 4-11.
For example, Program 4-15 doesn t display the message You must be employed to qualify.

TIP: You must provide complete expressions on both sides of the || operator. For
example, the following is not correct because the condition on the right side of the ||
operator is not a complete expression.

temperature < 0 || > 100

The expression must be rewritten as

temperature < 0 || temperature > 100

Table 4-8

Expression Value of the Expression

true || false

false || true

false || false

true || true

true (1)

true (1)

false (0)

true (1)

NOTE: The || operator also performs short circuit evaluation. If the sub-expression on
the left side of an || operator is true, the expression on the right side will not be checked.
Since it s only necessary for one of the sub-expressions to be true, it would waste CPU
time to check the remaining expression.

M04_GADD6253_07_SE_C04 Page 185 Tuesday, January 4, 2011 9:03 PM

186 Chapter 4 Making Decisions

The message You qualify\n. is displayed when either or both the expressions income >=

35000 or years > 5 are true. If both of these are false, the disqualifying message is printed.

Program 4-16

 1 // This program demonstrates the logical || operator.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 // Constants for minimum income and years

 8 const double MIN_INCOME = 35000.0;

 9 const int MIN_YEARS = 5;

 10

 11 double income; // Annual income

 12 int years; // Years at the current job

 13

 14 // Get the annual income

 15 cout << "What is your annual income? ";

 16 cin >> income;

 17

 18 // Get the number of years at the current job.

 19 cout << "How many years have you worked at "

 20 << "your current job? ";

 21 cin >> years;

 22

 23 // Determine the user's loan qualifications.

 24 if (income >= MIN_INCOME || years > MIN_YEARS)

 25 cout << "You qualify.\n";

 26 else

 27 {

 28 cout << "You must earn at least $"

 29 << MIN_INCOME << " or have been "

 30 << "employed more than " << MIN_YEARS

 31 << " years.\n";

 32 }

 33 return 0;

 34 }

Program Output with Example Input Shown in Bold

What is your annual income? 40000 [Enter]
How many years have you worked at your current job? 2 [Enter]
You qualify.

Program Output with Example Input Shown in Bold

What is your annual income? 20000 [Enter]
How many years have you worked at your current job? 7 [Enter]
You qualify.

Program Output with Example Input Shown in Bold

What is your annual income? 30000 [Enter]
How many years have you worked at your current job? 3 [Enter]
You must earn at least $35000 or have been employed more than 5 years.

M04_GADD6253_07_SE_C04 Page 186 Tuesday, January 4, 2011 9:03 PM

4.8 Logical Operators 187

The ! Operator

The ! operator performs a logical NOT operation. It takes an operand and reverses its
truth or falsehood. In other words, if the expression is true, the ! operator returns false,
and if the expression is false, it returns true. Here is an if statement using the ! operator:

if (!(temperature > 100))

 cout << "You are below the maximum temperature.\n";

First, the expression (temperature > 100) is tested to be true or false. Then the ! opera-
tor is applied to that value. If the expression (temperature > 100) is true, the ! operator
returns false. If it is false, the ! operator returns true. In the example, it is equivalent to
asking is the temperature not greater than 100?

Table 4-9 shows a truth table for the ! operator.

Program 4-17 performs the same task as Program 4-16. The if statement, however, uses
the ! operator to determine if the user does not make at least $35,000 or has not been on
the job more than ve years.

Table 4-9

Expression Value of the Expression

!true false (0)

!false true (1)

Program 4-17

 1 // This program demonstrates the logical ! operator.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 // Constants for minimum income and years

 8 const double MIN_INCOME = 35000.0;

 9 const int MIN_YEARS = 5;

 10

 11 double income; // Annual income

 12 int years; // Years at the current job

 13

 14 // Get the annual income

 15 cout << "What is your annual income? ";

 16 cin >> income;

 17

 18 // Get the number of years at the current job.

 19 cout << "How many years have you worked at "

 20 << "your current job? ";

 21 cin >> years;

 22

(program continues)

M04_GADD6253_07_SE_C04 Page 187 Tuesday, January 4, 2011 9:03 PM

188 Chapter 4 Making Decisions

The output of Program 4-17 is the same as Program 4-16.

Precedence and Associativity of Logical Operators

Table 4-10 shows the precedence of C++ s logical operators, from highest to lowest.

The ! operator has a higher precedence than many of the C++ operators. To avoid an

error, you should always enclose its operand in parentheses unless you intend to apply it

to a variable or a simple expression with no other operators. For example, consider the

following expressions:

!(x > 2)

!x > 2

The rst expression applies the ! operator to the expression x > 2. It is asking is x not

greater than 2? The second expression, however, applies the ! operator to x only. It is

asking is the logical negation of x greater than 2? Suppose x is set to 5. Since 5 is non-

zero, it would be considered true, so the ! operator would reverse it to false, which is 0.

The > operator would then determine if 0 is greater than 2. To avoid a catastrophe like

this, always use parentheses!

The && and || operators rank lower in precedence than the relational operators, so prece-

dence problems are less likely to occur. If you feel unsure, however, it doesn t hurt to use

parentheses anyway.

(a > b) && (x < y) is the same as a > b && x < y

(x == y) || (b > a) is the same as x == y || b > a

The logical operators have left-to-right associativity. In the following expression, a < b is

evaluated before y == z.

a < b || y == z

 23 // Determine the user's loan qualifications.

 24 if (!(income >= MIN_INCOME || years > MIN_YEARS))

 25 {

 26 cout << "You must earn at least $"

 27 << MIN_INCOME << " or have been "

 28 << "employed more than " << MIN_YEARS

 29 << " years.\n";

 30 }

 31 else

 32 cout << "You qualify.\n";

 33 return 0;

 34 }

Table 4-10

Logical Operators in Order of Precedence

!

&&

||

Program 4-17 (continued)

M04_GADD6253_07_SE_C04 Page 188 Tuesday, January 4, 2011 9:03 PM

4.9 Checking Numeric Ranges with Logical Operators 189

In the following expression, y == z is evaluated rst, however, because the && operator

has higher precedence than ||.

a < b || y == z && m > j

The expression is equivalent to

(a < b) || ((y == z) && (m > j))

4.9 Checking Numeric Ranges with Logical Operators

CONCEPT: Logical operators are effective for determining whether a number is in or

out of a range.

When determining whether a number is inside a numeric range, it s best to use the &&

operator. For example, the following if statement checks the value in x to determine

whether it is in the range of 20 through 40:

if (x >= 20 && x <= 40)

 cout << x << " is in the acceptable range.\n";

The expression in the if statement will be true only when x is both greater than or equal

to 20 AND less than or equal to 40. x must be within the range of 20 through 40 for this

expression to be true.

When determining whether a number is outside a range, the || operator is best to use.

The following statement determines whether x is outside the range of 20 to 40:

if (x < 20 || x > 40)

 cout << x << " is outside the acceptable range.\n";

It s important not to get the logic of these logical operators confused. For example, the fol-

lowing if statement would never test true:

if (x < 20 && x > 40)

 cout << x << " is outside the acceptable range.\n";

Obviously, x cannot be less than 20 and at the same time greater than 40.

Checkpoint

 www.myprogramminglab.com

4.18 The following truth table shows various combinations of the values true and

false connected by a logical operator. Complete the table by indicating if the

result of such a combination is TRUE or FALSE.

NOTE: C++ does not allow you to check numeric ranges with expressions such as
5 < x < 20. Instead, you must use a logical operator to connect two relational

expressions, as previously discussed.

M04_GADD6253_07_SE_C04 Page 189 Tuesday, January 4, 2011 9:03 PM

190 Chapter 4 Making Decisions

4.19 Assume the variables a = 2, b = 4, and c = 6. Indicate by circling the T or F if

each of the following conditions is true or false:

a == 4 || b > 2 T F

6 <= c && a > 3 T F

1 != b && c != 3 T F

a >= -1 || a <= b T F

!(a > 2) T F

4.20 Write an if statement that prints the message The number is valid if the vari-

able speed is within the range 0 through 200.

4.21 Write an if statement that prints the message The number is not valid if the

variable speed is outside the range 0 through 200.

4.10 Menus

CONCEPT: You can use nested if/else statements or the if/else if statement to

create menu-driven programs. A menu-driven program allows the user to

determine the course of action by selecting it from a list of actions.

A menu is a screen displaying a set of choices the user selects from. For example, a pro-

gram that manages a mailing list might give you the following menu:

1. Add a name to the list.

2. Remove a name from the list.

3. Change a name in the list.

4. Print the list.

5. Quit the program.

The user selects one of the operations by entering its number. Entering 4, for example,

causes the mailing list to be printed, and entering 5 causes the program to end. Nested

if/else statements or an if/else if structure can be used to set up such a menu.

After the user enters a number, the program compares the number with the available

selections and executes the statements that perform that operation.

Logical Expression Result (true or false)

true && false

true && true

false && true

false && false

true || false

true || true

false || true

false || false

!true

!false

M04_GADD6253_07_SE_C04 Page 190 Tuesday, January 4, 2011 9:03 PM

4.10 Menus 191

Program 4-18 calculates the charges for membership in a health club. The club has three

membership packages to choose from: standard adult membership, child membership,

and senior citizen membership. The program presents a menu that allows the user to

choose the desired package and then calculates the cost of the membership.

Program 4-18

 1 // This program displays a menu and asks the user to make a

 2 // selection. An if/else if statement determines which item

 3 // the user has chosen.

 4 #include <iostream>

 5 #include <iomanip>

 6 using namespace std;

 7

 8 int main()

 9 {

 10 int choice; // To hold a menu choice

 11 int months; // To hold the number of months

 12 double charges; // To hold the monthly charges

 13

 14 // Constants for membership rates

 15 const double ADULT = 40.0,

 16 SENIOR = 30.0,

 17 CHILD = 20.0;

 18

 19 // Constants for menu choices

 20 const int ADULT_CHOICE = 1,

 21 CHILD_CHOICE = 2,

 22 SENIOR_CHOICE = 3,

 23 QUIT_CHOICE = 4;

 24

 25 // Display the menu and get a choice.

 26 cout << "\t\tHealth Club Membership Menu\n\n"

 27 << "1. Standard Adult Membership\n"

 28 << "2. Child Membership\n"

 29 << "3. Senior Citizen Membership\n"

 30 << "4. Quit the Program\n\n"

 31 << "Enter your choice: ";

 32 cin >> choice;

 33

 34 // Set the numeric output formatting.

 35 cout << fixed << showpoint << setprecision(2);

 36

 37 // Respond to the user's menu selection.

 38 if (choice == ADULT_CHOICE)

 39 {

 40 cout << "For how many months? ";

 41 cin >> months;

 42 charges = months * ADULT;

 43 cout << "The total charges are $" << charges << endl;

 44 }

(program continues)

M04_GADD6253_07_SE_C04 Page 191 Tuesday, January 4, 2011 9:03 PM

192 Chapter 4 Making Decisions

Let s take a closer look at the program:

Lines 10 12 define the following variables:

The choice variable will hold the user s menu choice

The months variable will hold the number of months of health club membership

The charges variable will hold the total charges

Lines 15 17 define named constants for the monthly membership rates for adult,

senior citizen, and child memberships.

Lines 20 23 define named constants for the menu choices.

Lines 26 32 display the menu and get the user s choice.

Line 35 sets the numeric output formatting for floating point numbers.

 45 else if (choice == CHILD_CHOICE)

 46 {

 47 cout << "For how many months? ";

 48 cin >> months;

 49 charges = months * CHILD;

 50 cout << "The total charges are $" << charges << endl;

 51 }

 52 else if (choice == SENIOR_CHOICE)

 53 {

 54 cout << "For how many months? ";

 55 cin >> months;

 56 charges = months * SENIOR;

 57 cout << "The total charges are $" << charges << endl;

 58 }

 59 else if (choice == QUIT_CHOICE)

 60 {

 61 cout << "Program ending.\n";

 62 }

 63 else

 64 {

 65 cout << "The valid choices are 1 through 4. Run the\n"

 66 << "program again and select one of those.\n";

 67 }

 68 return 0;

 69 }

Program Output with Example Input Shown in Bold

Health Club Membership Menu

1. Standard Adult Membership

2. Child Membership

3. Senior Citizen Membership

4. Quit the Program

Enter your choice: 3 [Enter]
For how many months? 6 [Enter]
The total charges are $180.00

Program 4-18 (continued)

M04_GADD6253_07_SE_C04 Page 192 Tuesday, January 4, 2011 9:03 PM

4.11 Focus on Software Engineering: Validating User Input 193

Lines 38 67 is an if/else if statement that determines the user s menu choice

in the following manner:

If the user selected 1 from the menu (adult membership), the statements in lines

40 43 are executed.

Otherwise, if the user selected 2 from the menu (child membership), the state-

ments in lines 47 50 are executed.

Otherwise, if the user selected 3 from the menu (senior citizen membership),

the statements in lines 54 57 are executed.

Otherwise, if the user selected 4 from the menu (quit the program), the state-

ment in line 61 is executed.

If the user entered any choice other than 1, 2, 3, or 4, the else clause in lines

63 67 executes, displaying an error message.

4.11 Focus on Software Engineering: Validating User Input

CONCEPT: As long as the user of a program enters bad input, the program will

produce bad output. Programs should be written to lter out bad input.

Perhaps the most famous saying of the computer world is garbage in, garbage out. The

integrity of a program s output is only as good as its input, so you should try to make sure gar-

bage does not go into your programs. Input validation is the process of inspecting data given

to a program by the user and determining if it is valid. A good program should give clear

instructions about the kind of input that is acceptable, and not assume the user has followed

those instructions. Here are just a few examples of input validations performed by programs:

Numbers are checked to ensure they are within a range of possible values. For

example, there are 168 hours in a week. It is not possible for a person to be at

work longer than 168 hours in one week.

Values are checked for their reasonableness. Although it might be possible for

a person to be at work for 168 hours per week, it is not probable.

Items selected from a menu or other sets of choices are checked to ensure they are

available options.

Variables are checked for values that might cause problems, such as division by zero.

Program 4-19 is a test scoring program that rejects any test score less than 0 or greater

than 100.

Program 4-19

 1 // This test scoring program does not accept test scores

 2 // that are less than 0 or greater than 100.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 // Constants for grade thresholds

(program continues)

M04_GADD6253_07_SE_C04 Page 193 Tuesday, January 4, 2011 9:03 PM

194 Chapter 4 Making Decisions

 9 const int A_SCORE = 90,

 10 B_SCORE = 80,

 11 C_SCORE = 70,

 12 D_SCORE = 60,

 13 MIN_SCORE = 0, // Minimum valid score

 14 MAX_SCORE = 100; // Maximum valid score

 15

 16 int testScore; // To hold a numeric test score

 17

 18 // Get the numeric test score.

 19 cout << "Enter your numeric test score and I will\n"

 20 << "tell you the letter grade you earned: ";

 21 cin >> testScore;

 22

 23 // Validate the input and determine the grade.

 24 if (testScore >= MIN_SCORE && testScore <= MAX_SCORE)

 25 {

 26 // Determine the letter grade.

 27 if (testScore >= A_SCORE)

 28 cout << "Your grade is A.\n";

 29 else if (testScore >= B_SCORE)

 30 cout << "Your grade is B.\n";

 31 else if (testScore >= C_SCORE)

 32 cout << "Your grade is C.\n";

 33 else if (testScore >= D_SCORE)

 34 cout << "Your grade is D.\n";

 35 else

 36 cout << "Your grade is F.\n";

 37 }

 38 else

 39 {

 40 // An invalid score was entered.

 41 cout << "That is an invalid score. Run the program\n"

 42 << "again and enter a value in the range of\n"

 43 << MIN_SCORE << " through " << MAX_SCORE << ".\n";

 44 }

 45

 46 return 0;

 47 }

Program Output with Example Input Shown in Bold

Enter your numeric test score and I will

tell you the letter grade you earned: 1 [Enter]
That is an invalid score. Run the program

again and enter a value in the range of

0 through 100.

Program Output with Example Input Shown in Bold

Enter your numeric test score and I will

tell you the letter grade you earned: 81 [Enter]
Your grade is B.

Program 4-19 (continued)

M04_GADD6253_07_SE_C04 Page 194 Tuesday, January 4, 2011 9:03 PM

4.12 Comparing Characters and Strings 195

4.12 Comparing Characters and Strings

CONCEPT: Relational operators can also be used to compare characters and string

objects.

Earlier in this chapter you learned to use relational operators to compare numeric values.

They can also be used to compare characters and string objects.

Comparing Characters

As you learned in Chapter 3, characters are actually stored in memory as integers. On

most systems, this integer is the ASCII value of the character. For example, the letter A is

represented by the number 65, the letter B is represented by the number 66, and so on.

Table 4-11 shows the ASCII numbers that correspond to some of the commonly used

characters.

Notice that every character, even the blank, has an ASCII code associated with it. Notice

also that the ASCII code of a character representing a digit, such as '1' or '2', is not the

same as the value of the digit itself. A complete table showing the ASCII values for all

characters can be found in Appendix B.

When two characters are compared, it is actually their ASCII values that are being com-

pared. 'A' < 'B' because the ASCII value of 'A' (65) is less than the ASCII value of 'B'

(66). Likewise '1' < '2' because the ASCII value of '1' (49) is less than the ASCII value

of '2' (50). However, as shown in Table 4-11, lowercase letters have higher ASCII codes

than uppercase letters, so 'a' > 'Z'. Program 4-20 shows how characters can be com-

pared with relational operators.

Table 4-11 ASCII Values of Commonly Used Characters

Character ASCII Value

0 9
A Z
a z

blank
period

48 57
65 90
97 122
32
46

Program 4-20

 1 // This program demonstrates how characters can be

 2 // compared with the relational operators.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 char ch;

(program continues)

M04_GADD6253_07_SE_C04 Page 195 Tuesday, January 4, 2011 9:03 PM

196 Chapter 4 Making Decisions

Comparing string Objects

string objects can also be compared with relational operators. As with individual characters,

when two string objects are compared, it is actually the ASCII value of the characters

making up the strings that are being compared. For example, assume the following

de nitions exist in a program:

string str1 = "ABC";

string str2 = "XYZ";

The string object str1 is considered less than the string object str2 because the char-

acters "ABC" alphabetically precede (have lower ASCII values than) the characters "XYZ".

So, the following if statement will cause the message "str1 is less than str2." to

be displayed on the screen.

if (str1 < str2)

 cout << "str1 is less than str2.";

 9

 10 // Get a character from the user.

 11 cout << "Enter a digit or a letter: ";

 12 ch = cin.get();

 13

 14 // Determine what the user entered.

 15 if (ch >= '0' && ch <= '9')

 16 cout << "You entered a digit.\n";

 17 else if (ch >= 'A' && ch <= 'Z')

 18 cout << "You entered an uppercase letter.\n";

 19 else if (ch >= 'a' && ch <= 'z')

 20 cout << "You entered a lowercase letter.\n";

 21 else

 22 cout << "That is not a digit or a letter.\n";

 23

 24 return 0;

 25 }

Program Output with Example Input Shown in Bold

Enter a digit or a letter: t [Enter]
You entered a lowercase letter.

Program Output with Example Input Shown in Bold

Enter a digit or a letter: v [Enter]
You entered an uppercase letter.

Program Output with Example Input Shown in Bold

Enter a digit or a letter: 5 [Enter]
You entered a digit.

Program Output with Example Input Shown in Bold

Enter a digit or a letter: & [Enter]

That is not a digit or a letter.

Program 4-20 (continued)

M04_GADD6253_07_SE_C04 Page 196 Tuesday, January 4, 2011 9:03 PM

4.12 Comparing Characters and Strings 197

One by one, each character in the rst operand is compared with the character in the corre-

sponding position in the second operand. If all the characters in both string objects match,

the two strings are equal. Other relationships can be determined if two characters in corre-

sponding positions do not match. The rst operand is less than the second operand if the

rst mismatched character in the rst operand is less than its counterpart in the second oper-

and. Likewise, the rst operand is greater than the second operand if the rst mismatched

character in the rst operand is greater than its counterpart in the second operand.

For example, assume a program has the following de nitions:

string name1 = "Mary";

string name2 = "Mark";

The value in name1, "Mary", is greater than the value in name2, "Mark". This is because

the rst three characters in name1 have the same ASCII values as the rst three characters

in name2, but the 'y' in the fourth position of "Mary" has a greater ASCII value than the

'k' in the corresponding position of "Mark".

Any of the relational operators can be used to compare two string objects. Here are

some of the valid comparisons of name1 and name2.

name1 > name2 // true

name1 <= name2 // false

name1 != name2 // true

string objects can also, of course, be compared to string literals:

name1 < "Mary Jane" // true

Program 4-21 further demonstrates how relational operators can be used with string

objects.

Program 4-21

 1 // This program uses relational operators to compare a string

 2 // entered by the user with valid stereo part numbers.

 3 #include <iostream>

 4 #include <iomanip>

 5 #include <string>

 6 using namespace std;

 7

 8 int main()

 9 {

 10 const double PRICE_A = 249.0,

 11 PRICE_B = 299.0;

 12

 13 string partNum; // Holds a stereo part number

 14

 15 // Display available parts and get the user's selection

 16 cout << "The stereo part numbers are:\n"

 17 << "Boom Box: part number S-29A \n"

 18 << "Shelf Model: part number S-29B \n"

 19 << "Enter the part number of the stereo you\n"

 20 << "wish to purchase: ";

 21 cin >> partNum;

(program continues)

M04_GADD6253_07_SE_C04 Page 197 Tuesday, January 4, 2011 9:03 PM

198 Chapter 4 Making Decisions

Checkpoint

 www.myprogramminglab.com

4.22 Indicate whether each of the following relational expressions is true or false. Refer

to the ASCII table in Appendix A if necessary.

A) 'a' < 'z'

B) 'a' == 'A'

C) '5' < '7'

D) 'a' < 'A'

E) '1' == 1

F) '1' == 49

4.23 Indicate whether each of the following relational expressions is true or false.

Refer to the ASCII table in Appendix B if necessary.

A) "Bill" == "BILL"

B) "Bill" < "BILL"

C) "Bill" < "Bob"

D) "189" > "23"

E) "189" > "Bill"

F) "Mary" < "MaryEllen"

G) "MaryEllen" < "Mary Ellen"

 22

 23 // Set the numeric output formatting

 24 cout << fixed << showpoint << setprecision(2);

 25

 26 // Determine and display the correct price

 27 if (partNum == "S-29A")

 28 cout << "The price is $" << PRICE_A << endl;

 29 else if (partNum == "S-29B")

 30 cout << "The price is $" << PRICE_B << endl;

 31 else

 32 cout << partNum << " is not a valid part number.\n";

 33 return 0;

 34 }

Program Output with Example Input Shown in Bold

The stereo part numbers are:

Boom Box: part number S-29A

Shelf Model: part number S-29B

Enter the part number of the stereo you

wish to purchase: S-29A [Enter]
The price is $249.00

Program 4-21 (continued)

M04_GADD6253_07_SE_C04 Page 198 Tuesday, January 4, 2011 9:03 PM

4.13 The Conditional Operator 199

4.13 The Conditional Operator

CONCEPT: You can use the conditional operator to create short expressions that

work like if/else statements.

The conditional operator is powerful and unique. It provides a shorthand method of

expressing a simple if/else statement. The operator consists of the question-mark (?)

and the colon (:). Its format is:

Here is an example of a statement using the conditional operator:

x < 0 ? y = 10 : z = 20;

The statement above is called a conditional expression and consists of three sub-expressions

separated by the ? and : symbols. The expressions are x < 0, y = 10, and z = 20, as illus-

trated here:

The conditional expression above performs the same operation as the following if/else

statement:

if (x < 0)

 y = 10;

else

 z = 20;

The part of the conditional expression that comes before the question mark is the expression

to be tested. It s like the expression in the parentheses of an if statement. If the expression is

true, the part of the statement between the ? and the : is executed. Otherwise, the part after

the : is executed. Figure 4-10 illustrates the roles played by the three sub-expressions.

 expression ? expression : expression;

x < 0 ? y = 10 : z = 20;

NOTE: Since it takes three operands, the conditional operator is considered a

ternary operator.

Figure 4-10

x < 0 ? y = 10 : z = 20;

1st Expression:

Expression to

be tested.

3rd Expression:

Executes if the 1st

expression is false.

2nd Expression:

Executes if the 1st

expression is true.

M04_GADD6253_07_SE_C04 Page 199 Tuesday, January 4, 2011 9:03 PM

200

Chapter 4 Making Decisions

If it helps, you can put parentheses around the sub-expressions, as in the following:

(x < 0) ? (y = 10) : (z = 20);

Using the Value of a Conditional Expression

Remember, in C++ all expressions have a value, and this includes the conditional expres-
sion. If the rst sub-expression is true, the value of the conditional expression is the value
of the second sub-expression. Otherwise it is the value of the third sub-expression. Here is
an example of an assignment statement using the value of a conditional expression:

a = x > 100 ? 0 : 1;

The value assigned to

a

 will be either 0 or 1, depending upon whether

x

 is greater than
100. This statement could be expressed as the following

if/else

 statement:

if (x > 100)

 a = 0;

else

 a = 1;

Program 4-22 can be used to help a consultant calculate her charges. Her rate is $50.00
per hour, but her minimum charge is for ve hours. The conditional operator is used in a
statement that ensures the number of hours does not go below ve.

Program 4-22

 1 // This program calculates a consultant's charges at $50

 2 // per hour, for a minimum of 5 hours. The ?: operator

 3 // adjusts hours to 5 if less than 5 hours were worked.

 4 #include <iostream>

 5 #include <iomanip>

 6 using namespace std;

 7

 8 int main()

 9 {

 10 const double PAY_RATE = 50.0; // Hourly pay rate

 11 const int MIN_HOURS = 5; // Minimum billable hours

 12 double hours, // Hours worked

 13 charges; // Total charges

 14

 15 // Get the hours worked.

 16 cout << "How many hours were worked? ";

 17 cin >> hours;

 18

 19 // Determine the hours to charge for.

 20 hours = hours < MIN_HOURS ? MIN_HOURS : hours;

 21

 22 // Calculate and display the charges.

 23 charges = PAY_RATE * hours;

 24 cout << fixed << showpoint << setprecision(2)

 25 << "The charges are $" << charges << endl;

 26 return 0;

 27 }

M04_GADD6253_07_SE_C04 Page 200 Thursday, January 13, 2011 8:04 PM

4.13 The Conditional Operator 201

Notice that in line 11 a constant named MIN_HOURS is de ned to represent the minimum num-

ber of hours, which is 5. Here is the statement in line 20, with the conditional expression:

hours = hours < MIN_HOURS ? MIN_HOURS : hours;

If the value in hours is less than 5, then 5 is stored in hours. Otherwise hours is assigned

the value it already has. The hours variable will not have a value less than 5 when it is

used in the next statement, which calculates the consultant s charges.

As you can see, the conditional operator gives you the ability to pack decision-making

power into a concise line of code. With a little imagination it can be applied to many other

programming problems. For instance, consider the following statement:

cout << "Your grade is: " << (score < 60 ? "Fail." : "Pass.");

If you were to use an if/else statement, the statement above would be written as follows:

if (score < 60)

cout << "Your grade is: Fail.";

else

cout << "Your grade is: Pass.";

Checkpoint

 www.myprogramminglab.com

4.24 Rewrite the following if/else statements as conditional expressions:

A) if (x > y)

 z = 1;

else

 z = 20;

B) if (temp > 45)

 population = base * 10;

else

 population = base * 2;

C) if (hours > 40)

 wages *= 1.5;

else

 wages *= 1;

D) if (result >= 0)

 cout << "The result is positive\n";

else

 cout << "The result is negative.\n";

Program Output with Example Input Shown in Bold

How many hours were worked? 10 [Enter]
The charges are $500.00

Program Output with Example Input Shown in Bold

How many hours were worked? 2 [Enter]
The charges are $250.00

NOTE: The parentheses are placed around the conditional expression because the <<

operator has higher precedence than the ?: operator. Without the parentheses, just the

value of the expression score < 60 would be sent to cout.

M04_GADD6253_07_SE_C04 Page 201 Tuesday, January 4, 2011 9:03 PM

202 Chapter 4 Making Decisions

4.25 The following statements use conditional expressions. Rewrite each with an if/

else statement.

A) j = k > 90 ? 57 : 12;

B) factor = x >= 10 ? y * 22 : y * 35;

C) total += count == 1 ? sales : count * sales;

D) cout << (((num % 2) == 0) ? "Even\n" : "Odd\n");

4.26 What will the following program display?

#include <iostream>

using namespace std;

int main()

{

 const int UPPER = 8, LOWER = 2;

 int num1, num2, num3 = 12, num4 = 3;

 num1 = num3 < num4 ? UPPER : LOWER;

 num2 = num4 > UPPER ? num3 : LOWER;

 cout << num1 << " " << num2 << endl;

 return 0;

}

4.14 The switch Statement

CONCEPT: The switch statement lets the value of a variable or expression

determine where the program will branch.

A branch occurs when one part of a program causes another part to execute. The if/else

if statement allows your program to branch into one of several possible paths. It per-

forms a series of tests (usually relational) and branches when one of these tests is true. The

switch statement is a similar mechanism. It, however, tests the value of an integer expres-

sion and then uses that value to determine which set of statements to branch to. Here is

the format of the switch statement:

 switch (IntegerExpression)

 {

 case ConstantExpression:

 // place one or more

 // statements here

 case ConstantExpression:

 // place one or more

 // statements here

 // case statements may be repeated as many

 // times as necessary

 default:

 // place one or more

 // statements here

 }

M04_GADD6253_07_SE_C04 Page 202 Tuesday, January 4, 2011 9:03 PM

4.14 The switch Statement 203

The rst line of the statement starts with the word switch, followed by an integer expres-

sion inside parentheses. This can be either of the following:

a variable of any of the integer data types (including char)

an expression whose value is of any of the integer data types

On the next line is the beginning of a block containing several case statements. Each case

statement is formatted in the following manner:

 case ConstantExpression:

 // place one or more

 // statements here

After the word case is a constant expression (which must be of an integer type), followed

by a colon. The constant expression may be an integer literal or an integer named con-

stant. The case statement marks the beginning of a section of statements. The program

branches to these statements if the value of the switch expression matches that of the

case expression.

An optional default section comes after all the case statements. The program branches

to this section if none of the case expressions match the switch expression. So, it func-

tions like a trailing else in an if/else if statement.

Program 4-23 shows how a simple switch statement works.

WARNING! The expression of each case statement in the block must be unique.

NOTE: The expression following the word case must be an integer literal or constant. It

cannot be a variable, and it cannot be an expression such as x < 22 or n == 50.

Program 4-23

 1 // The switch statement in this program tells the user something

 2 // he or she already knows: the data just entered!

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 char choice;

 9

 10 cout << "Enter A, B, or C: ";

 11 cin >> choice;

 12 switch (choice)

 13 {

 14 case 'A': cout << "You entered A.\n";

 15 break;

 16 case 'B': cout << "You entered B.\n";

 17 break;

 18 case 'C': cout << "You entered C.\n";

 19 break;

 20 default: cout << "You did not enter A, B, or C!\n";

 21 }

 22 return 0;

 23 }

(program continues)

M04_GADD6253_07_SE_C04 Page 203 Tuesday, January 4, 2011 9:03 PM

204 Chapter 4 Making Decisions

The rst case statement is case 'A':, the second is case 'B':, and the third is case

'C':. These statements mark where the program is to branch to if the variable choice

contains the values 'A', 'B', or 'C'. (Remember, character variables and literals are con-

sidered integers.) The default section is branched to if the user enters anything other

than A, B, or C.

Notice the break statements that are in the case 'A', case 'B', and case 'C' sections.

switch (choice)

{

 case 'A':cout << "You entered A.\n";

 break;

 case 'B':cout << "You entered B.\n";

 break;

 case 'C':cout << "You entered C.\n";

 break;

 default: cout << "You did not enter A, B, or C!\n";

}

The case statements show the program where to start executing in the block and the break

statements show the program where to stop. Without the break statements, the program

would execute all of the lines from the matching case statement to the end of the block.

Program 4-24 is a modi cation of Program 4-23, without the break statements.

Program Output with Example Input Shown in Bold

Enter A, B, or C: B [Enter]
You entered B.

Program Output with Example Input Shown in Bold

Enter A, B, or C: F [Enter]
You did not enter A, B, or C!

NOTE: The default section (or the last case section, if there is no default) does not

need a break statement. Some programmers prefer to put one there anyway, for

consistency.

Program 4-24

 1 // The switch statement in this program tells the user something

 2 // he or she already knows: the data just entered!

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 char choice;

 9

Program 4-23 (continued)

M04_GADD6253_07_SE_C04 Page 204 Tuesday, January 4, 2011 9:03 PM

4.14 The switch Statement 205

Without the break statement, the program falls through all of the statements below the

one with the matching case expression. Sometimes this is what you want. Program 4-25

lists the features of three TV models a customer may choose from. The Model 100 has

remote control. The Model 200 has remote control and stereo sound. The Model 300 has

remote control, stereo sound, and picture-in-a-picture capability. The program uses a

switch statement with carefully omitted breaks to print the features of the selected model.

 10 cout << "Enter A, B, or C: ";

 11 cin >> choice;

 12 // The following switch is

 13 // missing its break statements!

 14 switch (choice)

 15 {

 16 case 'A': cout << "You entered A.\n";

 17 case 'B': cout << "You entered B.\n";

 18 case 'C': cout << "You entered C.\n";

 19 default: cout << "You did not enter A, B, or C!\n";

 20 }

 21 return 0;

 22 }

Program Output with Example Input Shown in Bold

Enter A, B, or C: A [Enter]
You entered A.

You entered B.

You entered C.

You did not enter A, B, or C!

Program Output with Example Input Shown in Bold

Enter A, B, or C: C [Enter]
You entered C.

You did not enter A, B, or C!

Program 4-25

 1 // This program is carefully constructed to use the "fall through"

 2 // feature of the switch statement.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 int modelNum; // Model number

 9

 10 // Get a model number from the user.

 11 cout << "Our TVs come in three models:\n";

 12 cout << "The 100, 200, and 300. Which do you want? ";

 13 cin >> modelNum;

 14

(program continues)

M04_GADD6253_07_SE_C04 Page 205 Tuesday, January 4, 2011 9:03 PM

206 Chapter 4 Making Decisions

Another example of how useful this fall through capability can be is when you want the

program to branch to the same set of statements for multiple case expressions. For

instance, Program 4-26 asks the user to select a grade of pet food. The available choices

are A, B, and C. The switch statement will recognize either upper or lowercase letters.

 15 // Display the model's features.

 16 cout << "That model has the following features:\n";

 17 switch (modelNum)

 18 {

 19 case 300: cout << "\tPicture-in-a-picture.\n";

 20 case 200: cout << "\tStereo sound.\n";

 21 case 100: cout << "\tRemote control.\n";

 22 break;

 23 default: cout << "You can only choose the 100,";

 24 cout << "200, or 300.\n";

 25 }

 26 return 0;

 27 }

Program Output with Example Input Shown in Bold
Our TVs come in three models:

The 100, 200, and 300. Which do you want? 100 [Enter]
That model has the following features:

Remote control.

Program Output with Example Input Shown in Bold
Our TVs come in three models:

The 100, 200, and 300. Which do you want? 200 [Enter]
That model has the following features:

Stereo sound.

Remote control.

Program Output with Example Input Shown in Bold
Our TVs come in three models:

The 100, 200, and 300. Which do you want? 300 [Enter]
That model has the following features:

Picture-in-a-picture.

Stereo sound.

Remote control.

Program Output with Example Input Shown in Bold
Our TVs come in three models:

The 100, 200, and 300. Which do you want? 500 [Enter]
That model has the following features:

You can only choose the 100, 200, or 300.

Program 4-26

 1 // The switch statement in this program uses the "fall through"

 2 // feature to catch both uppercase and lowercase letters entered

 3 // by the user.

 4 #include <iostream>

 5 using namespace std;

 6

Program 4-25 (continued)

M04_GADD6253_07_SE_C04 Page 206 Tuesday, January 4, 2011 9:03 PM

4.14 The

switch

 Statement

207

When the user enters

'a'

 the corresponding

case

 has no statements associated with it, so

the program falls through to the next

case

, which corresponds with

'A'.

case 'a':

case 'A': cout << "30 cents per pound.\n";

 break;

The same technique is used for

'b'

and

'c'.

Using

switch

 in Menu Systems

The

switch

 statement is a natural mechanism for building menu systems. Recall that

Program 4-18 gives a menu to select which health club package the user wishes to pur-

chase. The program uses

if/else

if

 statements to determine which package the user has

selected and displays the calculated charges. Program 4-27 is a modi cation of that pro-

gram, using a

switch

 statement instead of

if/else if.

 7 int main()

 8 {

 9 char feedGrade;

 10

 11 // Get the desired grade of feed.

 12 cout << "Our pet food is available in three grades:\n";

 13 cout << "A, B, and C. Which do you want pricing for? ";

 14 cin >> feedGrade;

 15

 16 // Display the price.

 17 switch(feedGrade)

 18 {

 19 case 'a':

 20 case 'A': cout << "30 cents per pound.\n";

 21 break;

 22 case 'b':

 23 case 'B': cout << "20 cents per pound.\n";

 24 break;

 25 case 'c':

 26 case 'C': cout << "15 cents per pound.\n";

 27 break;

 28 default: cout << "That is an invalid choice.\n";

 29 }

 30 return 0;

 31 }

Program Output with Example Input Shown in Bold

Our pet food is available in three grades:

A, B, and C. Which do you want pricing for?

b [Enter]

20 cents per pound.

Program Output with Example Input Shown in Bold

Our pet food is available in three grades:

A, B, and C. Which do you want pricing for?

B [Enter]

20 cents per pound.

M04_GADD6253_07_SE_C04 Page 207 Thursday, January 13, 2011 8:04 PM

208 Chapter 4 Making Decisions

Program 4-27

 1 // This program uses a switch statement to determine

 2 // the item selected from a menu.

 3 #include <iostream>

 4 #include <iomanip>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int choice; // To hold a menu choice

 10 int months; // To hold the number of months

 11 double charges; // To hold the monthly charges

 12

 13 // Constants for membership rates

 14 const double ADULT = 40.0,

 15 CHILD = 20.0,

 16 SENIOR = 30.0;

 17

 18 // Constants for menu choices

 19 const int ADULT_CHOICE = 1,

 20 CHILD_CHOICE = 2,

 21 SENIOR_CHOICE = 3,

 22 QUIT_CHOICE = 4;

 23

 24 // Display the menu and get a choice.

 25 cout << "\t\tHealth Club Membership Menu\n\n"

 26 << "1. Standard Adult Membership\n"

 27 << "2. Child Membership\n"

 28 << "3. Senior Citizen Membership\n"

 29 << "4. Quit the Program\n\n"

 30 << "Enter your choice: ";

 31 cin >> choice;

 32

 33 // Set the numeric output formatting.

 34 cout << fixed << showpoint << setprecision(2);

 35

 36 // Respond to the user's menu selection.

 37 switch (choice)

 38 {

 39 case ADULT_CHOICE:

 40 cout << "For how many months? ";

 41 cin >> months;

 42 charges = months * ADULT;

 43 cout << "The total charges are $" << charges << endl;

 44 break;

 45

 46 case CHILD_CHOICE:

 47 cout << "For how many months? ";

 48 cin >> months;

 49 charges = months * CHILD;

 50 cout << "The total charges are $" << charges << endl;

 51 break;

 52

M04_GADD6253_07_SE_C04 Page 208 Tuesday, January 4, 2011 9:03 PM

4.14 The switch Statement 209

Checkpoint

 www.myprogramminglab.com

4.27 Explain why you cannot convert the following if/else if statement into a

switch statement.

if (temp == 100)

 x = 0;

else if (population > 1000)

 x = 1;

else if (rate < .1)

 x = -1;

4.28 What is wrong with the following switch statement?

switch (temp)

{

 case temp < 0 : cout << "Temp is negative.\n";

 break;

 case temp == 0: cout << "Temp is zero.\n";

 break;

 case temp > 0 : cout << "Temp is positive.\n";

 break;

}

 53 case SENIOR_CHOICE:

 54 cout << "For how many months? ";

 55 cin >> months;

 56 charges = months * SENIOR;

 57 cout << "The total charges are $" << charges << endl;

 58 break;

 59

 60 case QUIT_CHOICE:

 61 cout << "Program ending.\n";

 62 break;

 63

 64 default:

 65 cout << "The valid choices are 1 through 4. Run the\n"

 66 << "program again and select one of those.\n";

 67 }

 68

 69 return 0;

 70 }

Program Output with Example Input Shown in Bold

Health Club Membership Menu

1. Standard Adult Membership

2. Child Membership

3. Senior Citizen Membership

4. Quit the Program

Enter your choice: 2 [Enter]
For how many months? 6 [Enter]
The total charges are $120.00

M04_GADD6253_07_SE_C04 Page 209 Tuesday, January 4, 2011 9:03 PM

210 Chapter 4 Making Decisions

4.29 What will the following program display?

#include <iostream>

using namespace std;

int main()

{

 int funny = 7, serious = 15;

 funny = serious * 2;

 switch (funny)

 { case 0 : cout << "That is funny.\n";

 break;

 case 30: cout << "That is serious.\n";

 break;

 case 32: cout << "That is seriously funny.\n";

 break;

 default: cout << funny << endl;

 }

 return 0;

}

4.30 Complete the following program skeleton by writing a switch statement that dis-

plays one if the user has entered 1, two if the user has entered 2, and three

if the user has entered 3. If a number other than 1, 2, or 3 is entered, the program

should display an error message.

#include <iostream>

using namespace std;

int main()

{

 int userNum;

 cout << "Enter one of the numbers 1, 2, or 3: ";

 cin >> userNum;

 //

 // Write the switch statement here.

 //

 return 0;

}

4.31 Rewrite the following program. Use a switch statement instead of the if/else

if statement.

#include <iostream>

using namespace std;

int main()

{

 int selection;

 cout << "Which formula do you want to see?\n\n";

 cout << "1. Area of a circle\n";

 cout << "2. Area of a rectangle\n";

 cout << "3. Area of a cylinder\n"

 cout << "4. None of them!\n";

 cin >> selection;

 if (selection == 1)

 cout << "Pi times radius squared\n";

M04_GADD6253_07_SE_C04 Page 210 Tuesday, January 4, 2011 9:03 PM

4.15 More About Blocks and Scope 211

 else if (selection == 2)

 cout << "Length times width\n";

 else if (selection == 3)

 cout << "Pi times radius squared times height\n";

 else if (selection == 4)

 cout << "Well okay then, good bye!\n";

 else

 cout << "Not good with numbers, eh?\n";

 return 0;

}

4.15 More About Blocks and Scope

CONCEPT: The scope of a variable is limited to the block in which it is de ned.

C++ allows you to create variables almost anywhere in a program. Program 4-28 is a modi-

cation of Program 4-17, which determines if the user quali es for a loan. The de nitions of

the variables income and years have been moved to later points in the program.

Program 4-28

 1 // This program demonstrates late variable definition

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 // Constants for minimum income and years

 8 const double MIN_INCOME = 35000.0;

 9 const int MIN_YEARS = 5;

 10

 11 // Get the annual income.

 12 cout << "What is your annual income? ";

 13 double income; // Variable definition

 14 cin >> income;

 15

 16 // Get the number of years at the current job.

 17 cout << "How many years have you worked at "

 18 << "your current job? ";

 19 int years; // Variable definition

 20 cin >> years;

 21

 22 // Determine the user's loan qualifications.

 23 if (income >= MIN_INCOME || years > MIN_YEARS)

 24 cout << "You qualify.\n";

 25 else

 26 {

 27 cout << "You must earn at least $"

 28 << MIN_INCOME << " or have been "

 29 << "employed more than " << MIN_YEARS

 30 << " years.\n";

 31 }

 32 return 0;

 33 }

M04_GADD6253_07_SE_C04 Page 211 Tuesday, January 4, 2011 9:03 PM

212 Chapter 4 Making Decisions

It is a common practice to de ne all of a function s variables at the top of the function.

Sometimes, especially in longer programs, it s a good idea to de ne variables near the part

of the program where they are used. This makes the purpose of the variable more evident.

Recall from Chapter 2 that the scope of a variable is de ned as the part of the program

where the variable may be used.

In Program 4-28, the scope of the income variable is the part of the program in lines 13

through 32. The scope of the years variable is the part of the program in lines 19 through 32.

The variables income and years are de ned inside function main s braces. Variables

de ned inside a set of braces have local scope or block scope. They may only be used in

the part of the program between their de nition and the block s closing brace.

You may de ne variables inside any block. For example, look at Program 4-29. This version

of the loan program has the variable years de ned inside the block of the if statement. The

scope of years is the part of the program in lines 21 through 31.

Program 4-29

 1 // This program demonstrates a variable defined in an inner block.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 // Constants for minimum income and years

 8 const double MIN_INCOME = 35000.0;

 9 const int MIN_YEARS = 5;

 10

 11 // Get the annual income.

 12 cout << "What is your annual income? ";

 13 double income; // Variable definition

 14 cin >> income;

 15

 16 if (income >= MIN_INCOME)

 17 {

 18 // Get the number of years at the current job.

 19 cout << "How many years have you worked at "

 20 << "your current job? ";

 21 int years; // Variable definition

 22 cin >> years;

 23

 24 if (years > MIN_YEARS)

 25 cout << "You qualify.\n";

 26 else

 27 {

 28 cout << "You must have been employed for\n"

 29 << "more than " << MIN_YEARS

 30 << " years to qualify.\n";

 31 }

 32 }

 33 else

M04_GADD6253_07_SE_C04 Page 212 Tuesday, January 4, 2011 9:03 PM

4.15 More About Blocks and Scope 213

Notice the scope of years is only within the block where it is de ned. The variable is not

visible before its de nition or after the closing brace of the block. This is true of any vari-

able de ned inside a set of braces.

Variables with the Same Name

When a block is nested inside another block, a variable de ned in the inner block may

have the same name as a variable de ned in the outer block. As long as the variable in the

inner block is visible, however, the variable in the outer block will be hidden. This is illus-

trated by Program 4-30.

 34 {

 35 cout << "You must earn at least $" << MIN_INCOME

 36 << " to qualify.\n";

 37 }

 38 return 0;

 39 }

NOTE: When a program is running and it enters the section of code that constitutes a

variable s scope, it is said that the variable comes into scope. This simply means the

variable is now visible and the program may reference it. Likewise, when a variable leaves

scope, it may no longer be used.

Program 4-30

 1 // This program uses two variables with the name number.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 // Define a variable named number.

 8 int number;

 9

 10 cout << "Enter a number greater than 0: ";

 11 cin >> number;

 12 if (number > 0)

 13 {

 14 int number; // Another variable named number.

 15 cout << "Now enter another number: ";

 16 cin >> number;

 17 cout << "The second number you entered was "

 18 << number << endl;

 19 }

 20 cout << "Your first number was " << number << endl;

 21 return 0;

 22 }

Program Output with Example Input Shown in Bold

Enter a number greater than 0: 2 [Enter]
Now enter another number: 7 [Enter]
The second number you entered was 7

Your first number was 2

M04_GADD6253_07_SE_C04 Page 213 Tuesday, January 4, 2011 9:03 PM

214 Chapter 4 Making Decisions

Program 4-30 has two separate variables named number. The cin and cout statements in

the inner block (belonging to the if statement) can only work with the number variable

de ned in that block. As soon as the program leaves that block, the inner number goes out

of scope, revealing the outer number variable.

Case Study: See the Sales Commission Case Study on this book s companion Web site at

www.pearsonhighered.com/gaddis.

Review Questions and Exercises

Short Answer

1. Describe the difference between the if/else if statement and a series of if

statements.

2. In an if/else if statement, what is the purpose of a trailing else?

3. What is a ag and how does it work?

4. Can an if statement test expressions other than relational expressions? Explain.

5. Brie y describe how the && operator works.

6. Brie y describe how the || operator works.

7. Why are the relational operators called relational?

8. Why do most programmers indent the conditionally executed statements in a decision

structure?

Fill-in-the-Blank

9. An expression using the greater-than, less-than, greater-than-or-equal to, less-than-or-

equal-to, equal, or not-equal to operator is called a(n) __________ expression.

10. A relational expression is either __________ or __________.

11. The value of a relational expression is 0 if the expression is __________ or 1 if the

expression is __________.

12. The if statement regards an expression with the value 0 as __________.

13. The if statement regards an expression with a nonzero value as __________.

14. For an if statement to conditionally execute a group of statements, the statements

must be enclosed in a set of __________.

15. In an if/else statement, the if part executes its statement or block if the expression

is __________, and the else part executes its statement or block if the expression is

__________.

16. The trailing else in an if/else if statement has a similar purpose as the

__________ section of a switch statement.

WARNING! Although it s perfectly acceptable to de ne variables inside nested blocks,

you should avoid giving them the same names as variables in the outer blocks. It s too easy

to confuse one variable with another.

M04_GADD6253_07_SE_C04 Page 214 Tuesday, January 4, 2011 9:03 PM

215

17. The if/else if statement is actually a form of the __________ if statement.

18. If the sub-expression on the left of the __________ logical operator is false, the right
sub-expression is not checked.

19. If the sub-expression on the left of the __________ logical operator is true, the right
sub-expression is not checked.

20. The __________ logical operator has higher precedence than the other logical operators.

21. The logical operators have __________ associativity.

22. The __________ logical operator works best when testing a number to determine if it
is within a range.

23. The __________ logical operator works best when testing a number to determine if it
is outside a range.

24. A variable with __________ scope is only visible when the program is executing in the
block containing the variable s de nition.

25. You use the __________ operator to determine whether one string object is greater
then another string object.

26. An expression using the conditional operator is called a(n) __________ expression.

27. The expression that is tested by a switch statement must have a(n) __________ value.

28. The expression following a case statement must be a(n) __________ __________.

29. A program will fall through a case section if it is missing the __________ statement.

30. What value will be stored in the variable t after each of the following statements executes?

A) t = (12 > 1);__________

B) t = (2 < 0);__________

C) t = (5 == (3 * 2));__________

D) t = (5 == 5);__________

Algorithm Workbench

31. Write an if statement that assigns 100 to x when y is equal to 0.

32. Write an if/else statement that assigns 0 to x when y is equal to 10. Otherwise it
should assign 1 to x.

33. Using the following chart, write an if/else if statement that assigns .10, .15, or .20
to commission, depending on the value in sales.

34. Write an if statement that sets the variable hours to 10 when the ag variable
minimum is set.

35. Write nested if statements that perform the following tests: If amount1 is greater
than 10 and amount2 is less than 100, display the greater of the two.

Sales Commission Rate

Up to $10,000

$10,000 to $15,000

Over $15,000

10%

15%

20%

Review Questions and Exercises

M04_GADD6253_07_SE_C04 Page 215 Tuesday, January 4, 2011 9:03 PM

216 Chapter 4 Making Decisions

36. Write an if statement that prints the message The number is valid if the variable

grade is within the range 0 through 100.

37. Write an if statement that prints the message The number is valid if the variable

temperature is within the range 50 through 150.

38. Write an if statement that prints the message The number is not valid if the vari-

able hours is outside the range 0 through 80.

39. Assume str1 and str2 are string objects that have been initialized with different

values. Write an if/else statement that compares the two objects and displays the

one that is alphabetically greatest.

40. Convert the following if/else if statement into a switch statement:

if (choice == 1)

{

 cout << fixed << showpoint << setprecision(2);

}

else if (choice == 2 || choice == 3)

{

 cout << fixed << showpoint << setprecision(4);

}

else if (choice == 4)

{

 cout << fixed << showpoint << setprecision(6);

}

else

{

 cout << fixed << showpoint << setprecision(8);

}

41. Match the conditional expression with the if/else statement that performs the same

operation.

A) q = x < y ? a + b : x * 2;

B) q = x < y ? x * 2 : a + b;

C) x < y ? q = 0 : q = 1;

____ if (x < y)

 q = 0;

 else

 q = 1;

____ if (x < y)

 q = a + b;

 else

 q = x * 2;

____ if (x < y)

 q = x * 2;

 else

 q = a + b;

True or False

42. T F The = operator and the == operator perform the same operation when used in
a Boolean expression.

M04_GADD6253_07_SE_C04 Page 216 Tuesday, January 4, 2011 9:03 PM

217

43. T F A variable defined in an inner block may not have the same name as a vari-
able defined in the outer block.

44. T F A conditionally executed statement should be indented one level from the if
statement.

45. T F All lines in a block should be indented one level.

46. T F It s safe to assume that all uninitialized variables automatically start with 0 as
their value.

47. T F When an if statement is nested in the if part of another statement, the only
time the inner if is executed is when the expression of the outer if is true.

48. T F When an if statement is nested in the else part of another statement, as in
an if/else if, the only time the inner if is executed is when the expression
of the outer if is true.

49. T F The scope of a variable is limited to the block in which it is defined.

50. T F You can use the relational operators to compare string objects.

51. T F x != y is the same as (x > y || x < y)

52. T F y < x is the same as x >= y

53. T F x >= y is the same as (x > y && x = y)

Assume the variables x = 5, y = 6, and z = 8. Indicate by circling the T or F whether each of

the following conditions is true or false:

54. T F x == 5 || y > 3

55. T F 7 <= x && z > 4

56. T F 2 != y && z != 4

57. T F x >= 0 || x <= y

Find the Errors

Each of the following programs has errors. Find as many as you can.

58. // This program averages 3 test scores.

// It uses the variable perfectScore as a flag.

include <iostream>

using namespace std;

int main()

{

cout << "Enter your 3 test scores and I will ";

 << "average them:";

int score1, score2, score3,

cin >> score1 >> score2 >> score3;

double average;

average = (score1 + score2 + score3) / 3.0;

if (average = 100);

 perfectScore = true; // Set the flag variable

cout << "Your average is " << average << endl;

bool perfectScore;

if (perfectScore);

{

cout << "Congratulations!\n";

cout << "That's a perfect score.\n";

cout << "You deserve a pat on the back!\n";

return 0;

}

Review Questions and Exercises

M04_GADD6253_07_SE_C04 Page 217 Tuesday, January 4, 2011 9:03 PM

218 Chapter 4 Making Decisions

59. // This program divides a user-supplied number by another

// user-supplied number. It checks for division by zero.

#include <iostream>

using namespace std;

int main()

{

double num1, num2, quotient;

cout << "Enter a number: ";

cin >> num1;

cout << "Enter another number: ";

cin >> num2;

if (num2 == 0)

cout << "Division by zero is not possible.\n";

cout << "Please run the program again ";

cout << "and enter a number besides zero.\n";

else

quotient = num1 / num2;

cout << "The quotient of " << num1 <<

cout << " divided by " << num2 << " is ";

cout << quotient << endl;

return 0;

}

60. // This program uses an if/else if statement to assign a

// letter grade (A, B, C, D, or F) to a numeric test score.

#include <iostream>

using namespace std;

int main()

{

int testScore;

cout << "Enter your test score and I will tell you\n";

cout << "the letter grade you earned: ";

cin >> testScore;

if (testScore < 60)

cout << "Your grade is F.\n";

else if (testScore < 70)

cout << "Your grade is D.\n";

else if (testScore < 80)

cout << "Your grade is C.\n";

else if (testScore < 90)

cout << "Your grade is B.\n";

else

cout << "That is not a valid score.\n";

else if (testScore <= 100)

cout << "Your grade is A.\n";

return 0;

}

M04_GADD6253_07_SE_C04 Page 218 Tuesday, January 4, 2011 9:03 PM

219

61. // This program uses a switch-case statement to assign a

// letter grade (A, B, C, D, or F) to a numeric test score.

#include <iostream>

using namespace std;

int main()

{

double testScore;

cout << "Enter your test score and I will tell you\n";

cout << "the letter grade you earned: ";

cin >> testScore;

switch (testScore)

{

case (testScore < 60.0):

cout << "Your grade is F.\n";

break;

case (testScore < 70.0):

cout << "Your grade is D.\n";

break;

case (testScore < 80.0):

cout << "Your grade is C.\n";

break;

case (testScore < 90.0):

cout << "Your grade is B.\n";

break;

case (testScore <= 100.0):

cout << "Your grade is A.\n";

break;

default:

cout << "That score isn't valid\n";

return 0;

}

62. The following statement should determine if x is not greater than 20. What is wrong

with it?

if (!x > 20)

63. The following statement should determine if count is within the range of 0 through

100. What is wrong with it?

if (count >= 0 || count <= 100)

64. The following statement should determine if count is outside the range of 0 through

100. What is wrong with it?

if (count < 0 && count > 100)

65. The following statement should assign 0 to z if a is less than 10, otherwise it should

assign 7 to z. What is wrong with it?

z = (a < 10) : 0 ? 7;

Review Questions and Exercises

M04_GADD6253_07_SE_C04 Page 219 Tuesday, January 4, 2011 9:03 PM

220 Chapter 4 Making Decisions

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. Minimum/Maximum

Write a program that asks the user to enter two numbers. The program should use the

conditional operator to determine which number is the smaller and which is the larger.

2. Roman Numeral Converter

Write a program that asks the user to enter a number within the range of 1 through

10. Use a switch statement to display the Roman numeral version of that number.

Input Validation: Do not accept a number less than 1 or greater than 10.

3. Magic Dates

The date June 10, 1960 is special because when we write it in the following format,

the month times the day equals the year.

6/10/60

Write a program that asks the user to enter a month (in numeric form), a day, and a

two-digit year. The program should then determine whether the month times the day

is equal to the year. If so, it should display a message saying the date is magic. Other-

wise it should display a message saying the date is not magic.

4. Areas of Rectangles

The area of a rectangle is the rectangle s length times its width. Write a program that

asks for the length and width of two rectangles. The program should tell the user

which rectangle has the greater area, or if the areas are the same.

5. Body Mass Index

Write a program that calculates and displays a person s body mass index (BMI). The

BMI is often used to determine whether a person with a sedentary lifestyle is over-

weight or underweight for his or her height. A person s BMI is calculated with the fol-

lowing formula:

BMI = weight × 703 / height2

where weight is measured in pounds and height is measured in inches. The program

should display a message indicating whether the person has optimal weight, is under-

weight, or is overweight. A sedentary person s weight is considered to be optimal if his

or her BMI is between 18.5 and 25. If the BMI is less than 18.5, the person is consid-

ered to be underweight. If the BMI value is greater than 25, the person is considered

to be overweight.

6. Mass and Weight

Scientists measure an object s mass in kilograms and its weight in newtons. If you

know the amount of mass that an object has, you can calculate its weight, in newtons,

with the following formula:

 Weight = mass × 9.8

M04_GADD6253_07_SE_C04 Page 220 Tuesday, January 4, 2011 9:03 PM

221

Write a program that asks the user to enter an object s mass, and then calculates and
displays its weight. If the object weighs more than 1,000 newtons, display a message
indicating that it is too heavy. If the object weighs less than 10 newtons, display a
message indicating that the object is too light.

7. Time Calculator

Write a program that asks the user to enter a number of seconds.

There are 60 seconds in a minute. If the number of seconds entered by the user is
greater than or equal to 60, the program should display the number of minutes in
that many seconds.
There are 3,600 seconds in an hour. If the number of seconds entered by the user
is greater than or equal to 3,600, the program should display the number of hours
in that many seconds.
There are 86,400 seconds in a day. If the number of seconds entered by the user is
greater than or equal to 86,400, the program should display the number of days
in that many seconds.

8. Change for a Dollar Game

Create a change-counting game that gets the user to enter the number of coins
required to make exactly one dollar. The program should ask the user to enter the
number of pennies, nickels, dimes, and quarters. If the total value of the coins entered
is equal to one dollar, the program should congratulate the user for winning the game.
Otherwise, the program should display a message indicating whether the amount
entered was more than or less than one dollar.

9. Math Tutor

This is a modi cation of Programming Challenge 15 from Chapter 3. Write a pro-
gram that can be used as a math tutor for a young student. The program should dis-
play two random numbers that are to be added, such as:

 247
 + 129

The program should wait for the student to enter the answer. If the answer is correct,
a message of congratulations should be printed. If the answer is incorrect, a message
should be printed showing the correct answer.

10. Software Sales

A software company sells a package that retails for $99. Quantity discounts are given
according to the following table.

Quantity Discount

10 19 20%

20 49 30%

50 99 40%

100 or more 50%

VideoNote

Solving
the Time
Calculator
Problem

Programming Challenges

M04_GADD6253_07_SE_C04 Page 221 Tuesday, January 4, 2011 9:03 PM

222 Chapter 4 Making Decisions

Write a program that asks for the number of units sold and computes the total cost of
the purchase.

Input Validation: Make sure the number of units is greater than 0.

11. Book Club Points

Serendipity Booksellers has a book club that awards points to its customers based on
the number of books purchased each month. The points are awarded as follows:

* If a customer purchases 0 books, he or she earns 0 points.
* If a customer purchases 1 book, he or she earns 5 points.
* If a customer purchases 2 books, he or she earns 15 points.
* If a customer purchases 3 books, he or she earns 30 points.
* If a customer purchases 4 or more books, he or she earns 60 points.

Write a program that asks the user to enter the number of books that he or she has
purchased this month and then displays the number of points awarded.

12. Bank Charges

A bank charges $10 per month plus the following check fees for a commercial check-
ing account:

$.10 each for fewer than 20 checks
$.08 each for 20 39 checks
$.06 each for 40 59 checks
$.04 each for 60 or more checks

The bank also charges an extra $15 if the balance of the account falls below $400
(before any check fees are applied). Write a program that asks for the beginning bal-
ance and the number of checks written. Compute and display the bank s service fees
for the month.

Input Validation: Do not accept a negative value for the number of checks written. If

a negative value is given for the beginning balance, display an urgent message indicat-

ing the account is overdrawn.

13. Shipping Charges

The Fast Freight Shipping Company charges the following rates:

Write a program that asks for the weight of the package and the distance it is to be
shipped, and then displays the charges.

Input Validation: Do not accept values of 0 or less for the weight of the package. Do

not accept weights of more than 20 Kg (this is the maximum weight the company will

ship). Do not accept distances of less than 10 miles or more than 3,000 miles. These

are the company s minimum and maximum shipping distances.

Weight of Package (in Kilograms) Rate per 500 Miles Shipped

2 Kg or less $1.10

Over 2 Kg but not more than 6 kg $2.20

Over 6 Kg but not more than 10 kg $3.70

Over 10 Kg but not more than 20 kg $4.80

M04_GADD6253_07_SE_C04 Page 222 Tuesday, January 4, 2011 9:03 PM

223

14. Running the Race

Write a program that asks for the names of three runners and the time it took each of

them to nish a race. The program should display who came in rst, second, and third

place.

Input Validation: Only accept positive numbers for the times.

15. Personal Best

Write a program that asks for the name of a pole vaulter and the dates and vault

heights (in meters) of the athlete s three best vaults. It should then report, in order of

height (best rst), the date on which each vault was made and its height.

Input Validation: Only accept values between 2.0 and 5.0 for the heights.

16. Fat Gram Calculator

Write a program that asks for the number of calories and fat grams in a food. The

program should display the percentage of calories that come from fat. If the calories

from fat are less than 30% of the total calories of the food, it should also display a

message indicating that the food is low in fat.

One gram of fat has 9 calories, so

Calories from fat = fat grams * 9

The percentage of calories from fat can be calculated as

Calories from fat ÷ total calories

Input Validation: Make sure the number of calories and fat grams are not less than 0.

Also, the number of calories from fat cannot be greater than the total number of calo-

ries. If that happens, display an error message indicating that either the calories or fat

grams were incorrectly entered.

17. Spectral Analysis

If a scientist knows the wavelength of an electromagnetic wave, he or she can determine

what type of radiation it is. Write a program that asks for the wavelength of an electro-

magnetic wave in meters and then displays what that wave is according to the chart

below. (For example, a wave with a wavelength of 1E-10 meters would be an X-ray.)

18. The Speed of Sound

The following table shows the approximate speed of sound in air, water, and steel.

Medium Speed

Air 1,100 feet per second

Water 4,900 feet per second

Steel 16,400 feet per second

1 * 10 2 1 * 10 3 7 * 10 7 4 * 10 7 1 * 10 8 1 * 10 11

Radio Waves Microwaves Infrared Visible Light Ultraviolet X Rays Gamma Rays

Programming Challenges

M04_GADD6253_07_SE_C04 Page 223 Tuesday, January 4, 2011 9:03 PM

224 Chapter 4 Making Decisions

Write a program that displays a menu allowing the user to select air, water, or steel.

After the user has made a selection, he or she should be asked to enter the distance a

sound wave will travel in the selected medium. The program will then display the

amount of time it will take. (Round the answer to four decimal places.)

Input Validation: Check that the user has selected one of the available choices from

the menu. Do not accept distances less than 0.

19. The Speed of Sound in Gases

When sound travels through a gas, its speed depends primarily on the density of the

medium. The less dense the medium, the faster the speed will be. The following table

shows the approximate speed of sound at 0 degrees centigrade, measured in meters

per second, when traveling through carbon dioxide, air, helium, and hydrogen.

Write a program that displays a menu allowing the user to select one of these four

gases. After a selection has been made, the user should enter the number of seconds it

took for the sound to travel in this medium from its source to the location at which it

was detected. The program should then report how far away (in meters) the source of

the sound was from the detection location.

Input Validation: Check that the user has selected one of the available menu choices.

Do not accept times less than 0 seconds or more than 30 seconds.

20. Freezing and Boiling Points

The following table lists the freezing and boiling points of several substances. Write a

program that asks the user to enter a temperature, and then shows all the substances

that will freeze at that temperature and all that will boil at that temperature. For

example, if the user enters 20 the program should report that water will freeze and

oxygen will boil at that temperature.

Medium Speed (Meters per Second)

Carbon Dioxide 258.0

Air 331.5

Helium 972.0

Hydrogen 1,270.0

Substance Freezing Point (°F) Boiling Point (°F)

Ethyl alcohol 173 172

Mercury 38 676

Oxygen 362 306

Water 32 212

M04_GADD6253_07_SE_C04 Page 224 Tuesday, January 4, 2011 9:03 PM

225

21. Geometry Calculator

Write a program that displays the following menu:

Geometry Calculator

1. Calculate the Area of a Circle

2. Calculate the Area of a Rectangle

3. Calculate the Area of a Triangle

4. Quit

Enter your choice (1-4):

If the user enters 1, the program should ask for the radius of the circle and then dis-

play its area. Use the following formula:

area = *r2

Use 3.14159 for * and the radius of the circle for r. If the user enters 2, the program

should ask for the length and width of the rectangle and then display the rectangle s

area. Use the following formula:

area = length * width

If the user enters 3 the program should ask for the length of the triangle s base and its

height, and then display its area. Use the following formula:

area = base * height * .5

If the user enters 4, the program should end.

Input Validation: Display an error message if the user enters a number outside the range

of 1 through 4 when selecting an item from the menu. Do not accept negative values for

the circle s radius, the rectangle s length or width, or the triangle s base or height.

22. Long-Distance Calls

A long-distance carrier charges the following rates for telephone calls:

Write a program that asks for the starting time and the number of minutes of the call,

and displays the charges. The program should ask for the time to be entered as a oating-

point number in the form HH.MM. For example, 07:00 hours will be entered as

07.00, and 16:28 hours will be entered as 16.28.

Input Validation: The program should not accept times that are greater than 23:59.

Also, no number whose last two digits are greater than 59 should be accepted. Hint:

Assuming num is a oating-point variable, the following expression will give you its

fractional part:

num static_cast<int>(num)

Starting Time of Call Rate per Minute

00:00 06:59 0.12

07:00 19:00 0.55

19:01 23:59 0.35

Programming Challenges

M04_GADD6253_07_SE_C04 Page 225 Tuesday, January 4, 2011 9:03 PM

226 Chapter 4 Making Decisions

23. Internet Service Provider

An Internet service provider has three different subscription packages for its customers:

Package A: For $9.95 per month 10 hours of access are provided. Additional hours
are $2.00 per hour.

Package B: For $14.95 per month 20 hours of access are provided. Additional
hours are $1.00 per hour.

Package C: For $19.95 per month unlimited access is provided.

Write a program that calculates a customer s monthly bill. It should ask which pack-
age the customer has purchased and how many hours were used. It should then dis-
play the total amount due.

Input Validation: Be sure the user only selects package A, B, or C. Also, the number

of hours used in a month cannot exceed 744.

24. Internet Service Provider, Part 2

Modify the Program in Programming Challenge 23 so that it also displays how much
money Package A customers would save if they purchased packages B or C, and how
much money Package B customers would save if they purchased Package C. If there
would be no savings, no message should be printed.

25. Internet Service Provider, Part 3

Months with 30 days have 720 hours, and months with 31 days have 744 hours. Feb-
ruary, with 28 days, has 672 hours. Enhance the input validation of the Internet Ser-
vice Provider program by asking the user for the month (by name), and validating that
the number of hours entered is not more than the maximum for the entire month.
Here is a table of the months, their days, and number of hours in each.

Month Days Hours

January 31 744

February 28 672

March 31 744

April 30 720

May 31 744

June 30 720

July 31 744

August 31 744

September 30 720

October 31 744

November 30 720

December 31 744

M04_GADD6253_07_SE_C04 Page 226 Tuesday, January 4, 2011 9:03 PM

227

C
H

A
P

T
E

R

5

Loops and Files

5.1

The Increment and Decrement Operators

CONCEPT:

++

 and

--

 are operators that add and subtract 1 from their operands.

To

increment

 a value means to increase it by one, and to

decrement

 a value means to

decrease it by one. Both of the following statements increment the variable

num

:

num = num + 1;

num += 1;

And

num

 is decremented in both of the following statements:

num = num - 1;

num -= 1;

TOPICS

5.1 The Increment and Decrement

Operators

5.2 Introduction to Loops:

The

while

 Loop

5.3 Using the

while

 Loop for Input

Validation

5.4 Counters

5.5 The

do-while

 Loop

5.6 The

for

 Loop

5.7 Keeping a Running Total

5.8 Sentinels

5.9 Focus on Software Engineering:

Deciding Which Loop to Use

5.10 Nested Loops

5.11 Using Files for Data Storage

5.12 Optional Topics: Breaking and

Continuing a Loop

M05_GADD6253_07_SE_C05 Page 227 Wednesday, January 5, 2011 8:14 PM

228

Chapter 5 Loops and Files

C++ provides a set of simple unary operators designed just for incrementing and decre-

menting variables. The increment operator is

++

 and the decrement operator is

--

. The

following statement uses the

++

 operator to increment

num

:

num++;

And the following statement decrements

num

:

num--;

Our examples so far show the increment and decrement operators used in

post x mode

,

which means the operator is placed after the variable. The operators also work in

pre x

mode

, where the operator is placed before the variable name:

++num;

--num;

In both post x and pre x mode, these operators add 1 to or subtract 1 from their oper-

and. Program 5-1 shows how they work.

NOTE:

The expression

num++

 is pronounced num plus plus, and

num--

 is pronounced

num minus minus.

Program 5-1

 1 // This program demonstrates the ++ and -- operators.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 int num = 4; // num starts out with 4.

 8

 9 // Display the value in num.

 10 cout << "The variable num is " << num << endl;

 11 cout << "I will now increment num.\n\n";

 12

 13 // Use postfix ++ to increment num.

 14 num++;

 15 cout << "Now the variable num is " << num << endl;

 16 cout << "I will increment num again.\n\n";

 17

 18 // Use prefix ++ to increment num.

 19 ++num;

 20 cout << "Now the variable num is " << num << endl;

 21 cout << "I will now decrement num.\n\n";

 22

 23 // Use postfix -- to decrement num.

 24 num--;

 25 cout << "Now the variable num is " << num << endl;

 26 cout << "I will decrement num again.\n\n";

 27

M05_GADD6253_07_SE_C05 Page 228 Wednesday, January 5, 2011 8:14 PM

5.1 The Increment and Decrement Operators

229

The Difference Between Post x and Pre x Modes

In the simple statements used in Program 5-1, it doesn t matter if the increment or decre-

ment operator is used in post x or pre x mode. The difference is important, however,

when these operators are used in statements that do more than just incrementing or decre-

menting. For example, look at the following lines:

num = 4;

cout << num++;

This

cout

 statement is doing two things: (1) displaying the value of

num

, and (2) incre-

menting

num

. But which happens rst?

cout

 will display a different value if

num

 is incre-

mented rst than if

num

 is incremented last. The answer depends on the mode of the

increment operator.

Post x mode causes the increment to happen after the value of the variable is used in the

expression. In the example,

cout

 will display 4, then

num

 will be incremented to 5. Pre x

mode, however, causes the increment to happen rst. In the following statements,

num

 will

be incremented to 5, then

cout

 will display 5:

num = 4;

cout << ++num;

Program 5-2 illustrates these dynamics further:

 28 // Use prefix -- to increment num.

 29 --num;

 30 cout << "Now the variable num is " << num << endl;

 31 return 0;

 32 }

Program Output

The variable num is 4

I will now increment num.

Now the variable num is 5

I will increment num again.

Now the variable num is 6

I will now decrement num.

Now the variable num is 5

I will decrement num again.

Now the variable num is 4

Program 5-2

 1 // This program demonstrates the prefix and postfix

 2 // modes of the increment and decrement operators.

 3 #include <iostream>

 4 using namespace std;

(program continues)

M05_GADD6253_07_SE_C05 Page 229 Wednesday, January 5, 2011 8:14 PM

230

Chapter 5 Loops and Files

Let s analyze the statements in this program. In line 8,

num

 is initialized with the value 4,

so the

cout

 statement in line 10 displays 4. Then, line 11 sends the expression

num++

 to

cout

. Because the ++ operator is used in post x mode, the value 4 is rst sent to

cout

,

and then 1 is added to

num

, making its value 5.

When line 12 executes,

num

 will hold the value 5, so 5 is displayed. Then, line 13 sends the

expression

++num

 to

cout

. Because the ++ operator is used in pre x mode, 1 is rst added

to

num

 (making it 6), and then the value 6 is sent to

cout

. This same sequence of events

happens in lines 16 through 19, except the

--

 operator is used.

For another example, look at the following code:

int x = 1;

int y

y = x++; // Postfix increment

The rst statement de nes the variable

x

 (initialized with the value 1) and the second

statement de nes the variable

y

. The third statement does two things:

It assigns the value of

x

 to the variable

y

.

The variable

x

 is incremented.

The value that will be stored in

y

 depends on when the increment takes place. Because the

++

 operator is used in post x mode, it acts

after

 the assignment takes place. So, this code

 5

 6 int main()

 7 {

 8 int num = 4;

 9

 10 cout << num << endl; // Displays 4

 11 cout << num++ << endl; // Displays 4, then adds 1 to num

 12 cout << num << endl; // Displays 5

 13 cout << ++num << endl; // Adds 1 to num, then displays 6

 14 cout << endl; // Displays a blank line

 15

 16 cout << num << endl; // Displays 6

 17 cout << num-- << endl; // Displays 6, then subtracts 1 from num

 18 cout << num << endl; // Displays 5

 19 cout << --num << endl; // Subtracts 1 from num, then displays 4

 20

 21 return 0;

 22 }

Program Output

4

4

5

6

6

6

5

4

Program 5-2

(continued)

M05_GADD6253_07_SE_C05 Page 230 Wednesday, January 5, 2011 8:14 PM

5.1 The Increment and Decrement Operators

231

will store 1 in

y

. After the code has executed,

x

 will contain 2. Let s look at the same code,

but with the ++ operator used in pre x mode:

int x = 1;

int y;

y = ++x; // Prefix increment

In the third statement, the ++ operator is used in pre x mode, so it acts on the variable

x

before the assignment takes place. So, this code will store 2 in

y. After the code has exe-

cuted, x will also contain 2.

Using ++ and -- in Mathematical Expressions

The increment and decrement operators can also be used on variables in mathematical

expressions. Consider the following program segment:

a = 2;

b = 5;

c = a * b++;

cout << a << " " << b << " " << c;

In the statement c = a * b++, c is assigned the value of a times b, which is 10. The variable

b is then incremented. The cout statement will display

2 6 10

If the statement were changed to read

c = a * ++b;

The variable b would be incremented before it was multiplied by a. In this case c would be

assigned the value of 2 times 6, so the cout statement would display

2 6 12

You can pack a lot of action into a single statement using the increment and decrement

operators, but don t get too tricky with them. You might be tempted to try something like

the following, thinking that c will be assigned 11:

a = 2;

b = 5;

c = ++(a * b); // Error!

But this assignment statement simply will not work because the operand of the increment

and decrement operators must be an lvalue. Recall from Chapter 2 that an lvalue identi es

a place in memory whose contents may be changed. The increment and decrement opera-

tors usually have variables for their operands, but generally speaking, anything that can

go on the left side of an = operator is legal.

Using ++ and -- in Relational Expressions

Sometimes you will see code where the ++ and -- operators are used in relational expres-

sions. Just as in mathematical expressions, the difference between post x and pre x mode

is critical. Consider the following program segment:

x = 10;

if (x++ > 10)

 cout << "x is greater than 10.\n";

M05_GADD6253_07_SE_C05 Page 231 Wednesday, January 5, 2011 8:14 PM

232 Chapter 5 Loops and Files

Two operations are happening in this if statement: (1) The value in x is tested to deter-

mine if it is greater than 10, and (2) x is incremented. Because the increment operator is

used in post x mode, the comparison happens rst. Since 10 is not greater than 10, the

cout statement won t execute. If the mode of the increment operator is changed, however,

the if statement will compare 11 to 10 and the cout statement will execute:

x = 10;

if (++x > 10)

 cout << "x is greater than 10.\n";

Checkpoint

 www.myprogramminglab.com

5.1 What will the following program segments display?

A) x = 2;

y = x++;

cout << x << y;

B) x = 2;

y = ++x;

cout << x << y;

C) x = 2;

y = 4;

cout << x++ << --y;

D) x = 2;

y = 2 * x++;

cout << x << y;

E) x = 99;

if (x++ < 100)

 cout "It is true!\n";

else

 cout << "It is false!\n";

F) x = 0;

if (++x)

 cout << "It is true!\n";

else

 cout << "It is false!\n";

5.2 Introduction to Loops: The while Loop

CONCEPT: A loop is part of a program that repeats.

Chapter 4 introduced the concept of control structures, which direct the ow of a pro-

gram. A loop is a control structure that causes a statement or group of statements to

repeat. C++ has three looping control structures: the while loop, the do-while loop, and

the for loop. The difference between these structures is how they control the repetition.

VideoNote

The while
Loop

M05_GADD6253_07_SE_C05 Page 232 Wednesday, January 5, 2011 8:14 PM

5.2 Introduction to Loops: The while Loop 233

The while Loop

The while loop has two important parts: (1) an expression that is tested for a true or false

value, and (2) a statement or block that is repeated as long as the expression is true. Figure

5-1 shows the logic of a while loop.

Here is the general format of the while loop:

In the general format, expression is any expression that can be evaluated as true or false,

and statement is any valid C++ statement. The rst line shown in the format is sometimes

called the loop header. It consists of the key word while followed by an expression

enclosed in parentheses.

Here s how the loop works: the expression is tested, and if it is true, the statement is

executed. Then, the expression is tested again. If it is true, the statement is executed.

This cycle repeats until the expression is false.

The statement that is repeated is known as the body of the loop. It is also considered a

conditionally executed statement, because it is executed only under the condition that the

expression is true.

Notice there is no semicolon after the expression in parentheses. Like the if statement,

the while loop is not complete without the statement that follows it.

If you wish the while loop to repeat a block of statements, its format is:

Figure 5-1

 while (expression)

 statement;

 while (expression)

{

statement;

statement;

// Place as many statements here

// as necessary.

}

Statement(s)
True

False

Expression

M05_GADD6253_07_SE_C05 Page 233 Wednesday, January 5, 2011 8:14 PM

234 Chapter 5 Loops and Files

The while loop works like an if statement that executes over and over. As long as the

expression inside the parentheses is true, the conditionally executed statement or block

will repeat. Program 5-3 uses the while loop to print Hello ve times.

Let s take a closer look at this program. In line 7 an integer variable, number, is de ned

and initialized with the value 0. In line 9 the while loop begins with this statement:

while (number < 5)

This statement tests the variable number to determine whether it is less than 5. If it is, then

the statements in the body of the loop (lines 11 and 12) are executed:

cout << "Hello\n";

number++;

The statement in line 11 prints the word Hello. The statement in line 12 uses the incre-

ment operator to add one to number. This is the last statement in the body of the loop, so

after it executes, the loop starts over. It tests the expression number < 5 again, and if it is

true, the statements in the body of the loop are executed again. This cycle repeats until the

expression number < 5 is false. This is illustrated in Figure 5-2.

Each repetition of a loop is known as an iteration. This loop will perform ve iterations

because the variable number is initialized with the value 0, and it is incremented each time

the body of the loop is executed. When the expression number < 5 is tested and found to

be false, the loop will terminate and the program will resume execution at the statement

that immediately follows the loop. Figure 5-3 shows the logic of this loop.

Program 5-3

 1 // This program demonstrates a simple while loop.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 int number = 0;

 8

 9 while (number < 5)

 10 {

 11 cout << "Hello\n";

 12 number++;

 13 }

 14 cout << "That's all!\n";

 15 return 0;

 16 }

Program Output

Hello

Hello

Hello

Hello

Hello

That's all!

M05_GADD6253_07_SE_C05 Page 234 Wednesday, January 5, 2011 8:14 PM

5.2 Introduction to Loops: The while Loop 235

In this example, the number variable is referred to as the loop control variable because it

controls the number of times that the loop iterates.

The while Loop Is a Pretest Loop

The while loop is known as a pretest loop, which means it tests its expression before each

iteration. Notice the variable de nition in line 7 of Program 5-3:

int number = 0;

The number variable is initialized with the value 0. If number had been initialized with the

value 5 or greater, as shown in the following program segment, the loop would never exe-

cute:

int number = 6;

while (number < 5)

{

 cout << "Hello\n";

 number++;

}

An important characteristic of the while loop is that the loop will never iterate if the test

expression is false to start with. If you want to be sure that a while loop executes the rst

time, you must initialize the relevant data in such a way that the test expression starts out

as true.

Figure 5-2

Figure 5-3

while (number < 5)

{

 cout << "Hello\n";

 number++;

}

Test this expression.

If the expression is true,

perform these statements.

After executing the body of the loop, start over.

Print "Hello"
True

False

number

< 5
Add 1 to

number

M05_GADD6253_07_SE_C05 Page 235 Wednesday, January 5, 2011 8:14 PM

236 Chapter 5 Loops and Files

In nite Loops

In all but rare cases, loops must contain within themselves a way to terminate. This means

that something inside the loop must eventually make the test expression false. The loop in

Program 5-3 stops when the expression number < 5 is false.

If a loop does not have a way of stopping, it is called an in nite loop. An in nite loop con-

tinues to repeat until the program is interrupted. Here is an example of an in nite loop:

int number = 0;

while (number < 5)

{

 cout << "Hello\n";

}

This is an in nite loop because it does not contain a statement that changes the value of

the number variable. Each time the expression number < 5 is tested, number will contain

the value 0.

It s also possible to create an in nite loop by accidentally placing a semicolon after the

rst line of the while loop. Here is an example:

int number = 0;

while (number < 5); // This semicolon is an ERROR!

{

 cout << "Hello\n";

 number++;

}

The semicolon at the end of the rst line is assumed to be a null statement and disconnects

the while statement from the block that comes after it. To the compiler, this loop looks

like:

while (number < 5);

This while loop will forever execute the null statement, which does nothing. The program

will appear to have gone into space because there is nothing to display screen output or

show activity.

Don t Forget the Braces with a Block of Statements

If you write a loop that conditionally executes a block of statements, don t forget to

enclose all of the statements in a set of braces. If the braces are accidentally left out, the

while statement conditionally executes only the very next statement. For example, look at

the following code.

int number = 0;

// This loop is missing its braces!

while (number < 5)

 cout << "Hello\n";

 number++;

In this code the number++ statement is not in the body of the loop. Because the braces

are missing, the while statement only executes the statement that immediately follows

it. This loop will execute in nitely because there is no code in its body that changes the

number variable.

M05_GADD6253_07_SE_C05 Page 236 Wednesday, January 5, 2011 8:14 PM

5.2 Introduction to Loops: The

while

 Loop

237

Another common pitfall with loops is accidentally using the

=

 operator when you intend to

use the

==

 operator. The following is an in nite loop because the test expression assigns 1 to

remainder

 each time it is evaluated instead of testing whether

remainder

 is equal to 1.

while (remainder = 1) // Error: Notice the assignment

{

 cout << "Enter a number: ";

 cin >> num;

 remainder = num % 2;

}

Remember, any nonzero value is evaluated as true.

Programming Style and the

while

 Loop

It s possible to create loops that look like this:

while (number < 5) { cout << "Hello\n"; number++; }

Avoid this style of programming. The programming style you should use with the

while

loop is similar to that of the

if

 statement:

If there is only one statement repeated by the loop, it should appear on the line

after the

while

 statement and be indented one additional level.

If the loop repeats a block, each line inside the braces should be indented.

This programming style should visually set the body of the loop apart from the surround-

ing code. In general, you ll nd a similar style being used with the other types of loops pre-

sented in this chapter.

In the Spotlight:

Designing a Program with a

while

Loop

A project currently underway at Chemical Labs, Inc. requires that a substance be continu-

ally heated in a vat. A technician must check the substance s temperature every 15 min-

utes. If the substance s temperature does not exceed 102.5 degrees Celsius, then the

technician does nothing. However, if the temperature is greater than 102.5 degrees Cel-

sius, the technician must turn down the vat s thermostat, wait 5 minutes, and check the

temperature again. The technician repeats these steps until the temperature does not

exceed 102.5 degrees Celsius. The director of engineering has asked you to write a pro-

gram that guides the technician through this process.

Here is the algorithm:

1. Prompt the user to enter the substance s temperature.

2. Repeat the following steps as long as the temperature is greater than 102.5 degrees

Celsius:

a. Tell the technician to turn down the thermostat, wait 5 minutes, and check the

temperature again.

b. Prompt the user to enter the substance s temperature.

M05_GADD6253_07_SE_C05 Page 237 Thursday, January 6, 2011 4:39 PM

238 Chapter 5 Loops and Files

3. After the loop nishes, tell the technician that the temperature is acceptable and to

check it again in 15 minutes.

After reviewing this algorithm, you realize that steps 2a and 2b should not be performed if

the test condition (temperature is greater than 102.5) is false to begin with. The while

loop will work well in this situation, because it will not execute even once if its condition

is false. Program 5-4 shows the code for the program.

Program 5-4

 1 // This program assists a technician in the process

 2 // of checking a substance's temperature.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const double MAX_TEMP = 102.5; // Maximum temperature

 9 double temperature; // To hold the temperature

 10

 11 // Get the current temperature.

 12 cout << "Enter the substance's Celsius temperature: ";

 13 cin >> temperature;

 14

 15 // As long as necessary, instruct the technician

 16 // to adjust the thermostat.

 17 while (temperature > MAX_TEMP)

 18 {

 19 cout << "The temperature is too high. Turn the\n";

 20 cout << "thermostat down and wait 5 minutes.\n";

 21 cout << "Then take the Celsius temperature again\n";

 22 cout << "and enter it here: ";

 23 cin >> temperature;

 24 }

 25

 26 // Remind the technician to check the temperature

 27 // again in 15 minutes.

 28 cout << "The temperature is acceptable.\n";

 29 cout << "Check it again in 15 minutes.\n";

 30

 31 return 0;

 32 }

Program Output with Example Input Shown in Bold

Enter the substance's Celsius temperature: 104.7 [Enter]
The temperature is too high. Turn the

thermostat down and wait 5 minutes.

Then take the Celsius temperature again

and enter it here: 103.2 [Enter]
The temperature is too high. Turn the

thermostat down and wait 5 minutes.

Then take the Celsius temperature again

and enter it here: 102.1 [Enter]
The temperature is acceptable.

Check it again in 15 minutes.

M05_GADD6253_07_SE_C05 Page 238 Wednesday, January 5, 2011 8:14 PM

5.3 Using the while Loop for Input Validation 239

5.3 Using the while Loop for Input Validation

CONCEPT: The while loop can be used to create input routines that repeat until

acceptable data is entered.

Perhaps the most famous saying of the computer industry is garbage in, garbage out.

The integrity of a program s output is only as good as its input, so you should try to make

sure garbage does not go into your programs. Input validation is the process of inspecting

data given to a program by the user and determining if it is valid. A good program should

give clear instructions about the kind of input that is acceptable, and not assume the user

has followed those instructions.

The while loop is especially useful for validating input. If an invalid value is entered, a

loop can require that the user re-enter it as many times as necessary. For example, the fol-

lowing loop asks for a number in the range of 1 through 100:

cout << "Enter a number in the range 1-100: ";

cin >> number;

while (number < 1 || number > 100)

{

 cout << "ERROR: Enter a value in the range 1-100: ";

 cin >> number;

}

This code rst allows the user to enter a number. This takes place just before the loop. If

the input is valid, the loop will not execute. If the input is invalid, however, the loop will

display an error message and require the user to enter another number. The loop will con-

tinue to execute until the user enters a valid number. The general logic of performing input

validation is shown in Figure 5-4.

Figure 5-4

Display an

error message.

Yes

No

Is the

value

invalid?

Read another

value.

Read the first

value.

M05_GADD6253_07_SE_C05 Page 239 Wednesday, January 5, 2011 8:14 PM

240 Chapter 5 Loops and Files

The read operation that takes place just before the loop is called a priming read. It pro-

vides the rst value for the loop to test. Subsequent values are obtained by the loop.

Program 5-5 calculates the number of soccer teams a youth league may create, based on a

given number of players and a maximum number of players per team. The program uses

while loops (in lines 25 through 34 and lines 41 through 46) to validate the user s input.

Program 5-5

 1 // This program calculates the number of soccer teams

 2 // that a youth league may create from the number of

 3 // available players. Input validation is demonstrated

 4 // with while loops.

 5 #include <iostream>

 6 using namespace std;

 7

 8 int main()

 9 {

 10 // Constants for minimum and maximum players

 11 const int MIN_PLAYERS = 9,

 12 MAX_PLAYERS = 15;

 13

 14 // Variables

 15 int players, // Number of available players

 16 teamPlayers, // Number of desired players per team

 17 numTeams, // Number of teams

 18 leftOver; // Number of players left over

 19

 20 // Get the number of players per team.

 21 cout << "How many players do you wish per team? ";

 22 cin >> teamPlayers;

 23

 24 // Validate the input.

 25 while (teamPlayers < MIN_PLAYERS || teamPlayers > MAX_PLAYERS)

 26 {

 27 // Explain the error.

 28 cout << "You should have at least " << MIN_PLAYERS

 29 << " but no more than " << MAX_PLAYERS << " per team.\n";

 30

 31 // Get the input again.

 32 cout << "How many players do you wish per team? ";

 33 cin >> teamPlayers;

 34 }

 35

 36 // Get the number of players available.

 37 cout << "How many players are available? ";

 38 cin >> players;

 39

 40 // Validate the input.

 41 while (players <= 0)

 42 {

 43 // Get the input again.

 44 cout << "Please enter 0 or greater: ";

 45 cin >> players;

 46 }

 47

M05_GADD6253_07_SE_C05 Page 240 Wednesday, January 5, 2011 8:14 PM

5.4 Counters 241

Checkpoint

 www.myprogramminglab.com

5.2 Write an input validation loop that asks the user to enter a number in the range of

10 through 25.

5.3 Write an input validation loop that asks the user to enter Y , y , N , or n .

5.4 Write an input validation loop that asks the user to enter Yes or No .

5.4 Counters

CONCEPT: A counter is a variable that is regularly incremented or decremented each

time a loop iterates.

Sometimes it s important for a program to control or keep track of the number of itera-

tions a loop performs. For example, Program 5-6 displays a table consisting of the num-

bers 1 through 10 and their squares, so its loop must iterate 10 times.

 48 // Calculate the number of teams.

 49 numTeams = players / teamPlayers;

 50

 51 // Calculate the number of leftover players.

 52 leftOver = players % teamPlayers;

 53

 54 // Display the results.

 55 cout << "There will be " << numTeams << " teams with "

 56 << leftOver << " players left over.\n";

 57 return 0;

 58 }

Program Output with Example Input Shown in Bold

How many players do you wish per team? 4 [Enter]
You should have at least 9 but no more than 15 per team.

How many players do you wish per team? 12 [Enter]
How many players are available? 142 [Enter]
Please enter 0 or greater: 142 [Enter]
There will be 11 teams with 10 players left over.

Program 5-6

 1 // This program displays a list of numbers and

 2 // their squares.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int MIN_NUMBER = 1, // Starting number to square

 9 MAX_NUMBER = 10; // Maximum number to square

 10

(program continues)

M05_GADD6253_07_SE_C05 Page 241 Wednesday, January 5, 2011 8:14 PM

242 Chapter 5 Loops and Files

In Program 5-6, the variable num, which starts at 1, is incremented each time through the

loop. When num reaches 11 the loop stops. num is used as a counter variable, which means

it is regularly incremented in each iteration of the loop. In essence, num keeps count of the

number of iterations the loop has performed.

5.5 The do-while Loop

CONCEPT: The do-while loop is a posttest loop, which means its expression is

tested after each iteration.

The do-while loop looks something like an inverted while loop. Here is the do-while

loop s format when the body of the loop contains only a single statement:

 11 int num = MIN_NUMBER; // Counter

 12

 13 cout << "Number Number Squared\n";

 14 cout << "-------------------------\n";

 15 while (num <= MAX_NUMBER)

 16 {

 17 cout << num << "\t\t" << (num * num) << endl;

 18 num++; //Increment the counter.

 19 }

 20 return 0;

 21 }

Program Output

Number Number Squared

1 1

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

10 100

NOTE: It s important that num be properly initialized. Remember, variables de ned

inside a function have no guaranteed starting value.

 do

 statement;

 while (expression);

Program 5-6 (continued)

M05_GADD6253_07_SE_C05 Page 242 Wednesday, January 5, 2011 8:14 PM

5.5 The do-while Loop 243

Here is the format of the do-while loop when the body of the loop contains multiple

statements:

The do-while loop is a posttest loop. This means it does not test its expression until it has

completed an iteration. As a result, the do-while loop always performs at least one itera-

tion, even if the expression is false to begin with. This differs from the behavior of a while

loop, which you will recall is a pretest loop. For example, in the following while loop the

cout statement will not execute at all:

int x = 1;

while (x < 0)

 cout << x << endl;

But the cout statement in the following do-while loop will execute once because the

do-while loop does not evaluate the expression x < 0 until the end of the iteration.

int x = 1;

do

 cout << x << endl;

while (x < 0);

Figure 5-5 illustrates the logic of the do-while loop.

You should use the do-while loop when you want to make sure the loop executes at least

once. For example, Program 5-7 averages a series of three test scores for a student. After

 do

 {

 statement;

 statement;

 // Place as many statements here

 // as necessary.

 } while (expression);

NOTE: The do-while loop must be terminated with a semicolon.

Figure 5-5

True

False

Expression

Statement(s)

M05_GADD6253_07_SE_C05 Page 243 Wednesday, January 5, 2011 8:14 PM

244

Chapter 5 Loops and Files

the average is displayed, it asks the user if he or she wants to average another set of test

scores. The program repeats as long as the user enters Y for yes.

When this program was written, the programmer had no way of knowing the number of

times the loop would iterate. This is because the loop asks the user if he or she wants to

repeat the process. This type of loop is known as a

user-controlled loop

,

because it allows

the user to decide the number of iterations.

Using

do-while

 with Menus

The

do

-

while

 loop is a good choice for repeating a menu. Recall Program 4-27, which dis-

played a menu of health club packages. Program 5-8 is a modi cation of that program which

uses a

do

-

while

 loop to repeat the program until the user selects item 4 from the menu.

Program 5-7

 1 // This program averages 3 test scores. It repeats as

 2 // many times as the user wishes.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 int score1, score2, score3; // Three scores

 9 double average; // Average score

 10 char again; // To hold Y or N input

 11

 12 do

 13 {

 14 // Get three scores.

 15 cout << "Enter 3 scores and I will average them: ";

 16 cin >> score1 >> score2 >> score3;

 17

 18 // Calculate and display the average.

 19 average = (score1 + score2 + score3) / 3.0;

 20 cout << "The average is " << average << ".\n";

 21

 22 // Does the user want to average another set?

 23 cout << "Do you want to average another set? (Y/N) ";

 24 cin >> again;

 25 } while (again == 'Y' || again == 'y');

 26 return 0;

 27 }

Program Output with Example Input Shown in Bold

Enter 3 scores and I will average them:

80 90 70 [Enter]

The average is 80.

Do you want to average another set? (Y/N)

y [Enter]

Enter 3 scores and I will average them:

60 75 88 [Enter]

The average is 74.3333.

Do you want to average another set? (Y/N)

n [Enter]

M05_GADD6253_07_SE_C05 Page 244 Thursday, January 13, 2011 8:08 PM

5.5 The

do-while

 Loop

245

Program 5-8

 1 // This program displays a menu and asks the user to make a

 2 // selection. A do-while loop repeats the program until the

 3 // user selects item 4 from the menu.

 4 #include <iostream>

 5 #include <iomanip>

 6 using namespace std;

 7

 8 int main()

 9 {

 10 // Constants for menu choices

 11 const int ADULT_CHOICE = 1,

 12 CHILD_CHOICE = 2,

 13 SENIOR_CHOICE = 3,

 14 QUIT_CHOICE = 4;

 15

 16 // Constants for membership rates

 17 const double ADULT = 40.0,

 18 CHILD = 20.0,

 19 SENIOR = 30.0;

 20

 21 // Variables

 22 int choice; // Menu choice

 23 int months; // Number of months

 24 double charges; // Monthly charges

 25

 26 // Set up numeric output formatting.

 27 cout << fixed << showpoint << setprecision(2);

 28

 29 do

 30 {

 31 // Display the menu.

 32 cout << "\n\t\tHealth Club Membership Menu\n\n"

 33 << "1. Standard Adult Membership\n"

 34 << "2. Child Membership\n"

 35 << "3. Senior Citizen Membership\n"

 36 << "4. Quit the Program\n\n"

 37 << "Enter your choice: ";

 38 cin >> choice;

 39

 40 // Validate the menu selection.

 41 while (choice < ADULT_CHOICE || choice > QUIT_CHOICE)

 42 {

 43 cout << "Please enter a valid menu choice: ";

 44 cin >> choice;

 45 }

 46

 47 // Process the user's choice.

 48 if (choice != QUIT_CHOICE)

 49 {

 50 // Get the number of months.

 51 cout << "For how many months? ";

 52 cin >> months;

 53

(program continues)

M05_GADD6253_07_SE_C05 Page 245 Thursday, January 13, 2011 8:09 PM

246 Chapter 5 Loops and Files

Checkpoint

 www.myprogramminglab.com

5.5 What will the following program segments display?

A) int count = 10;
do

 {

 cout << "Hello World\n";

 count++;

} while (count < 1);

 54 // Respond to the user's menu selection.

 55 switch (choice)

 56 {

 57 case ADULT_CHOICE:

 58 charges = months * ADULT;

 59 break;

 60 case CHILD_CHOICE:

 61 charges = months * CHILD;

 62 break;

 63 case SENIOR_CHOICE:

 64 charges = months * SENIOR;

 65 }

 66

 67 // Display the monthly charges.

 68 cout << "The total charges are $"

 69 << charges << endl;

 70 }

 71 } while (choice != QUIT_CHOICE);

 72 return 0;

 73 }

Program Output with Example Input Shown in Bold

 Health Club Membership Menu

1. Standard Adult Membership

2. Child Membership

3. Senior Citizen Membership

4. Quit the Program

Enter your choice: 1 [Enter]
For how many months? 12 [Enter]
The total charges are $480.00

 Health Club Membership Menu

1. Standard Adult Membership

2. Child Membership

3. Senior Citizen Membership

4. Quit the Program

Enter your choice: 4 [Enter]
Program ending.

Program 5-8 (continued)

M05_GADD6253_07_SE_C05 Page 246 Wednesday, January 5, 2011 8:14 PM

5.6 The for Loop 247

B) int v = 10;

do

 cout << v << end1;

while (v < 5);

C) int count = 0, number = 0, limit = 4;
do

{

 number += 2;

 count++;

} while (count < limit);

cout << number << " " << count << endl;

5.6 The for Loop

CONCEPT: The for loop is ideal for performing a known number of iterations.

In general, there are two categories of loops: conditional loops and count-controlled

loops. A conditional loop executes as long as a particular condition exists. For example,

an input validation loop executes as long as the input value is invalid. When you write a

conditional loop, you have no way of knowing the number of times it will iterate.

Sometimes you know the exact number of iterations that a loop must perform. A loop

that repeats a speci c number of times is known as a count-controlled loop. For example,

if a loop asks the user to enter the sales amounts for each month in the year, it will iterate

twelve times. In essence, the loop counts to twelve and asks the user to enter a sales

amount each time it makes a count. A count-controlled loop must possess three elements:

1. It must initialize a counter variable to a starting value.

2. It must test the counter variable by comparing it to a maximum value. When the

counter variable reaches its maximum value, the loop terminates.

3. It must update the counter variable during each iteration. This is usually done by

incrementing the variable.

Count-controlled loops are so common that C++ provides a type of loop speci cally for

them. It is known as the for loop. The for loop is speci cally designed to initialize, test,

and update a counter variable. Here is the format of the for loop when it is used to repeat

a single statement:

The format of the for loop when it is used to repeat a block is

 for (initialization; test; update)

 statement;

 for (initialization; test; update)

 {

 statement;

 statement;

 // Place as many statements here

 // as necessary.

 }

VideoNote

The for
Loop

M05_GADD6253_07_SE_C05 Page 247 Wednesday, January 5, 2011 8:14 PM

248 Chapter 5 Loops and Files

The rst line of the for loop is the loop header. After the key word for, there are three

expressions inside the parentheses, separated by semicolons. (Notice there is not a semico-

lon after the third expression.) The rst expression is the initialization expression. It is

normally used to initialize a counter variable to its starting value. This is the rst action

performed by the loop, and it is only done once. The second expression is the test expres-

sion. This is an expression that controls the execution of the loop. As long as this expres-

sion is true, the body of the for loop will repeat. The for loop is a pretest loop, so it

evaluates the test expression before each iteration. The third expression is the update

expression. It executes at the end of each iteration. Typically, this is a statement that incre-

ments the loop s counter variable.

Here is an example of a simple for loop that prints Hello ve times:

for (count = 0; count < 5; count++)

cout << "Hello" << endl;

In this loop, the initialization expression is count = 0, the test expression is count < 5,

and the update expression is count++. The body of the loop has one statement, which is

the cout statement. Figure 5-6 illustrates the sequence of events that takes place during the

loop s execution. Notice that Steps 2 through 4 are repeated as long as the test expression

is true.

Figure 5-7 shows the loop s logic in the form of a owchart.

Figure 5-6

Figure 5-7

for (count = 0; count < 5; count++)

 cout << "Hello" << endl;

Step 1: Perform the initialization expression.

Step 2: Evaluate the test expression. If it is true, go to Step 3.
 Otherwise, terminate the loop.

Step 3: Execute the body of the loop.

Step 4: Perform the update expression,
 then go back to Step 2.

cout

statement

True

False

count

< 5

Increment

count

Assign 0 to

count

M05_GADD6253_07_SE_C05 Page 248 Wednesday, January 5, 2011 8:14 PM

5.6 The for Loop 249

Notice how the counter variable, count, is used to control the number of times that the

loop iterates. During the execution of the loop, this variable takes on the values 1 through

5, and when the test expression count < 5 is false, the loop terminates. Also notice that

in this example the count variable is used only in the loop header, to control the number

of loop iterations. It is not used for any other purpose. It is also possible to use the counter

variable within the body of the loop. For example, look at the following code:

for (number = 1; number <= 10; number++)

cout << number << " " << endl;

The counter variable in this loop is number. In addition to controlling the number of itera-

tions, it is also used in the body of the loop. This loop will produce the following output:

1 2 3 4 5 6 7 8 9 10

As you can see, the loop displays the contents of the number variable during each itera-

tion. Program 5-9 shows another example of a for loop that uses its counter variable

within the body of the loop. This is yet another program that displays a table showing the

numbers 1 through 10 and their squares.

Program 5-9

 1 // This program displays the numbers 1 through 10 and

 2 // their squares.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int MIN_NUMBER = 1, // Starting value

 9 MAX_NUMBER = 10; // Ending value

 10 int num;

 11

 12 cout << "Number Number Squared\n";

 13 cout << "-------------------------\n";

 14

 15 for (num = MIN_NUMBER; num <= MAX_NUMBER; num++)

 16 cout << num << "\t\t" << (num * num) << endl;

 17

 18 return 0;

 19 }

Program Output

Number Number Squared

1 1

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

10 100

M05_GADD6253_07_SE_C05 Page 249 Wednesday, January 5, 2011 8:14 PM

250 Chapter 5 Loops and Files

Figure 5-8 illustrates the sequence of events performed by this for loop, and Figure 5-9

shows the logic of the loop as a owchart.

Using the for Loop Instead of while or do-while

You should use the for loop instead of the while or do-while loop in any situation that

clearly requires an initialization, uses a false condition to stop the loop, and requires an

update to occur at the end of each loop iteration. Program 5-9 is a perfect example. It

requires that the num variable be initialized to 1, it stops the loop when num is greater than

10, and it increments num at the end of each loop iteration.

Recall that when we rst introduced the idea of a counter variable we examined

Program 5-6, which uses a while loop to display the table of numbers and their squares.

Because the loop in that program requires an initialization, uses a false test expression to

stop, and performs an increment at the end of each iteration, it can easily be converted to

a for loop. Figure 5-10 shows how the while loop in Program 5-6 and the for loop in

Program 5-9 each have initialization, test, and update expressions.

Figure 5-8

Figure 5-9

for (num = MIN_NUMBER; num <= MAX_NUMBER; num++)

 cout << num << "\t\t" << (num * num) << endl;

Step 3: Execute the body of the loop.

Step 1: Perform the initialization

 expression.

Step 2: Evaluate the test expression.

 If it is true, go to Step 3.

 Otherwise, terminate the loop.

Step 4: Perform the update

 expression, then go

 back to Step 2.

Display num

and num * num

True

False

num <=

MAX_NUMBER
Increment

num

Assign

MIN_NUMBER

to num

M05_GADD6253_07_SE_C05 Page 250 Wednesday, January 5, 2011 8:14 PM

5.6 The for Loop 251

The for Loop Is a Pretest Loop

Because the for loop tests its test expression before it performs an iteration, it is a pretest

loop. It is possible to write a for loop in such a way that it will never iterate. Here is an

example:

for (count = 11; count <= 10; count++)

 cout << "Hello" << endl;

Because the variable count is initialized to a value that makes the test expression false

from the beginning, this loop terminates as soon as it begins.

Avoid Modifying the Counter Variable
in the Body of the for Loop

Be careful not to place a statement that modi es the counter variable in the body of the for

loop. All modi cations of the counter variable should take place in the update expression,

which is automatically executed at the end of each iteration. If a statement in the body of

the loop also modi es the counter variable, the loop will probably not terminate when you

expect it to. The following loop, for example, increments x twice for each iteration:

for (x = 1; x <= 10; x++)

{

 cout << x << endl;

 x++; // Wrong!

}

Figure 5-10

int num = MIN_NUMBER;

while (num <= MAX_NUMBER)

{

 cout << num << "\t\t" << (num * num) << endl;

 num++;

}

Initialization expression

Test expression

Update expression

for (num = MIN_NUMBER; num <= MAX_NUMBER; num++)

 cout << num << "\t\t" << (num * num) << endl;

Test

expression

Initialization

expression

Update

expression

M05_GADD6253_07_SE_C05 Page 251 Wednesday, January 5, 2011 8:14 PM

252 Chapter 5 Loops and Files

Other Forms of the Update Expression

You are not limited to using increment statements in the update expression. Here is a loop

that displays all the even numbers from 2 through 100 by adding 2 to its counter:

for (num = 2; num <= 100; num += 2)

 cout << num << endl;

And here is a loop that counts backward from 10 down to 0:

for (num = 10; num >= 0; num--)

 cout << num << endl;

De ning a Variable in the for Loop s
Initialization Expression

Not only may the counter variable be initialized in the initialization expression, it may be

de ned there as well. The following code shows an example. This is a modi ed version of

the loop in Program 5-9.

for (int num = MIN_NUMBER; num <= MAX_NUMBER; num++)

 cout << num << "\t\t" << (num * num) << endl;

In this loop, the num variable is both de ned and initialized in the initialization expression.

If the counter variable is used only in the loop, it makes sense to de ne it in the loop

header. This makes the variable s purpose more clear.

When a variable is de ned in the initialization expression of a for loop, the scope of the

variable is limited to the loop. This means you cannot access the variable in statements

outside the loop. For example, the following program segment will not compile because

the last cout statement cannot access the variable count.

for (int count = 1; count <= 10; count++)

 cout << count << endl;

cout << "count is now " << count << endl; // ERROR!

Creating a User Controlled for Loop

Sometimes you want the user to determine the maximum value of the counter variable in

a for loop, and therefore determine the number of times the loop iterates. For example,

look at Program 5-10. This is another program that displays a list of numbers and their

squares. Instead of displaying the numbers 1 through 10, this program allows the user to

enter the minimum and maximum values to display.

Program 5-10

 1 // This program demonstrates a user controlled for loop.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 int minNumber, // Starting number to square

 8 maxNumber; // Maximum number to square

 9

M05_GADD6253_07_SE_C05 Page 252 Wednesday, January 5, 2011 8:14 PM

5.6 The for Loop 253

Before the loop, the code in lines 11 through 16 asks the user to enter the starting and

ending numbers. These values are stored in the minNumber and maxNumber variables.

These values are used in the for loop s initialization and test expressions:

for (int num = minNumber; num <= maxNumber; num++)

In this loop, the num variable takes on the values from maxNumber through maxValue, and

then the loop terminates.

Using Multiple Statements in the Initialization
and Update Expressions

It is possible to execute more than one statement in the initialization expression and the

update expression. When using multiple statements in either of these expressions, simply

separate the statements with commas. For example, look at the loop in the following

code, which has two statements in the initialization expression.

 10 // Get the minimum and maximum values to display.

 11 cout << "I will display a table of numbers and "

 12 << "their squares.\n"

 13 << "Enter the starting number: ";

 14 cin >> minNumber;

 15 cout << "Enter the ending number: ";

 16 cin >> maxNumber;

 17

 18 // Display the table.

 19 cout << "Number Number Squared\n"

 20 << "-------------------------\n";

 21

 22 for (int num = minNumber; num <= maxNumber; num++)

 23 cout << num << "\t\t" << (num * num) << endl;

 24

 25 return 0;

 26 }

Program Output with Example Input Shown in Bold

I will display a table of numbers and their squares.

Enter the starting number: 6 [Enter]
Enter the ending number: 12 [Enter]

Number Number Squared

6 36

7 49

8 64

9 81

10 100

11 121

12 144

M05_GADD6253_07_SE_C05 Page 253 Wednesday, January 5, 2011 8:14 PM

254 Chapter 5 Loops and Files

int x, y;

for (x = 1, y = 1; x <= 5; x++)

{

 cout << x << " plus " << y

 << " equals " << (x + y)

 << endl;

}

This loop s initialization expression is

x = 1, y = 1

This initializes two variables, x and y. The output produced by this loop is

1 plus 1 equals 2

2 plus 1 equals 3

3 plus 1 equals 4

4 plus 1 equals 5

5 plus 1 equals 6

We can further modify the loop to execute two statements in the update expression. Here

is an example:

int x, y;

for (x = 1, y = 1; x <= 5; x++, y++)

{

 cout << x << " plus " << y

 << " equals " << (x + y)

 << endl;

}

The loop s update expression is

x++, y++

This update expression increments both the x and y variables. The output produced by

this loop is

1 plus 1 equals 2

2 plus 2 equals 4

3 plus 3 equals 6

4 plus 4 equals 8

5 plus 5 equals 10

Connecting multiple statements with commas works well in the initialization and update

expressions, but do not try to connect multiple expressions this way in the test expression.

If you wish to combine multiple expressions in the test expression, you must use the && or

|| operators.

Omitting the for Loop s Expressions

The initialization expression may be omitted from inside the for loop s parentheses if it

has already been performed or no initialization is needed. Here is an example of the loop

in Program 5-10 with the initialization being performed prior to the loop:

int num = 1;

for (; num <= maxValue; num++)

 cout << num << "\t\t" << (num * num) << endl;

M05_GADD6253_07_SE_C05 Page 254 Wednesday, January 5, 2011 8:14 PM

5.6 The for Loop 255

You may also omit the update expression if it is being performed elsewhere in the loop or

if none is needed. Although this type of code is not recommended, the following for loop

works just like a while loop:

int num = 1;

for (; num <= maxValue;)

{

 cout << num << "\t\t" << (num * num) << endl;

 num++;

}

You can even go so far as to omit all three expressions from the for loop s parentheses. Be

warned, however, that if you leave out the test expression, the loop has no built-in way of

terminating. Here is an example:

for (; ;)

 cout << "Hello World\n";

Because this loop has no way of stopping, it will display "Hello World\n" forever (or

until something interrupts the program).

In the Spotlight:

Designing a Count-Controlled Loop with the for Statement

Your friend Amanda just inherited a European sports car from her uncle. Amanda lives in

the United States, and she is afraid she will get a speeding ticket because the car s speed-

ometer indicates kilometers per hour. She has asked you to write a program that displays a

table of speeds in kilometers per hour with their values converted to miles per hour. The

formula for converting kilometers per hour to miles per hour is:

MPH = KPH * 0.6214

In the formula, MPH is the speed in miles per hour and KPH is the speed in kilometers per hour.

The table that your program displays should show speeds from 60 kilometers per hour

through 130 kilometers per hour, in increments of 10, along with their values converted to

miles per hour. The table should look something like this:

After thinking about this table of values, you decide that you will write a for loop that

uses a counter variable to hold the kilometer-per-hour speeds. The counter s starting value

will be 60, its ending value will be 130, and you will add 10 to the counter variable after

KPH MPH

60 37.3

70 43.5

80 49.7

etc. . . .

130 80.8

M05_GADD6253_07_SE_C05 Page 255 Wednesday, January 5, 2011 8:14 PM

256 Chapter 5 Loops and Files

each iteration. Inside the loop you will use the counter variable to calculate a speed in

miles-per-hour. Program 5-11 shows the code.

Program 5-11

 1 // This program converts the speeds 60 kph through

 2 // 130 kph (in 10 kph increments) to mph.

 3 #include <iostream>

 4 #include <iomanip>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 // Constants for the speeds

 10 const int START_KPH = 60, // Starting speed

 11 END_KPH = 130, // Ending speed

 12 INCREMENT = 10; // Speed increment

 13

 14 // Constant for the conversion factor

 15 const double CONVERSION_FACTOR = 0.6214;

 16

 17 // Variables

 18 int kph; // To hold speeds in kph

 19 double mph; // To hold speeds in mph

 20

 21 // Set the numeric output formatting.

 22 cout << fixed << showpoint << setprecision(1);

 23

 24 // Display the table headings.

 25 cout << "KPH\tMPH\n";

 26 cout << "---------------\n";

 27

 28 // Display the speeds.

 29 for (kph = START_KPH; kph <= END_KPH; kph += INCREMENT)

 30 {

 31 // Calculate mph

 32 mph = kph * CONVERSION_FACTOR;

 33

 34 // Display the speeds in kph and mph.

 35 cout << kph << "\t" << mph << endl;

 36

 37 }

 38 return 0;

 39 }

Program Output

KPH MPH

60 37.3

70 43.5

80 49.7

90 55.9

100 62.1

110 68.4

120 74.6

130 80.8

M05_GADD6253_07_SE_C05 Page 256 Wednesday, January 5, 2011 8:14 PM

5.7 Keeping a Running Total 257

Checkpoint

 www.myprogramminglab.com

5.6 Name the three expressions that appear inside the parentheses in the for loop s

header.

5.7 You want to write a for loop that displays I love to program 50 times. Assume

that you will use a counter variable named count.

A) What initialization expression will you use?

B) What test expression will you use?

C) What update expression will you use?

D) Write the loop.

5.8 What will the following program segments display?

A) for (int count = 0; count < 6; count++)

 cout << (count + count);

B) for (int value = -5; value < 5; value++)

 cout << value;

C) int x;

for (x = 5; x <= 14; x += 3)

 cout << x << endl;

cout << x << endl;

5.9 Write a for loop that displays your name 10 times.

5.10 Write a for loop that displays all of the odd numbers, 1 through 49.

5.11 Write a for loop that displays every fth number, zero through 100.

5.7 Keeping a Running Total

CONCEPT: A running total is a sum of numbers that accumulates with each iteration

of a loop. The variable used to keep the running total is called an

accumulator.

Many programming tasks require you to calculate the total of a series of numbers. For

example, suppose you are writing a program that calculates a business s total sales for a

week. The program would read the sales for each day as input and calculate the total of

those numbers.

Programs that calculate the total of a series of numbers typically use two elements:

A loop that reads each number in the series.

A variable that accumulates the total of the numbers as they are read.

The variable that is used to accumulate the total of the numbers is called an accumulator.

It is often said that the loop keeps a running total because it accumulates the total as it

reads each number in the series. Figure 5-11 shows the general logic of a loop that calcu-

lates a running total.

M05_GADD6253_07_SE_C05 Page 257 Wednesday, January 5, 2011 8:14 PM

258 Chapter 5 Loops and Files

When the loop nishes, the accumulator will contain the total of the numbers that were

read by the loop. Notice that the rst step in the owchart is to set the accumulator vari-

able to 0. This is a critical step. Each time the loop reads a number, it adds it to the accu-

mulator. If the accumulator starts with any value other than 0, it will not contain the

correct total when the loop nishes.

Let s look at a program that calculates a running total. Program 5-12 calculates a com-

pany s total sales over a period of time by taking daily sales gures as input and calculat-

ing a running total of them as they are gathered.

Figure 5-11 Logic for calculating a running total

Program 5-12

 1 // This program takes daily sales figures over a period of time

 2 // and calculates their total.

 3 #include <iostream>

 4 #include <iomanip>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int days; // Number of days

 10 double total = 0.0; // Accumulator, initialized with 0

 11

 12 // Get the number of days.

 13 cout << "For how many days do you have sales figures? ";

M05_GADD6253_07_SE_C05 Page 258 Wednesday, January 5, 2011 8:14 PM

5.7 Keeping a Running Total 259

Let s take a closer look at this program. Line 9 de nes the days variable, which will hold

the number of days that we have sales gures for. Line 10 de nes the total variable,

which will hold the total sales. Because total is an accumulator, it is initialized with 0.0.

In line 14 the user enters the number of days that he or she has sales gures for. The num-

ber is assigned to the days variable. Next, the for loop in lines 17 through 23 executes.

In the loop s initialization expression, in line 17, the variable count is de ned and initial-

ized with 1. The test expression speci es the loop will repeat as long as count is less than

or equal to days. The update expression increments count by one at the end of each loop

iteration.

Line 19 de nes a variable named sales. Because the variable is de ned in the body of the

loop, its scope is limited to the loop. During each loop iteration, the user enters the

amount of sales for a speci c day, which is assigned to the sales variable. This is done in

line 21. Then, in line 22 the value of sales is added to the existing value in the total

variable. (Note that line 22 does not assign sales to total, but adds sales to total. Put

another way, this line increases total by the amount in sales.)

Because total was initially assigned 0.0, after the rst iteration of the loop, total will

be set to the same value as sales. After each subsequent iteration, total will be

increased by the amount in sales. After the loop has nished, total will contain the

total of all the daily sales gures entered. Now it should be clear why we assigned 0.0 to

total before the loop executed. If total started at any other value, the total would be

incorrect.

 14 cin >> days;

 15

 16 // Get the sales for each day and accumulate a total.

 17 for (int count = 1; count <= days; count++)

 18 {

 19 double sales;

 20 cout << "Enter the sales for day " << count << ": ";

 21 cin >> sales;

 22 total += sales; // Accumulate the running total.

 23 }

 24

 25 // Display the total sales.

 26 cout << fixed << showpoint << setprecision(2);

 27 cout << "The total sales are $" << total << endl;

 28 return 0;

 29 }

Program Output with Example Input Shown in Bold

For how many days do you have sales figures? 5 [Enter]
Enter the sales for day 1: 489.32 [Enter]
Enter the sales for day 2: 421.65 [Enter]
Enter the sales for day 3: 497.89 [Enter]
Enter the sales for day 4: 532.37 [Enter]
Enter the sales for day 5: 506.92 [Enter]
The total sales are $2448.15

M05_GADD6253_07_SE_C05 Page 259 Wednesday, January 5, 2011 8:14 PM

260 Chapter 5 Loops and Files

5.8 Sentinels

CONCEPT: A sentinel is a special value that marks the end of a list of values.

Program 5-12, in the previous section, requires the user to know in advance the number

of days he or she wishes to enter sales gures for. Sometimes the user has a list that is

very long and doesn t know how many items there are. In other cases, the user might be

entering several lists and it is impractical to require that every item in every list be

counted.

A technique that can be used in these situations is to ask the user to enter a sentinel at the

end of the list. A sentinel is a special value that cannot be mistaken as a member of the list

and signals that there are no more values to be entered. When the user enters the sentinel,

the loop terminates.

Program 5-13 calculates the total points earned by a soccer team over a series of games. It

allows the user to enter the series of game points, then -1 to signal the end of the list.

Program 5-13

 1 // This program calculates the total number of points a

 2 // soccer team has earned over a series of games. The user

 3 // enters a series of point values, then -1 when finished.

 4 #include <iostream>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int game = 1, // Game counter

 10 points, // To hold a number of points

 11 total = 0; // Accumulator

 12

 13 cout << "Enter the number of points your team has earned\n";

 14 cout << "so far in the season, then enter -1 when finished.\n\n";

 15 cout << "Enter the points for game " << game << ": ";

 16 cin >> points;

 17

 18 while (points != -1)

 19 {

 20 total += points;

 21 game++;

 22 cout << "Enter the points for game " << game << ": ";

 23 cin >> points;

 24 }

 25 cout << "\nThe total points are " << total << endl;

 26 return 0;

 27 }

M05_GADD6253_07_SE_C05 Page 260 Wednesday, January 5, 2011 8:14 PM

5.9 Focus on Software Engineering: Deciding Which Loop to Use 261

The value *1 was chosen for the sentinel in this program because it is not possible for a

team to score negative points. Notice that this program performs a priming read in line 18

to get the rst value. This makes it possible for the loop to immediately terminate if the

user enters *1 as the rst value. Also note that the sentinel value is not included in the

running total.

Checkpoint

 www.myprogramminglab.com

5.12 Write a for loop that repeats seven times, asking the user to enter a number. The

loop should also calculate the sum of the numbers entered.

5.13 In the following program segment, which variable is the counter variable and

which is the accumulator?

int a, x, y = 0;

for (x = 0; x < 10; x++)

{

 cout << "Enter a number: ";

 cin >> a;

 y += a;

}

cout << "The sum of those numbers is " << y << endl;

5.14 Why should you be careful when choosing a sentinel value?

5.15 How would you modify Program 5-13 so any negative value is a sentinel?

5.9
Focus on Software Engineering:
Deciding Which Loop to Use

CONCEPT: Although most repetitive algorithms can be written with any of the three

types of loops, each works best in different situations.

Each of the three C++ loops is ideal to use in different situations. Here s a short summary

of when each loop should be used.

Program Output with Example Input Shown in Bold

Enter the number of points your team has earned

so far in the season, then enter -1 when finished.

Enter the points for game 1: 7 [Enter]
Enter the points for game 2: 9 [Enter]
Enter the points for game 3: 4 [Enter]
Enter the points for game 4: 6 [Enter]
Enter the points for game 5: 8 [Enter]
Enter the points for game 6: 1 [Enter]

The total points are 34

M05_GADD6253_07_SE_C05 Page 261 Wednesday, January 5, 2011 8:14 PM

262 Chapter 5 Loops and Files

The while loop. The while loop is a conditional loop, which means it repeats as

long as a particular condition exists. It is also a pretest loop, so it is ideal in situa-

tions where you do not want the loop to iterate if the condition is false from the

beginning. For example, validating input that has been read and reading lists of

data terminated by a sentinel value are good applications of the while loop.

The do-while loop. The do-while loop is also a conditional loop. Unlike the

while loop, however, do-while is a posttest loop. It is ideal in situations where

you always want the loop to iterate at least once. The do-while loop is a good

choice for repeating a menu.

The for loop. The for loop is a pretest loop that has built-in expressions for initial-

izing, testing, and updating. These expressions make it very convenient to use a

counter variable to control the number of iterations that the loop performs. The ini-

tialization expression can initialize the counter variable to a starting value, the test

expression can test the counter variable to determine whether it holds the maxi-

mum value, and the update expression can increment the counter variable. The for

loop is ideal in situations where the exact number of iterations is known.

5.10 Nested Loops

CONCEPT: A loop that is inside another loop is called a nested loop.

A nested loop is a loop that appears inside another loop. A clock is a good example of some-

thing that works like a nested loop. The second hand, minute hand, and hour hand all spin

around the face of the clock. The hour hand, however, only makes one revolution for every

12 of the minute hand s revolutions. And it takes 60 revolutions of the second hand for the

minute hand to make one revolution. This means that for every complete revolution of the

hour hand, the second hand has revolved 720 times.

Here is a program segment with a for loop that partially simulates a digital clock. It dis-

plays the seconds from 0 to 59:

cout << fixed << right;

cout.fill('0');

for (int seconds = 0; seconds < 60; seconds++)

 cout << setw(2) << seconds << endl;

We can add a minutes variable and nest the loop above inside another loop that cycles

through 60 minutes:

cout << fixed << right;

cout.fill('0');

for (int minutes = 0; minutes < 60; minutes++)

{

for (int seconds = 0; seconds < 60; seconds++)

{

NOTE: The fill member function of cout changes the ll character, which is a space by

default. In the program segment above, the fill function causes a zero to be printed in

front of all single digit numbers.

M05_GADD6253_07_SE_C05 Page 262 Wednesday, January 5, 2011 8:14 PM

5.10 Nested Loops 263

cout << setw(2) << minutes << ":";

cout << setw(2) << seconds << endl;

}

}

To make the simulated clock complete, another variable and loop can be added to count

the hours:

cout << fixed << right;

cout.fill('0');

for (int hours = 0; hours < 24; hours++)

{

for (int minutes = 0; minutes < 60; minutes++)

{

for (int seconds = 0; seconds < 60; seconds++)

{

cout << setw(2) << hours << ":";

cout << setw(2) << minutes << ":";

cout << setw(2) << seconds << endl;

}

}

}

The output of the previous program segment follows:

00:00:00

00:00:01

00:00:02

. (The program will count through each second of 24 hours.)

.

.

23:59:59

The innermost loop will iterate 60 times for each iteration of the middle loop. The middle

loop will iterate 60 times for each iteration of the outermost loop. When the outermost

loop has iterated 24 times, the middle loop will have iterated 1,440 times and the inner-

most loop will have iterated 86,400 times!

The simulated clock example brings up a few points about nested loops:

An inner loop goes through all of its iterations for each iteration of an outer loop.

Inner loops complete their iterations faster than outer loops.

To get the total number of iterations of a nested loop, multiply the number of

iterations of all the loops.

Program 5-14 is another test-averaging program. It asks the user for the number of stu-

dents and the number of test scores per student. A nested inner loop, in lines 26 through

33, asks for all the test scores for one student, iterating once for each test score. The outer

loop in lines 23 through 37 iterates once for each student.

Program 5-14

 1 // This program averages test scores. It asks the user for the

 2 // number of students and the number of test scores per student.

 3 #include <iostream>

 4 #include <iomanip>

 5 using namespace std;

(program continues)

M05_GADD6253_07_SE_C05 Page 263 Wednesday, January 5, 2011 8:14 PM

264 Chapter 5 Loops and Files

 6

 7 int main()

 8 {

 9 int numStudents, // Number of students

 10 numTests; // Number of tests per student

 11 double total, // Accumulator for total scores

 12 average; // Average test score

 13

 14 // Set up numeric output formatting.

 15 cout << fixed << showpoint << setprecision(1);

 16

 17 // Get the number of students.

 18 cout << "This program averages test scores.\n";

 19 cout << "For how many students do you have scores? ";

 20 cin >> numStudents;

 21

 22 // Get the number of test scores per student.

 23 cout << "How many test scores does each student have? ";

 24 cin >> numTests;

 25

 26 // Determine each student's average score.

 27 for (int student = 1; student <= numStudents; student++)

 28 {

 29 total = 0; // Initialize the accumulator.

 30 for (int test = 1; test <= numTests; test++)

 31 {

 32 double score;

 33 cout << "Enter score " << test << " for ";

 34 cout << "student " << student << ": ";

 35 cin >> score;

 36 total += score;

 37 }

 38 average = total / numTests;

 39 cout << "The average score for student " << student;

 40 cout << " is " << average << ".\n\n";

 41 }

 42 return 0;

 43 }

Program Output with Example Input Shown in Bold

This program averages test scores.

For how many students do you have scores? 2 [Enter]
How many test scores does each student have? 3 [Enter]
Enter score 1 for student 1: 84 [Enter]
Enter score 2 for student 1: 79 [Enter]
Enter score 3 for student 1: 97 [Enter]
The average score for student 1 is 86.7.

Enter score 1 for student 2: 92 [Enter]
Enter score 2 for student 2: 88 [Enter]
Enter score 3 for student 2: 94 [Enter]
The average score for student 2 is 91.3.

Program 5-14 (continued)

M05_GADD6253_07_SE_C05 Page 264 Wednesday, January 5, 2011 8:14 PM

5.11 Using Files for Data Storage 265

5.11 Using Files for Data Storage

CONCEPT: When a program needs to save data for later use, it writes the data in a

le. The data can then be read from the le at a later time.

The programs you have written so far require the user to reenter data each time the program

runs, because data kept in variables and control properties is stored in RAM, and disappears

once the program stops running. If a program is to retain data between the times it runs, it

must have a way of saving it. Data is saved in a le, which is usually stored on a computer s

disk. Once the data is saved in a le, it will remain there after the program stops running.

Data that is stored in a le can be then retrieved and used at a later time.

Most of the commercial software that you use on a day-to-day basis store data in les.

The following are a few examples.

Word processors: Word processing programs are used to write letters, memos,

reports, and other documents. The documents are then saved in files so they can

be edited and printed.

Image editors: Image editing programs are used to draw graphics and edit images

such as the ones that you take with a digital camera. The images that you create

or edit with an image editor are saved in files.

Spreadsheets: Spreadsheet programs are used to work with numerical data. Num-

bers and mathematical formulas can be inserted into the rows and columns of the

spreadsheet. The spreadsheet can then be saved in a file for use later.

Games: Many computer games keep data stored in files. For example, some

games keep a list of player names with their scores stored in a file. These games

typically display the players names in order of their scores, from highest to lowest.

Some games also allow you to save your current game status in a file so you can

quit the game and then resume playing it later without having to start from the

beginning.

Web browsers: Sometimes when you visit a Web page, the browser stores a small

file known as a cookie on your computer. Cookies typically contain information

about the browsing session, such as the contents of a shopping cart.

Programs that are used in daily business operations rely extensively on les. Payroll pro-

grams keep employee data in les, inventory programs keep data about a company s prod-

ucts in les, accounting systems keep data about a company s nancial operations in les,

and so on.

Programmers usually refer to the process of saving data in a le as writing data to the le.

When a piece of data is written to a le, it is copied from a variable in RAM to the le.

This is illustrated in Figure 5-12. An output le is a le that data is written to. It is called

an output le because the program stores output in it.

M05_GADD6253_07_SE_C05 Page 265 Wednesday, January 5, 2011 8:14 PM

266 Chapter 5 Loops and Files

The process of retrieving data from a le is known as reading data from the le. When a

piece of data is read from a le, it is copied from the le into a variable in RAM. Figure

5-13 illustrates this process. An input le is a le that data is read from. It is called an

input le because the program gets input from the le.

This section discusses ways to create programs that write data to les and read data from

les. When a le is used by a program, three steps must be taken.

1. Open the le Opening a le creates a connection between the le and the program.

Opening an output le usually creates the le on the disk and allows the program to

write data to it. Opening an input le allows the program to read data from the le.

2. Process the le Data is either written to the le (if it is an output le) or read from

the le (if it is an input le).

3. Close the le After the program is nished using the le, the le must be closed.

Closing a le disconnects the le from the program.

Figure 5-12 Writing data to a le

Figure 5-13 Reading data from a le

Cindy Chandler 7451Z 18.65

Cindy Chandler
Variable
employeeName

Variable
employeeID

Variable
payRate

7451Z

18.65

Data is copied from
variables to the file.

A file on the disk

Cindy Chandler 7451Z 18.65

Cindy Chandler
Variable
employeeName

Variable
employeeID

Variable
payRate

7451Z

18.65

Data is copied from
the file to variables.

A file on the disk

M05_GADD6253_07_SE_C05 Page 266 Wednesday, January 5, 2011 8:14 PM

5.11 Using Files for Data Storage 267

Types of Files

In general, there are two types of les: text and binary. A text le contains data that has

been encoded as text, using a scheme such as ASCII or Unicode. Even if the le contains

numbers, those numbers are stored in the le as a series of characters. As a result, the le

may be opened and viewed in a text editor such as Notepad. A binary le contains data

that has not been converted to text. Thus, you cannot view the contents of a binary le

with a text editor. In this chapter we work only with text les. In Chapter 12 you will

learn to work with binary les.

File Access Methods

There are two general ways to access data stored in a le: sequential access and direct

access. When you work with a sequential access le, you access data from the beginning of

the le to the end of the le. If you want to read a piece of data that is stored at the very

end of the le, you have to read all of the data that comes before it you cannot jump

directly to the desired data. This is similar to the way cassette tape players work. If you

want to listen to the last song on a cassette tape, you have to either fast-forward over all

of the songs that come before it or listen to them. There is no way to jump directly to a

speci c song.

When you work with a random access le (also known as a direct access le), you can

jump directly to any piece of data in the le without reading the data that comes before it.

This is similar to the way a CD player or an MP3 player works. You can jump directly to

any song that you want to listen to.

This chapter focuses on sequential access les. Sequential access les are easy to work

with, and you can use them to gain an understanding of basic le operations. In Chapter

12 you will learn to work with random access les.

Filenames and File Stream Objects

Files on a disk are identi ed by a lename. For example, when you create a document

with a word processor and then save the document in a le, you have to specify a le-

name. When you use a utility such as Windows Explorer to examine the contents of your

disk, you see a list of lenames. Figure 5-14 shows how three les named cat.jpg,

notes.txt, and resume.doc might be represented in Windows Explorer.

Each operating system has its own rules for naming les. Many systems, including Win-

dows, support the use of lename extensions, which are short sequences of characters that

appear at the end of a lename preceded by a period (known as a dot). For example, the

les depicted in Figure 5-14 have the extensions .jpg, .txt, and .doc. The extension usually

indicates the type of data stored in the le. For example, the .jpg extension usually indi-

cates that the le contains a graphic image that is compressed according to the JPEG

Figure 5-14 Three les

M05_GADD6253_07_SE_C05 Page 267 Wednesday, January 5, 2011 8:14 PM

268 Chapter 5 Loops and Files

image standard. The .txt extension usually indicates that the le contains text. The .doc

extension usually indicates that the le contains a Microsoft Word document.

In order for a program to work with a le on the computer s disk, the program must create

a le stream object in memory. A le stream object is an object that is associated with a

speci c le, and provides a way for the program to work with that le. It is called a

stream object because a le can be thought of as a stream of data.

File stream objects work very much like the cin and cout objects. A stream of data may

be sent to cout, which causes values to be displayed on the screen. A stream of data

may be read from the keyboard by cin, and stored in variables. Likewise, streams of

data may be sent to a le stream object, which writes the data to a le. When data is

read from a le, the data ows from the le stream object that is associated with the le,

into variables.

Setting Up a Program for File Input/Output

Just as cin and cout require the iostream le to be included in the program, C++ le

access requires another header le. The le fstream contains all the declarations neces-

sary for le operations. It is included with the following statement:

#include <fstream>

The fstream header le de nes the data types ofstream, ifstream, and fstream. Before

a C++ program can work with a le, it must de ne an object of one of these data types.

The object will be linked with an actual le on the computer s disk, and the operations

that may be performed on the le depend on which of these three data types you pick for

the le stream object. Table 5-1 lists and describes the le stream data types.

Creating a File Object and Opening a File

Before data can be written to or read from a le, the following things must happen:

A file stream object must be created

The file must be opened and linked to the file stream object.

Table 5-1

File Stream Data Type Description

ofstream Output le stream. You create an object of this data type when you

want to create a le and write data to it.

ifstream Input le stream. You create an object of this data type when you want

to open an existing le and read data from it.

fstream File stream. Objects of this data type can be used to open les for

reading, writing, or both.

NOTE: In this chapter we discuss only the ofstream and ifstream types. The fstream

type is covered in Chapter 12.

M05_GADD6253_07_SE_C05 Page 268 Wednesday, January 5, 2011 8:14 PM

5.11 Using Files for Data Storage

269

The following code shows an example of opening a le for input (reading).

ifstream inputFile;

inputFile.open("Customers.txt");

The rst statement de nes an

ifstream

 object named

inputFile

. The second statement

calls the object s

open

 member function, passing the string

"Customers.txt"

 as an argu-

ment. In this statement, the

open

 member function opens the Customers.txt le and links it

with the

inputFile

 object. After this code executes, you will be able to use the

inputFile

object to read data from the Customers.txt le.

The following code shows an example of opening a le for output (writing).

ofstream outputFile;

outputFile.open("Employees.txt");

The rst statement de nes an

ofstream

 object named

outputFile

. The second statement

calls the object s

open

 member function, passing the string

"Employees.txt"

 as an argu-

ment. In this statement, the

open

 member function creates the Employees.txt le and

links it with the

outputFile

 object. After this code executes, you will be able to use the

outputFile

 object to write data to the Employees.txt le. It s important to remember

that when you call an

ofstream

 object s

open

 member function, the speci ed le will be

created. If the speci ed le already exists, it will be erased and a new le with the same

name will be created.

Often, when opening a le, you will need to specify its path as well as its name. For exam-

ple, on a Windows system the following statement opens the le

C:\data\inventory.txt

:

inputFile.open("C:\\data\\inventory.txt")

In this statement, the le

C:\data\inventory.txt

 is opened and linked with

inputFile

.

It is possible to de ne a le stream object and open a le in one statement. Here is an

example:

ifstream inputFile("Customers.txt");

This statement de nes an

ifstream

 object named

inputFile

 and opens the Customer.txt

le. Here is an example that de nes an

ofstream

 object named

outputFile

 and opens

the Employees.txt le:

ofstream outputFile("Employees.txt");

Closing a File

The opposite of opening a le is closing it. Although a program s les are automatically

closed when the program shuts down, it is a good programming practice to write state-

ments that close them. Here are two reasons a program should close les when it is n-

ished using them:

Most operating systems temporarily store data in a

file buffer

 before it is written

to a file. A file buffer is a small holding section of memory that file-bound data

is first written to. When the buffer is filled, all the data stored there is written to

NOTE:

Notice the use of two backslashes in the le s path. Two backslashes are needed

to represent one backslash in a string literal.

M05_GADD6253_07_SE_C05 Page 269 Thursday, January 13, 2011 8:10 PM

270 Chapter 5 Loops and Files

the file. This technique improves the system s performance. Closing a file causes

any unsaved data that may still be held in a buffer to be saved to its file. This

means the data will be in the file if you need to read it later in the same program.

Some operating systems limit the number of files that may be open at one time.

When a program closes files that are no longer being used, it will not deplete

more of the operating system s resources than necessary.

Calling the le stream object s close member function closes a le. Here is an example:

inputFile.close();

Writing Data to a File

You already know how to use the stream insertion operator (<<) with the cout object to

write data to the screen. It can also be used with ofstream objects to write data to a le.

Assuming outputFile is an ofstream object, the following statement demonstrates using

the << operator to write a string literal to a le:

outputFile << "I love C++ programming\n";

This statement writes the string literal "I love C++ programming\n" to the le associ-

ated with outputFile. As you can see, the statement looks like a cout statement, except

the name of the ofstream object name replaces cout. Here is a statement that writes both

a string literal and the contents of a variable to a le:

outputFile << "Price: " << price << endl;

The statement above writes the stream of data to outputFile exactly as cout would

write it to the screen: It writes the string "Price: ", followed by the value of the price

variable, followed by a newline character.

Program 5-15 demonstrates opening a le, writing data to the le, and closing the le.

After this code has executed, we can open the demo le.txt le using a text editor and look

at its contents. Figure 5-15 shows how the le s contents will appear in Notepad.

Program 5-15

 1 // This program writes data to a file.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 ofstream outputFile;

 9 outputFile.open("demofile.txt");

 10

 11 cout << "Now writing data to the file.\n";

 12

M05_GADD6253_07_SE_C05 Page 270 Wednesday, January 5, 2011 8:14 PM

5.11 Using Files for Data Storage 271

Notice that in lines 14 through 17 of Program 5-15, each string that was written to the le

ends with a newline escape sequence (\n). The newline speci es the end of a line of text.

Because a newline is written at the end of each string, the strings appear on separate lines

when viewed in a text editor, as shown in Figure 5-15.

Program 5-16 shows what happens if we write the same four names without the \n escape

sequence. Figure 5-16 shows the contents of the le that Program 5-16 creates. As you can

see, all of the names appear on the same line in the le.

 13 // Write four names to the file.

 14 outputFile << "Bach\n";

 15 outputFile << "Beethoven\n";

 16 outputFile << "Mozart\n";

 17 outputFile << "Schubert\n";

 18

 19 // Close the file

 20 outputFile.close();

 21 cout << "Done.\n";

 22 return 0;

 23 }

Program Screen Output

Now writing data to the file.

Done.

Figure 5-15

Program 5-16

 1 // This program writes data to a single line in a file.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 ofstream outputFile;

 9 outputFile.open("demofile.txt");

 10

(program continues)

M05_GADD6253_07_SE_C05 Page 271 Wednesday, January 5, 2011 8:14 PM

272 Chapter 5 Loops and Files

Program 5-17 shows another example. This program reads three numbers from the key-

board as input, and then saves those numbers in a le named Numbers.txt.

 11 cout << "Now writing data to the file.\n";

 12

 13 // Write four names to the file.

 14 outputFile << "Bach";

 15 outputFile << "Beethoven";

 16 outputFile << "Mozart";

 17 outputFile << "Schubert";

 18

 19 // Close the file

 20 outputFile.close();

 21 cout << "Done.\n";

 22 return 0;

 23 }

Program Screen Output

Now writing data to the file.

Done.

Figure 5-16

Program 5-17

 1 // This program writes user input to a file.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 ofstream outputFile;

 9 int number1, number2, number3;

 10

 11 // Open an output file.

 12 outputFile.open("Numbers.txt");

 13

Program 5-16 (continued)

M05_GADD6253_07_SE_C05 Page 272 Wednesday, January 5, 2011 8:14 PM

5.11 Using Files for Data Storage 273

In Program 5-17, lines 23 through 25 write the contents of the number1, number2, and

number3 variables to the le. Notice that the endl manipulator is sent to the outputFile

object immediately after each item. Sending the endl manipulator causes a newline to be

written to the le. Figure 5-17 shows the le s contents displayed in Notepad, using the

example input values 100, 200, and 300. As you can see, each item appears on a separate

line in the le because of the endl manipulators.

Program 5-18 shows an example that reads strings as input from the keyboard, and then

writes those strings to a le. The program asks the user to enter the rst names of three

friends, and then it writes those names to a le named Friends.txt. Figure 5-18 shows an

example of the Friends.txt le opened in Notepad.

 14 // Get three numbers from the user.

 15 cout << "Enter a number: ";

 16 cin >> number1;

 17 cout << "Enter another number: ";

 18 cin >> number2;

 19 cout << "One more time. Enter a number: ";

 20 cin >> number3;

 21

 22 // Write the numbers to the file.

 23 outputFile << number1 << endl;

 24 outputFile << number2 << endl;

 25 outputFile << number3 << endl;

 26 cout << "The numbers were saved to a file.\n";

 27

 28 // Close the file

 29 outputFile.close();

 30 cout << "Done.\n";

 31 return 0;

 32 }

Program Screen Output with Example Input Shown in Bold

Enter a number: 100 [Enter]
Enter another number: 200 [Enter]
One more time. Enter a number: 300 [Enter]
The numbers were saved to a file.

Done.

Figure 5-17

M05_GADD6253_07_SE_C05 Page 273 Wednesday, January 5, 2011 8:14 PM

274 Chapter 5 Loops and Files

Program 5-18

 1 // This program writes user input to a file.

 2 #include <iostream>

 3 #include <fstream>

 4 #include <string>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 ofstream outputFile;

 10 string name1, name2, name3;

 11

 12 // Open an output file.

 13 outputFile.open("Friends.txt");

 14

 15 // Get the names of three friends.

 16 cout << "Enter the names of three friends.\n";

 17 cout << "Friend #1: ";

 18 cin >> name1;

 19 cout << "Friend #2: ";

 20 cin >> name2;

 21 cout << "Friend #3: ";

 22 cin >> name3;

 23

 24 // Write the names to the file.

 25 outputFile << name1 << endl;

 26 outputFile << name2 << endl;

 27 outputFile << name3 << endl;

 28 cout << "The names were saved to a file.\n";

 29

 30 // Close the file

 31 outputFile.close();

 32 return 0;

 33 }

Program Screen Output with Example Input Shown in Bold

Enter the names of three friends.

Friend #1: Joe [Enter]
Friend #2: Chris [Enter]
Friend #3: Geri [Enter]
The names were saved to a file.

Figure 5-18

M05_GADD6253_07_SE_C05 Page 274 Wednesday, January 5, 2011 8:14 PM

5.11 Using Files for Data Storage 275

Reading Data from a File

The >> operator not only reads user input from the cin object, but also data from a le.

Assuming inputFile is an ifstream object, the following statement shows the >> operator

reading data from the le into the variable name:

inputFile >> name;

Let s look at an example. Assume the le Friends.txt exists, and it contains the names

shown in Figure 5-18. Program 5-19 opens the le, reads the names and displays them on

the screen, and then closes the le.

The Read Position

When a le has been opened for input, the le stream object internally maintains a special value

known as a read position. A le s read position marks the location of the next byte that will be

read from the le. When an input le is opened, its read position is initially set to the rst byte in

the le. So, the rst read operation extracts data starting at the rst byte. As data is read from

the le, the read position moves forward, toward the end of the le.

Program 5-19

 1 // This program reads data from a file.

 2 #include <iostream>

 3 #include <fstream>

 4 #include <string>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 ifstream inputFile;

 10 string name;

 11

 12 inputFile.open("Friends.txt");

 13 cout << "Reading data from the file.\n";

 14

 15 inputFile >> name; // Read name 1 from the file

 16 cout << name << endl; // Display name 1

 17

 18 inputFile >> name; // Read name 2 from the file

 19 cout << name << endl; // Display name 2

 20

 21 inputFile >> name; // Read name 3 from the file

 22 cout << name << endl; // Display name 3

 23

 24 inputFile.close(); // Close the file

 25 return 0;

 26 }

Program Output

Reading data from the file.

Joe

Chris

Geri

VideoNote

Reading

Data from

a File

M05_GADD6253_07_SE_C05 Page 275 Wednesday, January 5, 2011 8:14 PM

276 Chapter 5 Loops and Files

Let s see how this works with the example shown in Program 5-19. When the Friends.txt

le is opened by the statement in line 12, the read position for the le will be positioned as

shown in Figure 5-19.

Keep in mind that when the >> operator extracts data from a le, it expects to read pieces

of data that are separated by whitespace characters (spaces, tabs, or newlines). When the

statement in line 15 executes, the >> operator reads data from the le s current read posi-

tion, up to the \n character. The data that is read from the le is assigned to the name

object. The \n character is also read from the le, but is not included as part of the data.

So, the name object will hold the value "Joe" after this statement executes. The le s read

position will then be at the location shown in Figure 5-20.

When the statement in line 18 executes, it reads the next item from the le, which is

"Chris", and assigns that value to the name object. After this statement executes, the le s

read position will be advanced to the next item, as shown in Figure 5-21.

When the statement in line 21 executes, it reads the next item from the le, which is

"Geri", and assigns that value to the name object. After this statement executes, the le s

read position will be advanced to the end of the le, as shown in Figure 5-22.

Figure 5-19

Figure 5-20

Figure 5-21

Figure 5-22

J o e \n C h r i s \n G e r i \n

Read position

J o e \n C h r i s \n G e r i \n

Read position

J o e \n C h r i s \n G e r i \n

Read position

J o e \n C h r i s \n G e r i \n

Read position

M05_GADD6253_07_SE_C05 Page 276 Wednesday, January 5, 2011 8:14 PM

5.11 Using Files for Data Storage 277

Reading Numeric Data From a Text File

Remember that when data is stored in a text le, it is encoded as text, using a scheme such

as ASCII or Unicode. Even if the le contains numbers, those numbers are stored in the le

as a series of characters. For example, suppose a text le contains numeric data, such as

that shown in Figure 5-17. The numbers that you see displayed in the gure are stored in

the le as the strings "10", "20", and "30". Fortunately, you can use the >> operator to

read data such as this from a text le, into a numeric variable, and the >> operator will

automatically convert the data to a numeric data type. Program 5-20 shows an example.

It opens the le shown in Figure 5-23, reads the three numbers from the le into int vari-

ables, and calculates their sum.

Figure 5-23

Program 5-20

 1 // This program reads numbers from a file.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 ifstream inFile;

 9 int value1, value2, value3, sum;

 10

 11 // Open the file.

 12 inFile.open("NumericData.txt");

 13

 14 // Read the three numbers from the file.

 15 inFile >> value1;

 16 inFile >> value2;

 17 inFile >> value3;

 18

 19 // Close the file.

 20 inFile.close();

 21

(program continues)

M05_GADD6253_07_SE_C05 Page 277 Wednesday, January 5, 2011 8:14 PM

278 Chapter 5 Loops and Files

Using Loops to Process Files

Although some programs use les to store only small amounts of data, les are typically

used to hold large collections of data. When a program uses a le to write or read a large

amount of data, a loop is typically involved. For example, look at the code in Program

5-21. This program gets sales amounts for a series of days from the user and writes those

amounts to a le named Sales.txt. The user speci es the number of days of sales data he or

she needs to enter. In the sample run of the program, the user enters sales amounts for ve

days. Figure 5-24 shows the contents of the Sales.txt le containing the data entered by

the user in the sample run.

 22 // Calculate the sum of the numbers.

 23 sum = value1 + value2 + value3;

 24

 25 // Display the three numbers.

 26 cout << "Here are the numbers:\n"

 27 << value1 << " " << value2

 28 << " " << value3 << endl;

 29

 30 // Display the sum of the numbers.

 31 cout << "Their sum is: " << sum << endl;

 32 return 0;

 33 }

Program Output

Here are the numbers:

10 20 30

Their sum is: 60

Program 5-21

 1 // This program reads data from a file.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 ofstream outputFile; // File stream object

 9 int numberOfDays; // Number of days of sales

 10 double sales; // Sales amount for a day

 11

 12 // Get the number of days.

 13 cout << "For how many days do you have sales? ";

 14 cin >> numberOfDays;

 15

Program 5-20 (continued)

M05_GADD6253_07_SE_C05 Page 278 Wednesday, January 5, 2011 8:14 PM

5.11 Using Files for Data Storage 279

Detecting the End of the File

Quite often a program must read the contents of a le without knowing the number of

items that are stored in the le. For example, suppose you need to write a program that

displays all of the items in a le, but you do not know how many items the le contains.

 16 // Open a file named Sales.txt.

 17 outputFile.open("Sales.txt");

 18

 19 // Get the sales for each day and write it

 20 // to the file.

 21 for (int count = 1; count <= numberOfDays; count++)

 22 {

 23 // Get the sales for a day.

 24 cout << "Enter the sales for day "

 25 << count << ": ";

 26 cin >> sales;

 27

 28 // Write the sales to the file.

 29 outputFile << sales << endl;

 30 }

 31

 32 // Close the file.

 33 outputFile.close();

 34 cout << "Data written to Sales.txt\n";

 35 return 0;

 36 }

Program Output (with Input Shown in Bold)

For how many days do you have sales? 5 [Enter]
Enter the sales for day 1: 1000.00 [Enter]
Enter the sales for day 2: 2000.00 [Enter]
Enter the sales for day 3: 3000.00 [Enter]
Enter the sales for day 4: 4000.00 [Enter]
Enter the sales for day 5: 5000.00 [Enter]
Data written to sales.txt.

Figure 5-24

M05_GADD6253_07_SE_C05 Page 279 Wednesday, January 5, 2011 8:14 PM

280 Chapter 5 Loops and Files

You can open the le, and then use a loop to repeatedly read an item from the le and dis-

play it. However, an error will occur if the program attempts to read beyond the end of

the le. The program needs some way of knowing when the end of the le has been

reached so it will not try to read beyond it.

Fortunately, the >> operator not only reads data from a le, but also returns a true or false

value indicating whether the data was successfully read or not. If the operator returns

true, then a value was successfully read. If the operator returns false, it means that no

value was read from the le.

Let s look at an example. A le named ListOfNumbers.txt, which is shown in Figure

5-25, contains a list of numbers. Without knowing how many numbers the le contains,

Program 5-22 opens the le, reads all of the values it contains, and displays them.

Figure 5-25

Program 5-22

 1 // This program reads data from a file.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 ifstream inputFile;

 9 int number;

 10

 11 // Open the file.

 12 inputFile.open("ListOfNumbers.txt");

 13

 14 // Read the numbers from the file and

 15 // display them.

 16 while (inputFile >> number)

 17 {

 18 cout << number << endl;

 19 }

M05_GADD6253_07_SE_C05 Page 280 Wednesday, January 5, 2011 8:14 PM

5.11 Using Files for Data Storage 281

Take a closer look at line 16:

while (inputFile >> number)

Notice that the statement that extracts data from the le is used as the Boolean expression

in the while loop. It works like this:

The expression inputFile >> number executes.

If an item is successfully read from the file, the item is stored in the number vari-

able, and the expression returns true to indicate that it succeeded. In that case, the

statement in line 18 executes and the loop repeats.

If there are no more items to read from the file, the expression inputFile >>

number returns false, indicating that it did not read a value. In that case, the loop

terminates.

Because the value returned from the >> operator controls the loop, it will read items from

the le until the end of the le has been reached.

Testing for File Open Errors

Under certain circumstances, the open member function will not work. For example, the

following code will fail if the le info.txt does not exist:

ifstream inputFile;

inputFile.open("info.txt");

There is a way to determine whether the open member function successfully opened the

le. After you call the open member function, you can test the le stream object as if it

were a Boolean expression. Program 5-23 shows an example.

 20

 21 // Close the file.

 22 inputFile.close();

 23 return 0;

 24 }

Program Output

100

200

300

400

500

600

700

Program 5-23

 1 // This program tests for file open errors.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

(program continues)

M05_GADD6253_07_SE_C05 Page 281 Wednesday, January 5, 2011 8:14 PM

282 Chapter 5 Loops and Files

Let s take a closer look at certain parts of the code. Line 12 calls the inputFile object s

open member function to open the le ListOfNumbers.txt. Then the if statement in line

15 tests the value of the inputFile object as if it were a Boolean expression. When tested

this way, the inputFile object will give a true value if the le was successfully opened.

Otherwise it will give a false value. The example output shows this program will display

an error message if it could not open the le.

Another way to detect a failed attempt to open a le is with the fail member function, as

shown in the following code:

ifstream inputFile;

inputFile.open("customers.txt");

if (inputFile.fail())

{

 cout << "Error opening file.\n";

}

else

{

 // Process the file.

}

 6 int main()

 7 {

 8 ifstream inputFile;

 9 int number;

 10

 11 // Open the file.

 12 inputFile.open("BadListOfNumbers.txt");

 13

 14 // If the file successfully opened, process it.

 15 if (inputFile)

 16 {

 17 // Read the numbers from the file and

 18 // display them.

 19 while (inputFile >> number)

 20 {

 21 cout << number << endl;

 22 }

 23

 24 // Close the file.

 25 inputFile.close();

 26 }

 27 else

 28 {

 29 // Display an error message.

 30 cout << "Error opening the file.\n";

 31 }

 32 return 0;

 33 }

Program Output (Assume BadListOfNumbers.txt does not exist)

Error opening the file.

Program 5-23 (continued)

M05_GADD6253_07_SE_C05 Page 282 Wednesday, January 5, 2011 8:14 PM

5.11 Using Files for Data Storage 283

The fail member function returns true when an attempted le operation is unsuccessful.

When using le I/O, you should always test the le stream object to make sure the le was

opened successfully. If the le could not be opened, the user should be informed and

appropriate action taken by the program.

Letting the User Specify a Filename

In each of the previous examples, the name of the le that is opened is hard-coded as a

string literal into the program. In many cases, you will want the user to specify the name

of a le for the program to open.

In standard C++, a le stream object s open member function will not accept a string

object as an argument. The open member function requires that you pass the name of the

le as a null-terminated string, which is also known as a C-string. String literals are stored

in memory as null-terminated C-strings (which explains why you can pass them to the

open function), but string objects are not.

Fortunately, string objects have a member function named c_str that returns the contents

of the object formatted as a null-terminated C-string. Here is the general format of how you

call the function:

stringObject.c_str()

In the general format, stringObject is the name of a string object. The c_str function

returns the string that is stored in stringObject as a null-terminated C-string. Program 5-24

shows an example of how you can use the function. This is a modi ed version of

Program 5-23. This version prompts the user to enter the name of the le. In line 15, the

name that the user enters is stored in a string object named filename. In line 18, the value

that is returned from filename.c_str() is passed as an argument to the open function.

Program 5-24

 1 // This program lets the user enter a filename.

 2 #include <iostream>

 3 #include <string>

 4 #include <fstream>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 ifstream inputFile;

 10 string filename;

 11 int number;

 12

 13 // Get the filename from the user.

 14 cout << "Enter the filename: ";

 15 cin >> filename;

 16

 17 // Open the file.

 18 inputFile.open(filename.c_str());

 19

 20 // If the file successfully opened, process it.

 21 if (inputFile)

(program continues)

M05_GADD6253_07_SE_C05 Page 283 Wednesday, January 5, 2011 8:14 PM

284 Chapter 5 Loops and Files

Checkpoint

 www.myprogramminglab.com

5.16 What is an output le? What is an input le?

5.17 What three steps must be taken when a le is used by a program?

5.18 What is the difference between a text le and a binary le?

5.19 What is the difference between sequential access and random access?

5.20 What type of le stream object do you create if you want to write data to a le?

5.21 What type of le stream object do you create if you want to read data from a le?

5.22 Write a short program that uses a for loop to write the numbers 1 through 10 to

a le.

5.23 Write a short program that opens the le created by the program you wrote for

Checkpoint 5.22, reads all of the numbers from the le, and displays them.

5.24 The following code has an error. Can you correct it?

// Find the error and correct it.

ofstream outputFile;

string filename = "Test.txt";

outputFile.open(filename);

 22 {

 23 // Read the numbers from the file and

 24 // display them.

 25 while (inputFile >> number)

 26 {

 27 cout << number << endl;

 28 }

 29

 30 // Close the file.

 31 inputFile.close();

 32 }

 33 else

 34 {

 35 // Display an error message.

 36 cout << "Error opening the file.\n";

 37 }

 38 return 0;

 39 }

Program Output with Example Input Shown in Bold

Enter the filename: ListOfNumbers.txt [Enter]

100

200

300

400

500

600

700

Program 5-24 (continued)

M05_GADD6253_07_SE_C05 Page 284 Wednesday, January 5, 2011 8:14 PM

5.12 Optional Topics: Breaking and Continuing a Loop 285

5.12 Optional Topics: Breaking and Continuing a Loop

CONCEPT: The break statement causes a loop to terminate early. The continue

statement causes a loop to stop its current iteration and begin the next one.

Sometimes it s necessary to stop a loop before it goes through all its iterations. The break

statement, which was used with switch in Chapter 4, can also be placed inside a loop.

When it is encountered, the loop stops and the program jumps to the statement immedi-

ately following the loop.

The while loop in the following program segment appears to execute 10 times, but the

break statement causes it to stop after the fth iteration.

int count = 0;

while (count++ < 10)

{

 cout << count << endl;

 if (count == 5)

 break;

}

Program 5-25 uses the break statement to interrupt a for loop. The program asks the

user for a number and then displays the value of that number raised to the powers of 0

through 10. The user can stop the loop at any time by entering Q.

WARNING! Use the break and continue statements with great caution. Because they

bypass the normal condition that controls the loop s iterations, these statements make

code dif cult to understand and debug. For this reason, you should avoid using break

and continue whenever possible. However, because they are part of the C++ language,

we discuss them briefly in this section.

Program 5-25

 1 // This program raises the user's number to the powers

 2 // of 0 through 10.

 3 #include <iostream>

 4 #include <cmath>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 double value;

 10 char choice;

 11

 12 cout << "Enter a number: ";

 13 cin >> value;

 14 cout << "This program will raise " << value;

 15 cout << " to the powers of 0 through 10.\n";

 16 for (int count = 0; count <= 10; count++)

(program continues)

M05_GADD6253_07_SE_C05 Page 285 Wednesday, January 5, 2011 8:14 PM

286

Chapter 5 Loops and Files

Using

break

 in a Nested Loop

In a nested loop, the

break

 statement only interrupts the loop it is placed in. The following pro-

gram segment displays ve rows of asterisks on the screen. The outer loop controls the number

of rows and the inner loop controls the number of asterisks in each row. The inner loop is

designed to display 20 asterisks, but the

break

 statement stops it during the eleventh iteration.

for (int row = 0; row < 5; row++)

{

 for (int star = 0; star < 20; star++)

 {

 cout << '*';

 if (star == 10)

 break;

 }

 cout << endl;

}

The output of the program segment above is:

The

continue

 Statement

The

continue

 statement causes the current iteration of a loop to end immediately. When

continue

 is encountered, all the statements in the body of the loop that appear after it are

ignored, and the loop prepares for the next iteration.

 17 {

 18 cout << value << " raised to the power of ";

 19 cout << count << " is " << pow(value, count);

 20 cout << "\nEnter Q to quit or any other key ";

 21 cout << "to continue. ";

 22 cin >> choice;

 23 if (choice == 'Q' || choice == 'q')

 24 break;

 25 }

 26 return 0;

 27 }

Program Output with Example Input Shown in Bold

Enter a number:

2 [Enter]

This program will raise 2 to the powers of 0 through 10.

2 raised to the power of 0 is 1

Enter Q to quit or any other key to continue.

C [Enter]

2 raised to the power of 1 is 2

Enter Q to quit or any other key to continue.

C [Enter]

2 raised to the power of 2 is 4

Enter Q to quit or any other key to continue.

Q [Enter]

Program 5-25

(continued)

M05_GADD6253_07_SE_C05 Page 286 Thursday, January 13, 2011 8:12 PM

5.12 Optional Topics: Breaking and Continuing a Loop 287

In a while loop, this means the program jumps to the test expression at the top of the
loop. As usual, if the expression is still true, the next iteration begins. In a do-while loop,
the program jumps to the test expression at the bottom of the loop, which determines
whether the next iteration will begin. In a for loop, continue causes the update expres-
sion to be executed, and then the test expression to be evaluated.

The following program segment demonstrates the use of continue in a while loop:

int testVal = 0;

while (testVal++ < 10)

{

 if (testVal == 4)

 continue;

 cout << testVal << " ";

}

This loop looks like it displays the integers 1 through 10. When testVal is equal to 4,
however, the continue statement causes the loop to skip the cout statement and begin
the next iteration. The output of the loop is

1 2 3 5 6 7 8 9 10

Program 5-26 demonstrates the continue statement. The program calculates the charges
for DVD rentals, where current releases cost $3.50 and all others cost $2.50. If a customer
rents several DVDs, every third one is free. The continue statement is used to skip the
part of the loop that calculates the charges for every third DVD.

Program 5-26

 1 // This program calculates the charges for DVD rentals.

 2 // Every third DVD is free.

 3 #include <iostream>

 4 #include <iomanip>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int dvdCount = 1; // DVD counter

 10 int numDVDs; // Number of DVDs rented

 11 double total = 0.0; // Accumulator

 12 char current; // Current release, Y or N

 13

 14 // Get the number of DVDs.

 15 cout << "How many DVDs are being rented? ";

 16 cin >> numDVDs;

 17

 18 // Determine the charges.

 19 do

 20 {

 21 if ((dvdCount % 3) == 0)

 22 {

 23 cout << "DVD #" << dvdCount << " is free!\n";

 24 continue; // Immediately start the next iteration

 25 }

(program continues)

M05_GADD6253_07_SE_C05 Page 287 Wednesday, January 5, 2011 8:14 PM

288 Chapter 5 Loops and Files

Case Study: See the Loan Amortization Case Study on this book s companion Web site at

www.pearsonhighered.com/gaddis.

Review Questions and Exercises

Short Answer

1. Why should you indent the statements in the body of a loop?

2. Describe the difference between pretest loops and posttest loops.

3. Why are the statements in the body of a loop called conditionally executed

statements?

4. What is the difference between the while loop and the do-while loop?

5. Which loop should you use in situations where you wish the loop to repeat until the

test expression is false, and the loop should not execute if the test expression is false to

begin with?

6. Which loop should you use in situations where you wish the loop to repeat until the

test expression is false, but the loop should execute at least one time?

7. Which loop should you use when you know the number of required iterations?

8. Why is it critical that counter variables be properly initialized?

9. Why is it critical that accumulator variables be properly initialized?

 26 cout << "Is DVD #" << dvdCount;

 27 cout << " a current release? (Y/N) ";

 28 cin >> current;

 29 if (current == 'Y' || current == 'y')

 30 total += 3.50;

 31 else

 32 total += 2.50;

 33 } while (dvdCount++ < numDVDs);

 34

 35 // Display the total.

 36 cout << fixed << showpoint << setprecision(2);

 37 cout << "The total is $" << total << endl;

 38 return 0;

 39 }

Program Output with Example Input Shown in Bold

How many DVDs are being rented? 6 [Enter]
Is DVD #1 a current release? (Y/N) y [Enter]
Is DVD #2 a current release? (Y/N) n [Enter]
DVD #3 is free!

Is DVD #4 a current release? (Y/N) n [Enter]
Is DVD #5 a current release? (Y/N) y [Enter]
DVD #6 is free!

The total is $12.00

Program 5-26 (continued)

M05_GADD6253_07_SE_C05 Page 288 Wednesday, January 5, 2011 8:14 PM

Review Questions and Exercises 289

10. Why should you be careful not to place a statement in the body of a for loop that

changes the value of the loop s counter variable?

11. What header le do you need to include in a program that performs le operations?

12. What data type do you use when you want to create a le stream object that can write

data to a le?

13. What data type do you use when you want to create a le stream object that can read

data from a le?

14. Why should a program close a le when it s nished using it?

15. What is a le s read position? Where is the read position when a le is rst opened for

reading?

Fill-in-the-Blank

16. To __________ a value means to increase it by one, and to __________ a value means

to decrease it by one.

17. When the increment or decrement operator is placed before the operand (or to the

operand s left), the operator is being used in __________ mode.

18. When the increment or decrement operator is placed after the operand (or to the

operand s right), the operator is being used in __________ mode.

19. The statement or block that is repeated is known as the __________ of the loop.

20. Each repetition of a loop is known as a(n) __________.

21. A loop that evaluates its test expression before each repetition is a(n) __________ loop.

22. A loop that evaluates its test expression after each repetition is a(n) __________ loop.

23. A loop that does not have a way of stopping is a(n) __________ loop.

24. A(n) __________ is a variable that counts the number of times a loop repeats.

25. A(n) __________ is a sum of numbers that accumulates with each iteration of a loop.

26. A(n) __________ is a variable that is initialized to some starting value, usually zero,

and then has numbers added to it in each iteration of a loop.

27. A(n) __________ is a special value that marks the end of a series of values.

28. The __________ loop always iterates at least once.

29. The __________ and __________ loops will not iterate at all if their test expressions

are false to start with.

30. The __________ loop is ideal for situations that require a counter.

31. Inside the for loop s parentheses, the rst expression is the __________ , the second

expression is the __________ , and the third expression is the __________.

32. A loop that is inside another is called a(n) __________ loop.

33. The __________ statement causes a loop to terminate immediately.

34. The __________ statement causes a loop to skip the remaining statements in the

current iteration.

M05_GADD6253_07_SE_C05 Page 289 Wednesday, January 5, 2011 8:14 PM

290 Chapter 5 Loops and Files

Algorithm Workbench

35. Write a while loop that lets the user enter a number. The number should be multi-

plied by 10, and the result stored in the variable product. The loop should iterate as

long as product contains a value less than 100.

36. Write a do-while loop that asks the user to enter two numbers. The numbers should

be added and the sum displayed. The user should be asked if he or she wishes to per-

form the operation again. If so, the loop should repeat; otherwise it should terminate.

37. Write a for loop that displays the following set of numbers:

0, 10, 20, 30, 40, 50 . . . 1000

38. Write a loop that asks the user to enter a number. The loop should iterate 10 times

and keep a running total of the numbers entered.

39. Write a nested loop that displays 10 rows of # characters. There should be 15 #

characters in each row.

40. Convert the following while loop to a do-while loop:

int x = 1;

while (x > 0)

{

 cout << "enter a number: ";

 cin >> x;

}

41. Convert the following do-while loop to a while loop:

char sure;

do

{

 cout << "Are you sure you want to quit? ";

 cin >> sure;

} while (sure != 'Y' && sure != 'N');

42. Convert the following while loop to a for loop:

int count = 0;

while (count < 50)

{

 cout << "count is " << count << endl;

 count++;

}

43. Convert the following for loop to a while loop:

for (int x = 50; x > 0; x--)

{

 cout << x << " seconds to go.\n";

}

44. Write code that does the following: Opens an output le with the lename

Numbers.txt, uses a loop to write the numbers 1 through 100 to the le, and then

closes the le.

M05_GADD6253_07_SE_C05 Page 290 Wednesday, January 5, 2011 8:14 PM

Review Questions and Exercises 291

45. Write code that does the following: Opens the Numbers.txt le that was created by

the code you wrote in question 44, reads all of the numbers from the le and displays

them, and then closes the le.

46. Modify the code that you wrote in question 45 so it adds all of the numbers read from

the le and displays their total.

True or False

47. T F The operand of the increment and decrement operators can be any valid

mathematical expression.

48. T F The cout statement in the following program segment will display 5:

int x = 5;

cout << x++;

49. T F The cout statement in the following program segment will display 5:

int x = 5;

cout << ++x;

50. T F The while loop is a pretest loop.

51. T F The do-while loop is a pretest loop.

52. T F The for loop is a posttest loop.

53. T F It is not necessary to initialize counter variables.

54. T F All three of the for loop s expressions may be omitted.

55. T F One limitation of the for loop is that only one variable may be initialized in

the initialization expression.

56. T F Variables may be de ned inside the body of a loop.

57. T F A variable may be de ned in the initialization expression of the for loop.

58. T F In a nested loop, the outer loop executes faster than the inner loop.

59. T F In a nested loop, the inner loop goes through all of its iterations for every

single iteration of the outer loop.

60. T F To calculate the total number of iterations of a nested loop, add the number

of iterations of all the loops.

61. T F The break statement causes a loop to stop the current iteration and begin the

next one.

62. T F The continue statement causes a terminated loop to resume.

63. T F In a nested loop, the break statement only interrupts the loop it is placed in.

64. T F When you call an ofstream object s open member function, the speci ed le

will be erased if it already exists.

Find the Errors

Each of the following programs has errors. Find as many as you can.

65. // Find the error in this program.

#include <iostream>

using namespace std;

M05_GADD6253_07_SE_C05 Page 291 Wednesday, January 5, 2011 8:14 PM

292 Chapter 5 Loops and Files

int main()

{

 int num1 = 0, num2 = 10, result;

 num1++;

 result = ++(num1 + num2);

 cout << num1 << " " << num2 << " " << result;

 return 0;

}

66. // This program adds two numbers entered by the user.

#include <iostream>

using namespace std;

int main()

{

 int num1, num2;

 char again;

 while (again == 'y' || again == 'Y')

 cout << "Enter a number: ";

 cin >> num1;

 cout << "Enter another number: ";

 cin >> num2;

 cout << "Their sum is << (num1 + num2) << endl;

 cout << "Do you want to do this again? ";

 cin >> again;

 return 0;

}

67. // This program uses a loop to raise a number to a power.

#include <iostream>

using namespace std;

int main()

{

 int num, bigNum, power, count;

 cout << "Enter an integer: ";

 cin >> num;

 cout << "What power do you want it raised to? ";

 cin >> power;

 bigNum = num;

 while (count++ < power);

 bigNum *= num;

 cout << "The result is << bigNum << endl;

 return 0;

}

68. // This program averages a set of numbers.

#include <iostream>

using namespace std;

int main()

{

 int numCount, total;

 double average;

M05_GADD6253_07_SE_C05 Page 292 Wednesday, January 5, 2011 8:14 PM

Review Questions and Exercises 293

 cout << "How many numbers do you want to average? ";

 cin >> numCount;

 for (int count = 0; count < numCount; count++)

 {

 int num;

 cout << "Enter a number: ";

 cin >> num;

 total += num;

 count++;

 }

 average = total / numCount;

 cout << "The average is << average << endl;

 return 0;

}

69. // This program displays the sum of two numbers.

#include <iostream>

using namespace std;

int main()

{

 int choice, num1, num2;

 do

 {

 cout << "Enter a number: ";

 cin >> num1;

 cout << "Enter another number: ";

 cin >> num2;

 cout << "Their sum is " << (num1 + num2) << endl;

 cout << "Do you want to do this again?\n";

 cout << "1 = yes, 0 = no\n";

 cin >> choice;

 } while (choice = 1)

 return 0;

}

70. // This program displays the sum of the numbers 1-100.

#include <iostream>

using namespace std;

int main()

{

 int count = 1, total;

 while (count <= 100)

 total += count;

 cout << "The sum of the numbers 1-100 is ";

 cout << total << endl;

 return 0;

}

M05_GADD6253_07_SE_C05 Page 293 Wednesday, January 5, 2011 8:14 PM

294 Chapter 5 Loops and Files

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. Sum of Numbers

Write a program that asks the user for a positive integer value. The program should
use a loop to get the sum of all the integers from 1 up to the number entered. For
example, if the user enters 50, the loop will nd the sum of 1, 2, 3, 4, ... 50.

Input Validation: Do not accept a negative starting number.

2. Characters for the ASCII Codes

Write a program that uses a loop to display the characters for the ASCII codes 0
through 127. Display 16 characters on each line.

3. Ocean Levels

Assuming the ocean s level is currently rising at about 1.5 millimeters per year, write a
program that displays a table showing the number of millimeters that the ocean will
have risen each year for the next 25 years.

4. Calories Burned

Running on a particular treadmill you burn 3.9 calories per minute. Write a program
that uses a loop to display the number of calories burned after 10, 15, 20, 25, and 30
minutes.

5. Membership Fees Increase

A country club, which currently charges $2,500 per year for membership, has
announced it will increase its membership fee by 4% each year for the next six years.
Write a program that uses a loop to display the projected rates for the next six years.

6. Distance Traveled

The distance a vehicle travels can be calculated as follows:

distance = speed * time

For example, if a train travels 40 miles per hour for 3 hours, the distance traveled is
120 miles.

Write a program that asks the user for the speed of a vehicle (in miles per hour) and
how many hours it has traveled. The program should then use a loop to display the
distance the vehicle has traveled for each hour of that time period. Here is an example
of the output:

What is the speed of the vehicle in mph? 40

How many hours has it traveled? 3

Hour Distance Traveled

 1 40

 2 80

 3 120

Input Validation: Do not accept a negative number for speed and do not accept any

value less than 1 for time traveled.

VideoNote

Solving the

Calories

Burned

Problem

M05_GADD6253_07_SE_C05 Page 294 Wednesday, January 5, 2011 8:14 PM

Review Questions and Exercises 295

7. Pennies for Pay

Write a program that calculates how much a person would earn over a period of time

if his or her salary is one penny the rst day and two pennies the second day, and con-

tinues to double each day. The program should ask the user for the number of days.

Display a table showing how much the salary was for each day, and then show the

total pay at the end of the period. The output should be displayed in a dollar amount,

not the number of pennies.

Input Validation: Do not accept a number less than 1 for the number of days worked.

8. Math Tutor

This program started in Programming Challenge 15 of Chapter 3, and was modi ed

in Programming Challenge 9 of Chapter 4. Modify the program again so it displays a

menu allowing the user to select an addition, subtraction, multiplication, or division

problem. The nal selection on the menu should let the user quit the program. After

the user has nished the math problem, the program should display the menu again.

This process is repeated until the user chooses to quit the program.

Input Validation: If the user selects an item not on the menu, display an error message

and display the menu again.

9. Hotel Occupancy

Write a program that calculates the occupancy rate for a hotel. The program should

start by asking the user how many oors the hotel has. A loop should then iterate

once for each oor. In each iteration, the loop should ask the user for the number of

rooms on the oor and how many of them are occupied. After all the iterations, the

program should display how many rooms the hotel has, how many of them are occu-

pied, how many are unoccupied, and the percentage of rooms that are occupied. The

percentage may be calculated by dividing the number of rooms occupied by the num-

ber of rooms.

Input Validation: Do not accept a value less than 1 for the number of oors. Do not

accept a number less than 10 for the number of rooms on a oor.

10. Average Rainfall

Write a program that uses nested loops to collect data and calculate the average rain-

fall over a period of years. The program should rst ask for the number of years. The

outer loop will iterate once for each year. The inner loop will iterate twelve times,

once for each month. Each iteration of the inner loop will ask the user for the inches

of rainfall for that month.

After all iterations, the program should display the number of months, the total

inches of rainfall, and the average rainfall per month for the entire period.

Input Validation: Do not accept a number less than 1 for the number of years. Do not

accept negative numbers for the monthly rainfall.

NOTE: It is traditional that most hotels do not have a thirteenth oor. The loop in this

program should skip the entire thirteenth iteration.

Programming Challenges

M05_GADD6253_07_SE_C05 Page 295 Wednesday, January 5, 2011 8:14 PM

296 Chapter 5 Loops and Files

11. Population

Write a program that will predict the size of a population of organisms. The program

should ask the user for the starting number of organisms, their average daily population

increase (as a percentage), and the number of days they will multiply. A loop should

display the size of the population for each day.

Input Validation: Do not accept a number less than 2 for the starting size of the pop-

ulation. Do not accept a negative number for average daily population increase. Do

not accept a number less than 1 for the number of days they will multiply.

12. Celsius to Fahrenheit Table

In Programming Challenge 10 of Chapter 3 you were asked to write a program that

converts a Celsius temperature to Fahrenheit. Modify that program so it uses a loop

to display a table of the Celsius temperatures 0 20, and their Fahrenheit equivalents.

13. The Greatest and Least of These

Write a program with a loop that lets the user enter a series of integers. The user

should enter *99 to signal the end of the series. After all the numbers have been

entered, the program should display the largest and smallest numbers entered.

14. Student Line Up

A teacher has asked all her students to line up single le according to their rst name.

For example, in one class Amy will be at the front of the line and Yolanda will be at

the end. Write a program that prompts the user to enter the number of students in the

class, then loops to read in that many names. Once all the names have been read in it

reports which student would be at the front of the line and which one would be at the

end of the line. You may assume that no two students have the same name.

Input Validation: Do not accept a number less than 1 or greater than 25 for the num-

ber of students.

15. Payroll Report

Write a program that displays a weekly payroll report. A loop in the program should

ask the user for the employee number, gross pay, state tax, federal tax, and FICA

withholdings. The loop will terminate when 0 is entered for the employee number.

After the data is entered, the program should display totals for gross pay, state tax,

federal tax, FICA withholdings, and net pay.

Input Validation: Do not accept negative numbers for any of the items entered. Do not

accept values for state, federal, or FICA withholdings that are greater than the gross pay.

If the sum state tax + federal tax + FICA withholdings for any employee is greater than

gross pay, print an error message and ask the user to re-enter the data for that employee.

16. Savings Account Balance

Write a program that calculates the balance of a savings account at the end of a period

of time. It should ask the user for the annual interest rate, the starting balance, and

the number of months that have passed since the account was established. A loop

should then iterate once for every month, performing the following:

A) Ask the user for the amount deposited into the account during the month. (Do not

accept negative numbers.) This amount should be added to the balance.

M05_GADD6253_07_SE_C05 Page 296 Wednesday, January 5, 2011 8:14 PM

Review Questions and Exercises 297

B) Ask the user for the amount withdrawn from the account during the month. (Do
not accept negative numbers.) This amount should be subtracted from the balance.

C) Calculate the monthly interest. The monthly interest rate is the annual interest rate
divided by twelve. Multiply the monthly interest rate by the balance, and add the
result to the balance.

After the last iteration, the program should display the ending balance, the total
amount of deposits, the total amount of withdrawals, and the total interest earned.

17. Sales Bar Chart

Write a program that asks the user to enter today s sales for ve stores. The program
should then display a bar graph comparing each store s sales. Create each bar in the bar
graph by displaying a row of asterisks. Each asterisk should represent $100 of sales.

Here is an example of the program s output.

Enter today's sales for store 1: 1000 [Enter]

Enter today's sales for store 2: 1200 [Enter]

Enter today's sales for store 3: 1800 [Enter]

Enter today's sales for store 4: 800 [Enter]

Enter today's sales for store 5: 1900 [Enter]

SALES BAR CHART

(Each * = $100)

Store 1: **********

Store 2: ************

Store 3: ******************

Store 4: ********

Store 5: *******************

18. Population Bar Chart

Write a program that produces a bar chart showing the population growth of Prai-
rieville, a small town in the Midwest, at 20-year intervals during the past 100 years.
The program should read in the population gures (rounded to the nearest 1,000 peo-
ple) for 1900, 1920, 1940, 1960, 1980, and 2000 from a le. For each year it should
display the date and a bar consisting of one asterisk for each 1,000 people. The data
can be found in the People.txt le.

Here is an example of how the chart might begin:

PRAIRIEVILLE POPULATION GROWTH

(each * represents 1,000 people)

1900 **

1920 ****

1940 *****

19. Budget Analysis

Write a program that asks the user to enter the amount that he or she has budgeted
for a month. A loop should then prompt the user to enter each of his or her expenses
for the month, and keep a running total. When the loop nishes, the program should
display the amount that the user is over or under budget.

NOTE: If a negative balance is calculated at any point, a message should be displayed
indicating the account has been closed and the loop should terminate.

Programming Challenges

M05_GADD6253_07_SE_C05 Page 297 Wednesday, January 5, 2011 8:14 PM

298 Chapter 5 Loops and Files

20. Random Number Guessing Game

Write a program that generates a random number and asks the user to guess what the

number is. If the user's guess is higher than the random number, the program should

display Too high, try again. If the user s guess is lower than the random number, the

program should display Too low, try again. The program should use a loop that

repeats until the user correctly guesses the random number.

21. Random Number Guessing Game Enhancement

Enhance the program that you wrote for Programming Challenge 20 so it keeps a

count of the number of guesses that the user makes. When the user correctly guesses

the random number, the program should display the number of guesses.

22. Square Display

Write a program that asks the user for a positive integer no greater than 15. The pro-

gram should then display a square on the screen using the character X . The number

entered by the user will be the length of each side of the square. For example, if the

user enters 5, the program should display the following:

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

If the user enters 8, the program should display the following:

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

23. Pattern Displays

Write a program that uses a loop to display Pattern A below, followed by another

loop that displays Pattern B.

Pattern A Pattern B

+

++

+++

++++

+++++

++++++

+++++++

++++++++

+++++++++

++++++++++

++++++++++

+++++++++

++++++++

+++++++

++++++

+++++

++++

+++

++

+

M05_GADD6253_07_SE_C05 Page 298 Wednesday, January 5, 2011 8:14 PM

Review Questions and Exercises 299

24. Using Files Numeric Processing

If you have downloaded this book s source code from the companion Web site, you

will nd a le named Random.txt in the Chapter 05 folder. (The companion Web site

is at www.pearsonhighered.com/gaddis.) This le contains a long list of random num-

bers. Copy the le to your hard drive and then write a program that opens the le,

reads all the numbers from the le, and calculates the following:

A) The number of numbers in the le

B) The sum of all the numbers in the le (a running total)

C) The average of all the numbers in the le

The program should display the number of numbers found in the le, the sum of the

numbers, and the average of the numbers.

25. Using Files Student Line Up

Modify the Student Line Up program described in Programming Challenge 14 so that

it gets the names from a le. Names should be read in until there is no more data to

read. If you have downloaded this book s source code from the companion Web site,

you will nd a le named LineUp.txt in the Chapter 05 folder. You can use this le to

test the program. (The companion Web site is at www.pearsonhighered.com/gaddis.)

26. Using Files Savings Account Balance Modi cation

Modify the Savings Account Balance program described in Programming Challenge

16 so that it writes the nal report to a le.

Programming Challenges

M05_GADD6253_07_SE_C05 Page 299 Wednesday, January 5, 2011 8:14 PM

M05_GADD6253_07_SE_C05 Page 300 Wednesday, January 5, 2011 8:14 PM

301

C
H

A
P

T
E

R

6

Functions

6.1

Focus on Software Engineering: Modular Programming

CONCEPT:

A program may be broken up into manageable functions.

A function is a collection of statements that performs a speci c task. So far you have experi-

enced functions in two ways: (1) you have created a function named

main

 in every program

you ve written, and (2) you have used library functions such as

pow

 and

strcmp

. In this chap-

ter you will learn how to create your own functions that can be used like library functions.

Functions are commonly used to break a problem down into small manageable pieces.

Instead of writing one long function that contains all of the statements necessary to solve

a problem, several small functions that each solve a speci c part of the problem can be

written. These small functions can then be executed in the desired order to solve the prob-

lem. This approach is sometimes called

divide and conquer

 because a large problem is

TOPICS

6.1 Focus on Software Engineering:

Modular Programming

6.2 De ning and Calling Functions

6.3 Function Prototypes

6.4 Sending Data into a Function

6.5 Passing Data by Value

6.6 Focus on Software Engineering:

Using Functions in a Menu-Driven

Program

6.7 The

return

Statement

6.8 Returning a Value from a Function

6.9 Returning a Boolean Value

6.10 Local and Global Variables

6.11 Static Local Variables

6.12 Default Arguments

6.13 Using Reference Variables

as Parameters

6.14 Overloading Functions

6.15 The

exit()

 Function

6.16 Stubs and Drivers

M06_GADD6253_07_SE_C06 Page 301 Wednesday, January 5, 2011 8:41 PM

302

Chapter 6 Functions

divided into several smaller problems that are easily solved. Figure 6-1 illustrates this idea

by comparing two programs: one that uses a long complex function containing all of the

statements necessary to solve a problem, and another that divides a problem into smaller

problems, each of which are handled by a separate function.

Another reason to write functions is that they simplify programs. If a speci c task is per-

formed in several places in a program, a function can be written once to perform that

task, and then be executed anytime it is needed. This bene t of using functions is known

as

code reuse

 because you are writing the code to perform a task once and then reusing it

each time you need to perform the task.

Figure 6-1

main function

function 2

function 3

function 4

 int main()

 {

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 statement;

 }

 int main()

 {

 statement;

 statement;

 statement;

 }

 void function2()

 {

 statement;

 statement;

 statement;

 }

 void function3()

 {

 statement;

 statement;

 statement;

 }

 void function4()

 {

 statement;

 statement;

 statement;

 }

This program has one long, complex

function containing all of the statements

necessary to solve a problem.

In this program the problem has been

divided into smaller problems, each of

which is handled by a separate function.

M06_GADD6253_07_SE_C06 Page 302 Wednesday, January 5, 2011 8:41 PM

6.2 Defining and Calling Functions

303

6.2

De ning and Calling Functions

CONCEPT:

A function call is a statement that causes a function to execute. A

function de nition contains the statements that make up the function.

When creating a function, you must write its

de nition.

 All function de nitions have the

following parts:

Return type: A function can send a value to the part of the program that executed

it. The return type is the data type of the value that is sent from the

function.

Name: You should give each function a descriptive name. In general, the same

rules that apply to variable names also apply to function names.

Parameter list: The program can send data into a function. The parameter list is a list

of variables that hold the values being passed to the function.

Body: The body of a function is the set of statements that perform the func-

tion s operation. They are enclosed in a set of braces.

Figure 6-2 shows the de nition of a simple function with the various parts labeled.

The line in the de nition that reads

int main()

 is called the

function header

.

void

 Functions

You already know that a function can return a value. The

main

 function in all of the pro-

grams you have seen in this book is declared to return an

int

 value to the operating sys-

tem. The

return 0;

statement causes the value 0 to be returned when the

main

 function

nishes executing.

It isn t necessary for all functions to return a value, however. Some functions simply per-

form one or more statements which follows terminate. These are called

void

functions

.

The

displayMessage

 function, which follows is an example.

void displayMessage()

{

 cout << "Hello from the function displayMessage.\n";

}

Figure 6-2

int main ()

{

 cout << "Hello World\n";

 return 0;

}

Function name

Parameter list (This one is empty)

Function body

Return type

M06_GADD6253_07_SE_C06 Page 303 Wednesday, January 5, 2011 8:41 PM

304

Chapter 6 Functions

The function s name is

displayMessage

. This name gives an indication of what the func-

tion does: It displays a message. You should always give functions names that re ect their

purpose. Notice that the function s return type is

void

. This means the function does not

return a value to the part of the program that executed it. Also notice the function has no

return

 statement. It simply displays a message on the screen and exits.

Calling a Function

A function is executed when it is

called.

 Function

main

 is called automatically when a

program starts, but all other functions must be executed by

function call

 statements.

When a function is called, the program branches to that function and executes the state-

ments in its body. Let s look at Program 6-1, which contains two functions:

main

 and

displayMessage

.

The function

displayMessage

 is called by the following statement in line 22:

displayMessage();

Program 6-1

 1 // This program has two functions: main and displayMessage

 2 #include <iostream>

 3 using namespace std;

 4

 5 //***

 6 // Definition of function displayMessage *

 7 // This function displays a greeting. *

 8 //***

 9

 10 void displayMessage()

 11 {

 12 cout << "Hello from the function displayMessage.\n";

 13 }

 14

 15 //***

 16 // Function main *

 17 //***

 18

 19 int main()

 20 {

 21 cout << "Hello from main.\n";

 22 displayMessage();

 23 cout << "Back in function main again.\n";

 24 return 0;

 25 }

Program Output

Hello from main.

Hello from the function displayMessage.

Back in function main again.

M06_GADD6253_07_SE_C06 Page 304 Wednesday, January 5, 2011 8:41 PM

6.2 Defining and Calling Functions

305

This statement is the function call. It is simply the name of the function followed by a set

of parentheses and a semicolon. Let s compare this with the function header:

Function Header

 void displayMessage()

Function Call

 displayMessage();

The function header is part of the function de nition. It declares the function s return

type, name, and parameter list. It is not terminated with a semicolon because the de ni-

tion of the function s body follows it.

The function call is a statement that executes the function, so it is terminated with a semi-

colon like all other C++ statements. The return type is not listed in the function call, and,

if the program is not passing data into the function, the parentheses are left empty.

Even though the program starts executing at

main

, the function

displayMessage

 is

de ned rst. This is because the compiler must know the function s return type, the num-

ber of parameters, and the type of each parameter before the function is called. One way

to ensure the compiler will know this information is to place the function de nition before

all calls to that function. (Later you will see an alternative, preferred method of accom-

plishing this.)

Notice how Program 6-1 ows. It starts, of course, in function

main

. When the call to

displayMessage

 is encountered, the program branches to that function and performs its

statements. Once

displayMessage

 has nished executing, the program branches back to

function

main

 and resumes with the line that follows the function call. This is illustrated

in Figure 6-3.

NOTE:

Later in this chapter you will see how data can be passed into a function by being

listed inside the parentheses.

NOTE:

You should always document your functions by writing comments that describe

what they do. These comments should appear just before the function de nition.

Figure 6-3

void displayMessage()

{

 cout << "Hello from the function displayMessage.\n";

}

int main()

{

 cout << "Hello from main.\n"

 displayMessage();

 cout << "Back in function main again.\n";

 return 0;

}

M06_GADD6253_07_SE_C06 Page 305 Wednesday, January 5, 2011 8:41 PM

306

Chapter 6 Functions

Function call statements may be used in control structures like loops,

if

 statements, and

switch

 statements. Program 6-2 places the

displayMessage

 function call inside a loop.

It is possible to have many functions and function calls in a program. Program 6-3 has

three functions:

main

,

first

, and

second

.

Program 6-2

 1 // The function displayMessage is repeatedly called from a loop.

 2 #include <iostream>

 3 using namespace std;

 4

 5 //***

 6 // Definition of function displayMessage *

 7 // This function displays a greeting. *

 8 //***

 9

 10 void displayMessage()

 11 {

 12 cout << "Hello from the function displayMessage.\n";

 13 }

 14

 15 //***

 16 // Function main *

 17 //***

 18

 19 int main()

 20 {

 21 cout << "Hello from main.\n";

 22 for (int count = 0; count < 5; count++)

 23 displayMessage(); // Call displayMessage

 24 cout << "Back in function main again.\n";

 25 return 0;

 26 }

Program Output

Hello from main.

Hello from the function displayMessage.

Hello from the function displayMessage.

Hello from the function displayMessage.

Hello from the function displayMessage.

Hello from the function displayMessage.

Back in function main again.

Program 6-3

 1 // This program has three functions: main, first, and second.

 2 #include <iostream>

 3 using namespace std;

 4

M06_GADD6253_07_SE_C06 Page 306 Wednesday, January 5, 2011 8:41 PM

6.2 Defining and Calling Functions

307

In lines 32 and 33 of Program 6-3, function

main

 contains a call to

first

 and a call to

second

:

first();

second();

Each call statement causes the program to branch to a function and then back to

main

when the function is nished. Figure 6-4 illustrates the paths taken by the program.

 5 //***

 6 // Definition of function first *

 7 // This function displays a message. *

 8 //***

 9

 10 void first()

 11 {

 12 cout << "I am now inside the function first.\n";

 13 }

 14

 15 //***

 16 // Definition of function second *

 17 // This function displays a message. *

 18 //***

 19

 20 void second()

 21 {

 22 cout << "I am now inside the function second.\n";

 23 }

 24

 25 //***

 26 // Function main *

 27 //***

 28

 29 int main()

 30 {

 31 cout << "I am starting in function main.\n";

 32 first(); // Call function first

 33 second(); // Call function second

 34 cout << "Back in function main again.\n";

 35 return 0;

 36 }

Program Output

I am starting in function main.

I am now inside the function first.

I am now inside the function second.

Back in function main again.

M06_GADD6253_07_SE_C06 Page 307 Wednesday, January 5, 2011 8:41 PM

308

Chapter 6 Functions

Functions may also be called in a hierarchical, or layered fashion. This is demonstrated by

Program 6-4, which has three functions:

main

,

deep

, and

deeper

.

Figure 6-4

Program 6-4

 1 // This program has three functions: main, deep, and deeper

 2 #include <iostream>

 3 using namespace std;

 4

 5 //***

 6 // Definition of function deeper *

 7 // This function displays a message. *

 8 //***

 9

 10 void deeper()

 11 {

 12 cout << "I am now inside the function deeper.\n";

 13 }

 14

 15 //***

 16 // Definition of function deep *

 17 // This function displays a message. *

 18 //***

 19

void first()

{

 cout << "I am now inside the function first.\n";

}

void second()

{

 cout << "I am now inside the function second.\n";

}

int main()

{

 cout << "I am starting in function main.\n"

 first();

 second();

 cout << "Back in function main again.\n";

 return 0;

}

M06_GADD6253_07_SE_C06 Page 308 Wednesday, January 5, 2011 8:41 PM

6.2 Defining and Calling Functions

309

In Program 6-4, function

main

 only calls the function

deep. In turn, deep calls deeper.

The paths taken by the program are shown in Figure 6-5.

 20 void deep()

 21 {

 22 cout << "I am now inside the function deep.\n";

 23 deeper(); // Call function deeper

 24 cout << "Now I am back in deep.\n";

 25 }

 26

 27 //***

 28 // Function main *

 29 //***

 30

 31 int main()

 32 {

 33 cout << "I am starting in function main.\n";

 34 deep(); // Call function deep

 35 cout << "Back in function main again.\n";

 36 return 0;

 37 }

Program Output

I am starting in function main.

I am now inside the function deep.

I am now inside the function deeper.

Now I am back in deep.

Back in function main again.

Figure 6-5

void deep()

{

 cout << "I am now inside the function deep.\n";

 deeper();

 cout << "Now I am back in deep.\n";

}

void deeper()

{

 cout << "I am now in the function deeper.\n";

}

int main()

{

 cout << "I am starting in function main.\n";

 deep();

 cout << "Back in function main again.\n";

 return 0;

}

M06_GADD6253_07_SE_C06 Page 309 Wednesday, January 5, 2011 8:41 PM

310 Chapter 6 Functions

Checkpoint

 www.myprogramminglab.com

6.1 Is the following a function header or a function call?

calcTotal();

6.2 Is the following a function header or a function call?

void showResults()

6.3 What will the output of the following program be if the user enters 10?

#include <iostream>

using namespace std;

void func1()

{

 cout << "Able was I\n";

}

void func2()

{

 cout << "I saw Elba\n";

}

int main()

{

 int input;

 cout << "Enter a number: ";

 cin >> input;

 if (input < 10)

 {

 func1();

 func2();

 }

 else

 {

 func2();

 func1();

 }

 return 0;

}

6.4 The following program skeleton determines whether a person quali es for a
credit card. To qualify, the person must have worked on his or her current job for
at least two years and make at least $17,000 per year. Finish the program by writ-
ing the de nitions of the functions qualify and noQualify. The function
qualify should explain that the applicant quali es for the card and that the
annual interest rate is 12%. The function noQualify should explain that the
applicant does not qualify for the card and give a general explanation why.

#include <iostream>

using namespace std;

// You must write definitions for the two functions qualify

// and noQualify.

M06_GADD6253_07_SE_C06 Page 310 Wednesday, January 5, 2011 8:41 PM

6.3 Function Prototypes 311

int main()

{

 double salary;

 int years;

 cout << "This program will determine if you qualify\n";

 cout << "for our credit card.\n";

 cout << "What is your annual salary? ";

 cin >> salary;

 cout << "How many years have you worked at your ";

 cout << "current job? ";

 cin >> years;

 if (salary >= 17000.0 && years >= 2)

 qualify();

 else

 noQualify();

 return 0;

}

6.3 Function Prototypes

CONCEPT: A function prototype eliminates the need to place a function de nition

before all calls to the function.

Before the compiler encounters a call to a particular function, it must already know the

function s return type, the number of parameters it uses, and the type of each parameter.

(You will learn how to use parameters in the next section.)

One way of ensuring that the compiler has this information is to place the function de ni-

tion before all calls to that function. This was the approach taken in Programs 6-1, 6-2,

6-3, and 6-4. Another method is to declare the function with a function prototype. Here is

a prototype for the displayMessage function in Program 6-1:

void displayMessage();

The prototype looks similar to the function header, except there is a semicolon at the end.

The statement above tells the compiler that the function displayMessage has a void

return type (it doesn t return a value) and uses no parameters.

Function prototypes are usually placed near the top of a program so the compiler will

encounter them before any function calls. Program 6-5 is a modi cation of Program 6-3.

The de nitions of the functions first and second have been placed after main, and a

function prototype has been placed after the using namespace std statement.

NOTE: Function prototypes are also known as function declarations.

WARNING! You must place either the function de nition or either/the function

prototype ahead of all calls to the function. Otherwise the program will not compile.

M06_GADD6253_07_SE_C06 Page 311 Wednesday, January 5, 2011 8:41 PM

312 Chapter 6 Functions

When the compiler is reading Program 6-5, it encounters the calls to the functions first

and second in lines 12 and 13 before it has read the de nition of those functions. Because

of the function prototypes, however, the compiler already knows the return type and

parameter information of first and second.

Program 6-5

 1 // This program has three functions: main, first, and second.

 2 #include <iostream>

 3 using namespace std;

 4

 5 // Function Prototypes

 6 void first();

 7 void second();

 8

 9 int main()

 10 {

 11 cout << "I am starting in function main.\n";

 12 first(); // Call function first

 13 second(); // Call function second

 14 cout << "Back in function main again.\n";

 15 return 0;

 16 }

 17

 18 //*************************************

 19 // Definition of function first. *

 20 // This function displays a message. *

 21 //*************************************

 22

 23 void first()

 24 {

 25 cout << "I am now inside the function first.\n";

 26 }

 27

 28 //*************************************

 29 // Definition of function second. *

 30 // This function displays a message. *

 31 //*************************************

 32

 33 void second()

 34 {

 35 cout << "I am now inside the function second.\n";

 36 }

Program Output

(The program s output is the same as the output of Program 6-3.)

NOTE: Although some programmers make main the last function in the program, many

prefer it to be rst because it is the program s starting point.

M06_GADD6253_07_SE_C06 Page 312 Wednesday, January 5, 2011 8:41 PM

6.4 Sending Data into a Function 313

6.4 Sending Data into a Function

CONCEPT: When a function is called, the program may send values into the

function.

Values that are sent into a function are called arguments. You re already familiar with

how to use arguments in a function call. In the following statement the function pow is

being called and two arguments, 2.0 and 4.0, are passed to it:

result = pow(2.0, 4.0);

By using parameters, you can design your own functions that accept data this way. A

parameter is a special variable that holds a value being passed into a function. Here is the

de nition of a function that uses a parameter:

void displayValue(int num)

{

 cout << "The value is " << num << endl;

}

Notice the integer variable de nition inside the parentheses (int num). The variable num

is a parameter. This enables the function displayValue to accept an integer value as an

argument. Program 6-6 is a complete program using this function.

NOTE: In this text, the values that are passed into a function are called arguments, and

the variables that receive those values are called parameters. There are several variations

of these terms in use. Some call the arguments actual parameters and call the parameters

formal parameters. Others use the terms actual argument and formal argument.

Regardless of which set of terms you use, it is important to be consistent.

Program 6-6

 1 // This program demonstrates a function with a parameter.

 2 #include <iostream>

 3 using namespace std;

 4

 5 // Function Prototype

 6 void displayValue(int);

 7

 8 int main()

 9 {

 10 cout << "I am passing 5 to displayValue.\n";

 11 displayValue(5); // Call displayValue with argument 5

 12 cout << "Now I am back in main.\n";

 13 return 0;

 14 }

 15

(program continues)

VideoNote

Functions
and
Arguments

M06_GADD6253_07_SE_C06 Page 313 Wednesday, January 5, 2011 8:41 PM

314 Chapter 6 Functions

First, notice the function prototype for displayValue in line 6:

void displayValue(int);

It is not necessary to list the name of the parameter variable inside the parentheses. Only

its data type is required. The function prototype shown above could optionally have been

written as:

void displayValue(int num);

However, the compiler ignores the name of the parameter variable in the function prototype.

In main, the displayValue function is called with the argument 5 inside the parentheses.

The number 5 is passed into num, which is displayValue s parameter. This is illustrated

in Figure 6-6.

Any argument listed inside the parentheses of a function call is copied into the function s

parameter variable. In essence, parameter variables are initialized to the value of their

corresponding arguments. Program 6-7 shows the function displayValue being called

several times with a different argument being passed each time.

 16 //***

 17 // Definition of function displayValue. *

 18 // It uses an integer parameter whose value is displayed. *

 19 //***

 20

 21 void displayValue(int num)

 22 {

 23 cout << "The value is " << num << endl;

 24 }

Program Output

I am passing 5 to displayValue.

The value is 5

Now I am back in main.

Figure 6-6

Program 6-6 (continued)

displayValue(5);

void displayValue(int num)

{

 cout << "The value is " << num << endl;

}

M06_GADD6253_07_SE_C06 Page 314 Wednesday, January 5, 2011 8:41 PM

6.4 Sending Data into a Function 315

Each time the function is called in Program 6-7, num takes on a different value. Any

expression whose value could normally be assigned to num may be used as an argument.

For example, the following function call would pass the value 8 into num:

displayValue(3 + 5);

Program 6-7

 1 // This program demonstrates a function with a parameter.

 2 #include <iostream>

 3 using namespace std;

 4

 5 // Function Prototype

 6 void displayValue(int);

 7

 8 int main()

 9 {

 10 cout << "I am passing several values to displayValue.\n";

 11 displayValue(5); // Call displayValue with argument 5

 12 displayValue(10); // Call displayValue with argument 10

 13 displayValue(2); // Call displayValue with argument 2

 14 displayValue(16); // Call displayValue with argument 16

 15 cout << "Now I am back in main.\n";

 16 return 0;

 17 }

 18

 19 //***

 20 // Definition of function displayValue. *

 21 // It uses an integer parameter whose value is displayed. *

 22 //***

 23

 24 void displayValue(int num)

 25 {

 26 cout << "The value is " << num << endl;

 27 }

Program Output

I am passing several values to displayValue.

The value is 5

The value is 10

The value is 2

The value is 16

Now I am back in main.

WARNING! When passing a variable as an argument, simply write the variable name

inside the parentheses of the function call. Do not write the data type of the argument

variable in the function call. For example, the following function call will cause an error:

displayValue(int x); // Error!

The function call should appear as

displayValue(x); // Correct

M06_GADD6253_07_SE_C06 Page 315 Wednesday, January 5, 2011 8:41 PM

316 Chapter 6 Functions

If you pass an argument whose type is not the same as the parameter s type, the argument

will be promoted or demoted automatically. For instance, the argument in the following

function call would be truncated, causing the value 4 to be passed to num:

displayValue(4.7);

Often, it s useful to pass several arguments into a function. Program 6-8 shows the de ni-

tion of a function with three parameters.

In the function header for showSum, the parameter list contains three variable de nitions

separated by commas:

void showSum(int num1, int num2, int num3)

Program 6-8

 1 // This program demonstrates a function with three parameters.

 2 #include <iostream>

 3 using namespace std;

 4

 5 // Function Prototype

 6 void showSum(int, int, int);

 7

 8 int main()

 9 {

 10 int value1, value2, value3;

 11

 12 // Get three integers.

 13 cout << "Enter three integers and I will display ";

 14 cout << "their sum: ";

 15 cin >> value1 >> value2 >> value3;

 16

 17 // Call showSum passing three arguments.

 18 showSum(value1, value2, value3);

 19 return 0;

 20 }

 21

 22 //**

 23 // Definition of function showSum. *

 24 // It uses three integer parameters. Their sum is displayed. *

 25 //**

 26

 27 void showSum(int num1, int num2, int num3)

 28 {

 29 cout << (num1 + num2 + num3) << endl;

 30 }

Program Output with Example Input Shown in Bold

Enter three integers and I will display their sum: 4 8 7 [Enter]
19

M06_GADD6253_07_SE_C06 Page 316 Wednesday, January 5, 2011 8:41 PM

6.4 Sending Data into a Function 317

In the function call in line 18, the variables value1, value2, and value3 are passed as

arguments:

showSum(value1, value2, value3);

When a function with multiple parameters is called, the arguments are passed to the

parameters in order. This is illustrated in Figure 6-7.

The following function call will cause 5 to be passed into the num1 parameter, 10 to be

passed into num2, and 15 to be passed into num3:

showSum(5, 10, 15);

However, the following function call will cause 15 to be passed into the num1 parameter, 5

to be passed into num2, and 10 to be passed into num3:

showSum(15, 5, 10);

WARNING! Each parameter variable in a parameter list must have a data type listed

before its name. For example, a compiler error would occur if the parameter list for the

showSum function were de ned as shown in the following header:

void showSum(int num1, num2, num3) // Error!

A data type for all three of the parameter variables must be listed, as shown here:

void showSum(int num1, int num2, int num3) // Correct

Figure 6-7

NOTE: The function prototype must list the data type of each parameter.

NOTE: Like all variables, parameters have a scope. The scope of a parameter is limited

to the body of the function that uses it.

 showSum(value1, value2, value3)

 void showSum(int num1, int num2, int num3)

 {

 cout << (num1 + num2 + num3) << endl;

 }

Function Call

M06_GADD6253_07_SE_C06 Page 317 Wednesday, January 5, 2011 8:41 PM

318 Chapter 6 Functions

6.5 Passing Data by Value

CONCEPT: When an argument is passed into a parameter, only a copy of the

argument s value is passed. Changes to the parameter do not affect the

original argument.

As you ve seen in this chapter, parameters are special-purpose variables that are de ned

inside the parentheses of a function de nition. They are separate and distinct from the

arguments that are listed inside the parentheses of a function call. The values that are

stored in the parameter variables are copies of the arguments. Normally, when a parame-

ter s value is changed inside a function it has no effect on the original argument. Program

6-9 demonstrates this concept.

Program 6-9

 1 // This program demonstrates that changes to a function parameter

 2 // have no effect on the original argument.

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Function Prototype

 7 void changeMe(int);

 8

 9 int main()

 10 {

 11 int number = 12;

 12

 13 // Display the value in number.

 14 cout << "number is " << number << endl;

 15

 16 // Call changeMe, passing the value in number

 17 // as an argument.

 18 changeMe(number);

 19

 20 // Display the value in number again.

 21 cout << "Now back in main again, the value of ";

 22 cout << "number is " << number << endl;

 23 return 0;

 24 }

 25

 26 //**

 27 // Definition of function changeMe. *

 28 // This function changes the value of the parameter myValue. *

 29 //**

 30

M06_GADD6253_07_SE_C06 Page 318 Wednesday, January 5, 2011 8:41 PM

6.5 Passing Data by Value 319

Even though the parameter variable myValue is changed in the changeMe function, the

argument number is not modi ed. The myValue variable contains only a copy of the

number variable.

The changeMe function does not have access to the original argument. When only a copy

of an argument is passed to a function, it is said to be passed by value. This is because the

function receives a copy of the argument s value, and does not have access to the original

argument.

Figure 6-8 illustrates that a parameter variable s storage location in memory is separate

from that of the original argument.

 31 void changeMe(int myValue)

 32 {

 33 // Change the value of myValue to 0.

 34 myValue = 0;

 35

 36 // Display the value in myValue.

 37 cout << "Now the value is " << myValue << endl;

 38 }

Program Output

number is 12

Now the value is 0

Now back in main again, the value of number is 12

Figure 6-8

NOTE: Later in this chapter you will learn ways to give a function access to its original

arguments.

Original Argument
(in its memory location)

 12

 Function Parameter
 (in its memory location)

 12

M06_GADD6253_07_SE_C06 Page 319 Wednesday, January 5, 2011 8:41 PM

320 Chapter 6 Functions

6.6
Focus on Software Engineering: Using Functions
in a Menu-Driven Program

CONCEPT: Functions are ideal for use in menu-driven programs. When the user

selects an item from a menu, the program can call the appropriate

function.

In Chapters 4 and 5 you saw a menu-driven program that calculates the charges for a health

club membership. Program 6-10 shows the program redesigned as a modular program. A

modular program is broken up into functions that perform speci c tasks.

Program 6-10

 1 // This is a menu-driven program that makes a function call

 2 // for each selection the user makes.

 3 #include <iostream>

 4 #include <iomanip>

 5 using namespace std;

 6

 7 // Function prototypes

 8 void showMenu();

 9 void showFees(double, int);

 10

 11 int main()

 12 {

 13 int choice; // To hold a menu choice

 14 int months; // To hold a number of months

 15

 16 // Constants for the menu choices

 17 const int ADULT_CHOICE = 1,

 18 CHILD_CHOICE = 2,

 19 SENIOR_CHOICE = 3,

 20 QUIT_CHOICE = 4;

 21

 22 // Constants for membership rates

 23 const double ADULT = 40.0,

 24 CHILD = 20.0;

 25 SENIOR = 30.0,

 26

 27 // Set up numeric output formatting.

 28 cout << fixed << showpoint << setprecision(2);

 29

 30 do

 31 {

 32 // Display the menu and get the user's choice.

 33 showMenu();

 34 cin >> choice;

 35

 36 // Validate the menu selection.

 37 while (choice < ADULT_CHOICE || choice > QUIT_CHOICE)

 38 {

M06_GADD6253_07_SE_C06 Page 320 Wednesday, January 5, 2011 8:41 PM

6.6 Focus on Software Engineering: Using Functions in a Menu-Driven Program 321

 39 cout << "Please enter a valid menu choice: ";

 40 cin >> choice;

 41 }

 42

 43 // If the user does not want to quit, proceed.

 44 if (choice != QUIT_CHOICE)

 45 {

 46 // Get the number of months.

 47 cout << "For how many months? ";

 48 cin >> months;

 49

 50 // Display the membership fees.

 51 switch (choice)

 52 {

 53 case ADULT_CHOICE:

 54 showFees(ADULT, months);

 55 break;

 56 case CHILD_CHOICE:

 57 showFees(CHILD, months);

 58 break;

 59 case SENIOR_CHOICE:

 60 showFees(SENIOR, months);

 61 }

 62 }

 63 } while (choice != QUIT_CHOICE);

 64 return 0;

 65 }

 66

 67 //***

 68 // Definition of function showMenu which displays the menu. *

 69 //***

 70

 71 void showMenu()

 72 {

 73 cout << "\n\t\tHealth Club Membership Menu\n\n"

 74 << "1. Standard Adult Membership\n"

 75 << "2. Child Membership\n"

 76 << "3. Senior Citizen Membership\n"

 77 << "4. Quit the Program\n\n"

 78 << "Enter your choice: ";

 79 }

 80

 81 //**

 82 // Definition of function showFees. The memberRate parameter holds *

 83 // the monthly membership rate and the months parameter holds the *

 84 // number of months. The function displays the total charges. *

 85 //**

 86

 87 void showFees(double memberRate, int months)

 88 {

 89 cout << "The total charges are $"

 90 << (memberRate * months) << endl;

 91 }

(program output continues)

M06_GADD6253_07_SE_C06 Page 321 Wednesday, January 5, 2011 8:41 PM

322 Chapter 6 Functions

Let s take a closer look at this program. First notice the showMenu function in lines 71

through 79. This function displays the menu, and is called from the main function in

line 33.

The showFees function appears in lines 87 through 91. Its purpose is to display the total

fees for a membership lasting a speci ed number of months. The function accepts two

arguments: the monthly membership fee (a double) and the number of months of mem-

bership (an int). The function uses these values to calculate and display the total charges.

For example, if we wanted the function to display the fees for an adult membership lasting

six months, we would pass the ADULT constant as the rst argument and 6 as the second

argument.

The showFees function is called from three different locations in the switch statement

which is in the main function. The rst location is line 54. This statement is executed

when the user has selected item 1, standard adult membership, from the menu. The

showFees function is called with the ADULT constant and the months variable passed as

arguments. The second location is line 57. This statement is executed when the user has

selected item 2, child membership, from the menu. The showFees function is called in this

line with the CHILD constant and the months variable passed as arguments. The third

location is line 60. This statement is executed when the user has selected item 3, senior

citizen membership, from the menu. The showFees function is called with the SENIOR

constant and the months variable passed as arguments. Each time the showFees func-

tion is called, it displays the total membership fees for the speci ed type of membership,

for the speci ed number of months.

Program 6-10 (continued)

Program Output with Example Input Shown in Bold

 Health Club Membership Menu

1. Standard Adult Membership

2. Child Membership

3. Senior Citizen Membership

4. Quit the Program

Enter your choice: 1 [Enter]
For how many months? 12 [Enter]
The total charges are $480.00

 Health Club Membership Menu

1. Standard Adult Membership

2. Child Membership

3. Senior Citizen Membership

4. Quit the Program

Enter your choice: 4 [Enter]

M06_GADD6253_07_SE_C06 Page 322 Wednesday, January 5, 2011 8:41 PM

6.6 Focus on Software Engineering: Using Functions in a Menu-Driven Program 323

Checkpoint

 www.myprogramminglab.com

6.5 Indicate which of the following is the function prototype, the function header,

and the function call:

void showNum(double num)

void showNum(double);

showNum(45.67);

6.6 Write a function named timesTen. The function should have an integer parameter

named number. When timesTen is called, it should display the product of number

times ten. (Note: just write the function. Do not write a complete program.)

6.7 Write a function prototype for the timesTen function you wrote in Question 6.6.

6.8 What is the output of the following program?

#include <iostream>

using namespace std;

void showDouble(int); // Function prototype

int main()

{

 int num;

 for (num = 0; num < 10; num++)

 showDouble(num);

 return 0;

}

// Definition of function showDouble.

void showDouble(int value)

{

 cout << value << "\t" << (value * 2) << endl;

}

6.9 What is the output of the following program?

#include <iostream>

using namespace std;

void func1(double, int); // Function prototype

int main()

{

 int x = 0;

 double y = 1.5;

 cout << x << " " << y << endl;

 func1(y, x);

 cout << x << " " << y << endl;

 return 0;

}

M06_GADD6253_07_SE_C06 Page 323 Wednesday, January 5, 2011 8:41 PM

324 Chapter 6 Functions

void func1(double a, int b)

{

 cout << a << " " << b << endl;

 a = 0.0;

 b = 10;

 cout << a << " " << b << endl;

}

6.10 The following program skeleton asks for the number of hours you ve worked and

your hourly pay rate. It then calculates and displays your wages. The function

showDollars, which you are to write, formats the output of the wages.

#include <iostream>

using namespace std;

void showDollars(double); // Function prototype

int main()

{

 double payRate, hoursWorked, wages;

 cout << "How many hours have you worked? "

 cin >> hoursWorked;

 cout << "What is your hourly pay rate? ";

 cin >> payRate;

 wages = hoursWorked * payRate;

 showDollars(wages);

 return 0;

}

// You must write the definition of the function showDollars

// here. It should take one parameter of the type double.

// The function should display the message "Your wages are $"

// followed by the value of the parameter. It should be displayed

// with 2 places of precision after the decimal point, in fixed

// notation, and the decimal point should always display.

6.7 The return Statement

CONCEPT: The return statement causes a function to end immediately.

When the last statement in a void function has nished executing, the function terminates

and the program returns to the statement following the function call. It s possible, how-

ever, to force a function to return before the last statement has been executed. When the

return statement is encountered, the function immediately terminates and control of the

program returns to the statement that called the function. This is demonstrated in Pro-

gram 6-11. The function divide shows the quotient of arg1 divided by arg2. If arg2 is

set to zero, the function returns.

M06_GADD6253_07_SE_C06 Page 324 Wednesday, January 5, 2011 8:41 PM

6.7 The return Statement 325

In the example running of the program, the user entered 12 and 0 as input. In line 16 the

divide function was called, passing 12 into the arg1 parameter and 0 into the arg2

parameter. Inside the divide function, the if statement in line 29 executes. Because arg2

is equal to 0.0, the code in lines 31 and 32 execute. When the return statement in line 32

executes, the divide function immediately ends. This means the cout statement in line 34

does not execute. The program resumes at line 17 in the main function.

Program 6-11

 1 // This program uses a function to perform division. If division

 2 // by zero is detected, the function returns.

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Function prototype.

 7 void divide(double, double);

 8

 9 int main()

 10 {

 11 double num1, num2;

 12

 13 cout << "Enter two numbers and I will divide the first\n";

 14 cout << "number by the second number: ";

 15 cin >> num1 >> num2;

 16 divide(num1, num2);

 17 return 0;

 18 }

 19

 20 //***

 21 // Definition of function divide. *

 22 // Uses two parameters: arg1 and arg2. The function divides arg1*

 23 // by arg2 and shows the result. If arg2 is zero, however, the *

 24 // function returns. *

 25 //***

 26

 27 void divide(double arg1, double arg2)

 28 {

 29 if (arg2 == 0.0)

 30 {

 31 cout << "Sorry, I cannot divide by zero.\n";

 32 return;

 33 }

 34 cout << "The quotient is " << (arg1 / arg2) << endl;

 35 }

Program Output with Example Input Shown in Bold

Enter two numbers and I will divide the first

number by the second number: 12 0 [Enter]
Sorry, I cannot divide by zero.

M06_GADD6253_07_SE_C06 Page 325 Wednesday, January 5, 2011 8:41 PM

326 Chapter 6 Functions

6.8 Returning a Value from a Function

CONCEPT: A function may send a value back to the part of the program that called

the function.

You ve seen that data may be passed into a function by way of parameter variables. Data

may also be returned from a function, back to the statement that called it. Functions that

return a value are appropriately known as value-returning functions.

The pow function, which you have already seen, is an example of a value-returning function.

Here is an example:

double x;

x = pow(4.0, 2.0);

The second line in this code calls the pow function, passing 4.0 and 2.0 as arguments. The

function calculates the value of 4.0 raised to the power of 2.0 and returns that value. The

value, which is 16.0, is assigned to the x variable by the = operator.

Although several arguments may be passed into a function, only one value may be

returned from it. Think of a function as having multiple communication channels for

receiving data (parameters), but only one channel for sending data (the return value). This

is illustrated in Figure 6-9.

De ning a Value-Returning Function

When you are writing a value-returning function, you must decide what type of value the

function will return. This is because you must specify the data type of the return value in

the function header, and in the function prototype. Recall that a void function, which does

not return a value, uses the key word void as its return type in the function header. A

Figure 6-9

NOTE: It is possible to return multiple values from a function, but they must be

packaged in such a way that they are treated as a single value. This is a topic of

Chapter 11.

VideoNote

Value-
Returning
Functions

argument

argument

 Function Return value

argument

argument

M06_GADD6253_07_SE_C06 Page 326 Wednesday, January 5, 2011 8:41 PM

6.8 Returning a Value from a Function 327

value-returning function will use int, double, bool, or any other valid data type in its

header. Here is an example of a function that returns an int value:

int sum(int num1, int num2)

{

 int result;

 result = num1 + num2;

 return result;

}

The name of this function is sum. Notice in the function header that the return type is int,

as illustrated in Figure 6-10.

This code de nes a function named sum that accepts two int arguments. The arguments

are passed into the parameter variables num1 and num2. Inside the function, a variable,

result, is de ned. Variables that are de ned inside a function are called local variables.

After the variable de nition, the parameter variables num1 and num2 are added, and their

sum is assigned to the result variable. The last statement in the function is

return result;

This statement causes the function to end, and it sends the value of the result variable

back to the statement that called the function. A value-returning function must have a

return statement written in the following general format:

In the general format, expression is the value to be returned. It can be any expression

that has a value, such as a variable, literal, or mathematical expression. The value of

the expression is converted to the data type that the function returns, and is sent back

to the statement that called the function. In this case, the sum function returns the value

in the result variable.

However, we could have eliminated the result variable and returned the expression

num1 + num2, as shown in the following code:

int sum(int num1, int num2)

{

 return num1 + num2;

}

When writing the prototype for a value-returning function, follow the same conventions

that we have covered earlier. Here is the prototype for the sum function:

int sum(int, int);

Figure 6-10

 return expression;

int sum(int num1, int num2)

Return Type

M06_GADD6253_07_SE_C06 Page 327 Wednesday, January 5, 2011 8:41 PM

328 Chapter 6 Functions

Calling a Value-Returning Function

Program 6-12 shows an example of how to call the sum function.

Here is the statement in line 17 that calls the sum function, passing value1 and value2 as

arguments.

total = sum(value1, value2);

This statement assigns the value returned by the sum function to the total variable. In

this case, the function will return 60. Figure 6-11 shows how the arguments are passed

into the function and how a value is passed back from the function.

Program 6-12

 1 // This program uses a function that returns a value.

 2 #include <iostream>

 3 using namespace std;

 4

 5 // Function prototype

 6 int sum(int, int);

 7

 8 int main()

 9 {

 10 int value1 = 20, // The first value

 11 value2 = 40, // The second value

 12 total; // To hold the total

 13

 14 // Call the sum function, passing the contents of

 15 // value1 and value2 as arguments. Assign the return

 16 // value to the total variable.

 17 total = sum(value1, value2);

 18

 19 // Display the sum of the values.

 20 cout << "The sum of " << value1 << " and "

 21 << value2 << " is " << total << endl;

 22 return 0;

 23 }

 24

 25 //***

 26 // Definition of function sum. This function returns *

 27 // the sum of its two parameters. *

 28 //***

 29

 30 int sum(int num1, int num2)

 31 {

 32 return num1 + num2;

 33 }

Program Output

The sum of 20 and 40 is 60

M06_GADD6253_07_SE_C06 Page 328 Wednesday, January 5, 2011 8:41 PM

6.8 Returning a Value from a Function 329

When you call a value-returning function, you usually want to do something meaningful

with the value it returns. Program 6-12 shows a function s return value being assigned to a

variable. This is commonly how return values are used, but you can do many other things

with them. For example, the following code shows a mathematical expression that uses a

call to the sum function:

int x = 10, y = 15;

double average;

average = sum(x, y) / 2.0;

In the last statement, the sum function is called with x and y as its arguments. The func-

tion s return value, which is 25, is divided by 2.0. The result, 12.5, is assigned to average.

Here is another example:

int x = 10, y = 15;

cout << "The sum is " << sum(x, y) << endl;

This code sends the sum function s return value to cout so it can be displayed on the

screen. The message The sum is 25 will be displayed.

Remember, a value-returning function returns a value of a speci c data type. You can use

the function s return value anywhere that you can use a regular value of the same data

type. This means that anywhere an int value can be used, a call to an int value-returning

function can be used. Likewise, anywhere a double value can be used, a call to a double

value-returning function can be used. The same is true for all other data types.

Let s look at another example. Program 6-13, which calculates the area of a circle, has

two functions in addition to main. One of the functions is named square, and it returns

the square of any number passed to it as an argument. The square function is called in a

mathematical statement. The program also has a function named getRadius, which

prompts the user to enter the circle s radius. The value entered by the user is returned from

the function.

Figure 6-11

Program 6-13

 1 // This program demonstrates two value-returning functions.

 2 // The square function is called in a mathematical statement.

 3 #include <iostream>

 4 #include <iomanip>

 5 using namespace std;

 6

(program continues)

int sum(int num1, int num2)

{

 return num + num;

}

total = sum(value1, value2);

40

20

60

M06_GADD6253_07_SE_C06 Page 329 Wednesday, January 5, 2011 8:41 PM

330 Chapter 6 Functions

 7 //Function prototypes

 8 double getRadius();

 9 double square(double);

 10

 11 int main()

 12 {

 13 const double PI = 3.14159; // Constant for pi

 14 double radius; // To hold the circle's radius

 15 double area; // To hold the circle's area

 16

 17 // Set the numeric output formatting.

 18 cout << fixed << showpoint << setprecision(2);

 19

 20 // Get the radius of the circle.

 21 cout << "This program calculates the area of ";

 22 cout << "a circle.\n";

 23 radius = getRadius();

 24

 25 // Calculate the area of the circle.

 26 area = PI * square(radius);

 27

 28 // Display the area.

 29 cout << "The area is " << area << endl;

 30 return 0;

 31 }

 32

 33 //**

 34 // Definition of function getRadius. *

 35 // This function asks the user to enter the radius of *

 36 // the circle and then returns that number as a double.*

 37 //**

 38

 39 double getRadius()

 40 {

 41 double rad;

 42

 43 cout << "Enter the radius of the circle: ";

 44 cin >> rad;

 45 return rad;

 46 }

 47

 48 //**

 49 // Definition of function square. *

 50 // This function accepts a double argument and returns *

 51 // the square of the argument as a double. *

 52 //**

 53

 54 double square(double number)

 55 {

 56 return number * number;

 57 }

Program 6-13 (continued)

M06_GADD6253_07_SE_C06 Page 330 Wednesday, January 5, 2011 8:41 PM

6.8 Returning a Value from a Function 331

First, look at the getRadius function de ned in lines 39 through 46. The purpose of the

function is to prompt the user to enter the radius of a circle. In line 41 the function

de nes a local variable, rad. Lines 43 and 44 prompt the user to enter the circle s radius,

which is stored in the rad variable. In line 45 the value of the rad value is returned. The

getRadius function is called in the main function, in line 23. The value that is returned

from the function is assigned to the radius variable.

Next look at the square function, which is de ned in lines 54 through 57. When the func-

tion is called, a double argument is passed to it. The function stores the argument in the

number parameter. The return statement in line 56 returns the value of the expression

number * number, which is the square of the number parameter. The square function is

called in the main function, in line 26, with the value of radius passed as an argument.

The function will return the square of the radius variable, and that value will be used in

the mathematical expression.

Assuming the user has entered 10 as the radius, and this value is passed as an argument to

the square function, the square function will return the value 100. Figure 6-12 illustrates

how the value 100 is passed back to the mathematical expression in line 26. The value

100 will then be used in the mathematical expression.

Functions can return values of any type. Both the getRadius and square functions in

Program 6-13 return a double. The sum function you saw in Program 6-12 returned an

int. When a statement calls a value-returning function, it should properly handle the

return value. For example, if you assign the return value of the square function to a vari-

able, the variable should be a double. If the return value of the function has a fractional

portion and you assign it to an int variable, the value will be truncated.

Program Output with Example Input Shown in Bold

This program calculates the area of a circle.

Enter the radius of the circle: 10 [Enter]
The area is 314.16

Figure 6-12

double square(double number)

{

 return number * number;

}

area = PI * square(radius);

10

100

M06_GADD6253_07_SE_C06 Page 331 Wednesday, January 5, 2011 8:41 PM

332 Chapter 6 Functions

In the Spotlight:

Using Functions

Your friend Michael runs a catering company. Some of the ingredients that his recipes

require are measured in cups. When he goes to the grocery store to buy those ingredients,

however, they are sold only by the uid ounce. He has asked you to write a simple pro-

gram that converts cups to uid ounces.

You design the following algorithm:

1. Display an introductory screen that explains what the program does.

2. Get the number of cups.

3. Convert the number of cups to uid ounces and display the result.

This algorithm lists the top level of tasks that the program needs to perform, and becomes

the basis of the program s main function. The hierarchy chart shown in Figure 6-13 shows

how the program will broken down into functions.

As shown in the hierarchy chart, the main function will call three other functions. Here

are summaries of those functions:

showIntro This function will display a message on the screen that explains

what the program does.

getCups This function will prompt the user to enter the number of cups and

then will return that value as a double.

cupsToOunces This function will accept the number of cups as an argument

and then return an equivalent number of fluid ounces as a double.

Program 6-14 shows the code for the program.

Figure 6-13 Hierarchy chart for the program

main()

showIntro()
cupsToOunces

(double cups)
getCups()

M06_GADD6253_07_SE_C06 Page 332 Wednesday, January 5, 2011 8:41 PM

6.8 Returning a Value from a Function 333

Program 6-14

 1 // This program converts cups to fluid ounces.

 2 #include <iostream>

 3 #include <iomanip>

 4 using namespace std;

 5

 6 // Function prototypes

 7 void showIntro();

 8 double getCups();

 9 double cupsToOunces(double);

 10

 11 int main()

 12 {

 13 // Variables for the cups and ounces.

 14 double cups, ounces;

 15

 16 // Set up numeric output formatting.

 17 cout << fixed << showpoint << setprecision(1);

 18

 19 // Display an intro screen.

 20 showIntro();

 21

 22 // Get the number of cups.

 23 cups = getCups();

 24

 25 // Convert cups to fluid ounces.

 26 ounces = cupsToOunces(cups);

 27

 28 // Display the number of ounces.

 29 cout << cups << " cups equals "

 30 << ounces << " ounces.\n";

 31

 32 return 0;

 33 }

 34

 35 //**

 36 // The showIntro function displays an *

 37 // introductory screen. *

 38 //**

 39

 40 void showIntro()

 41 {

 42 cout << "This program converts measurements\n"

 43 << "in cups to fluid ounces. For your\n"

 44 << "reference the formula is:\n"

 45 << " 1 cup = 8 fluid ounces\n\n";

 46 }

 47

 48 //**

 49 // The getCups function prompts the user *

 50 // to enter the number of cups and then *

 51 // returns that value as a double. *

 52 //**

 53

(program continues)

M06_GADD6253_07_SE_C06 Page 333 Wednesday, January 5, 2011 8:41 PM

334 Chapter 6 Functions

6.9 Returning a Boolean Value

CONCEPT: Functions may return true or false values.

Frequently there is a need for a function that tests an argument and returns a true or

false value indicating whether or not a condition exists. Such a function would return a

bool value. For example, the following function accepts an int argument and returns

true if the argument is within the range of 1 through 100, or false otherwise.

bool isValid(int number)

{

 bool status;

 if (number >= 1 && number <= 100)

 status = true;

 else

 status = false;

 return status;

}

 54 double getCups()

 55 {

 56 double numCups;

 57

 58 cout << "Enter the number of cups: ";

 59 cin >> numCups;

 60 return numCups;

 61 }

 62

 63 //**

 64 // The cupsToOunces function accepts a *

 65 // number of cups as an argument and *

 66 // returns the equivalent number of fluid *

 67 // ounces as a double. *

 68 //**

 69

 70 double cupsToOunces(double numCups)

 71 {

 72 return numCups * 8.0;

 73 }

Program Output with Example Input Shown in Bold

This program converts measurements

in cups to fluid ounces. For your

reference the formula is:

 1 cup = 8 fluid ounces

Enter the number of cups: 2 [Enter]
2.0 cups equals 16.0 ounces.

Program 6-14 (continued)

Chapter 6 Functions

M06_GADD6253_07_SE_C06 Page 334 Wednesday, January 5, 2011 8:41 PM

6.9 Returning a Boolean Value 335

The following code shows an if/else statement that uses a call to the function:

int value = 20;

if (isValid(value))

 cout << "The value is within range.\n";

else

 cout << "The value is out of range.\n";

When this code executes, the message The value is within range. will be displayed.

Program 6-15 shows another example. This program has a function named isEven which

returns true if its argument is an even number. Otherwise, the function returns false.

Program 6-15

 1 // This program uses a function that returns true or false.

 2 #include <iostream>

 3 using namespace std;

 4

 5 // Function prototype

 6 bool isEven(int);

 7

 8 int main()

 9 {

 10 int val;

 11

 12 // Get a number from the user.

 13 cout << "Enter an integer and I will tell you ";

 14 cout << "if it is even or odd: ";

 15 cin >> val;

 16

 17 // Indicate whether it is even or odd.

 18 if (isEven(val))

 19 cout << val << " is even.\n";

 20 else

 21 cout << val << " is odd.\n";

 22 return 0;

 23 }

 24

 25 //***

 26 // Definition of function isEven. This function accepts an *

 27 // integer argument and tests it to be even or odd. The function *

 28 // returns true if the argument is even or false if the argument *

 29 // is odd. The return value is a bool. *

 30 //***

 31

 32 bool isEven(int number)

 33 {

 34 bool status;

 35

 36 if (number % 2 == 0)

 37 status = true; // The number is even if there is no remainder.

 38 else

 39 status = false; // Otherwise, the number is odd.

 40 return status;

 41 }

(program output continues)

M06_GADD6253_07_SE_C06 Page 335 Wednesday, January 5, 2011 8:41 PM

336 Chapter 6 Functions

The isEven function is called in line 18, in the following statement:

if (isEven(val))

When the if statement executes, isEven is called with val as its argument. If val is even,

isEven returns true , otherwise it returns false.

Checkpoint

 www.myprogramminglab.com

6.11 How many return values may a function have?

6.12 Write a header for a function named distance. The function should return a

double and have two double parameters: rate and time.

6.13 Write a header for a function named days. The function should return an int

and have three int parameters: years, months, and weeks.

6.14 Write a header for a function named getKey. The function should return a char

and use no parameters.

6.15 Write a header for a function named lightYears. The function should return a

long and have one long parameter: miles.

6.10 Local and Global Variables

CONCEPT: A local variable is de ned inside a function and is not accessible outside

the function. A global variable is de ned outside all functions and is

accessible to all functions in its scope.

Local Variables

Variables de ned inside a function are local to that function. They are hidden from the

statements in other functions, which normally cannot access them. Program 6-16 shows

that because the variables de ned in a function are hidden, other functions may have sepa-

rate, distinct variables with the same name.

Program Output with Example Input Shown in Bold

Enter an integer and I will tell you if it is even or odd: 5 [Enter]
5 is odd.

Program 6-16

 1 // This program shows that variables defined in a function

 2 // are hidden from other functions.

 3 #include <iostream>

 4 using namespace std;

 5

 6 void anotherFunction(); // Function prototype

Program 6-15 (continued)

M06_GADD6253_07_SE_C06 Page 336 Wednesday, January 5, 2011 8:41 PM

6.10 Local and Global Variables 337

Even though there are two variables named num, the program can only see one of them at

a time because they are in different functions. When the program is executing in main, the

num variable de ned in main is visible. When anotherFunction is called, however, only

variables de ned inside it are visible, so the num variable in main is hidden. Figure 6-14 illus-

trates the closed nature of the two functions. The boxes represent the scope of the variables.

 7

 8 int main()

 9 {

 10 int num = 1; // Local variable

 11

 12 cout << "In main, num is " << num << endl;

 13 anotherFunction();

 14 cout << "Back in main, num is " << num << endl;

 15 return 0;

 16 }

 17

 18 //***

 19 // Definition of anotherFunction *

 20 // It has a local variable, num, whose initial value *

 21 // is displayed. *

 22 //***

 23

 24 void anotherFunction()

 25 {

 26 int num = 20; // Local variable

 27

 28 cout << "In anotherFunction, num is " << num << endl;

 29 }

Program Output

In main, num is 1

In anotherFunction, num is 20

Back in main, num is 1

Figure 6-14

Function main

int num = 1;

Function anotherFunction

int num = 20;

This num variable is visible

only in main.

This num variable is visible

only in anotherFunction.

M06_GADD6253_07_SE_C06 Page 337 Wednesday, January 5, 2011 8:41 PM

338 Chapter 6 Functions

Local Variable Lifetime

A function s local variables exist only while the function is executing. This is known as the

lifetime of a local variable. When the function begins, its local variables and its parameter

variables are created in memory, and when the function ends, the local variables and

parameter variables are destroyed. This means that any value stored in a local variable is

lost between calls to the function in which the variable is declared.

Initializing Local Variables with Parameter Values

It is possible to use a parameter variable to initialize a local variable. Sometimes this sim-

pli es the code in a function. For example, recall the rst version of the sum function we

discussed earlier:

int sum(int num1, int num2)

{

 int result;

 result = num1 + num2;

 return result;

}

In the body of the function, the result variable is de ned and then a separate assignment

statement assigns num1 + num2 to result. We can combine these statements into one, as

shown in the following modi ed version of the function.

int sum(int num1, int num2)

{

 int result = num1 + num2;

 return result;

}

Because the scope of a parameter variable is the entire function in which it is declared, we

can use parameter variables to initialize local variables.

Global Variables

A global variable is any variable de ned outside all the functions in a program. The scope of

a global variable is the portion of the program from the variable de nition to the end. This

means that a global variable can be accessed by all functions that are de ned after the global

variable is de ned. Program 6-17 shows two functions, main and anotherFunction, that

access the same global variable, num.

Program 6-17

 1 // This program shows that a global variable is visible

 2 // to all the functions that appear in a program after

 3 // the variable's declaration.

 4 #include <iostream>

 5 using namespace std;

 6

 7 void anotherFunction(); // Function prototype

 8 int num = 2; // Global variable

M06_GADD6253_07_SE_C06 Page 338 Wednesday, January 5, 2011 8:41 PM

6.10 Local and Global Variables 339

In Program 6-17, num is de ned outside of all the functions. Because its de nition appears

before the de nitions of main and anotherFunction, both functions have access to it.

Unless you explicitly initialize numeric global variables, they are automatically initialized

to zero. Global character variables are initialized to NULL.* The variable globalNum in

Program 6-18 is never set to any value by a statement, but because it is global, it is auto-

matically set to zero.

 9

 10 int main()

 11 {

 12 cout << "In main, num is " << num << endl;

 13 anotherFunction();

 14 cout << "Back in main, num is " << num << endl;

 15 return 0;

 16 }

 17

 18 //***

 19 // Definition of anotherFunction *

 20 // This function changes the value of the *

 21 // global variable num. *

 22 //***

 23

 24 void anotherFunction()

 25 {

 26 cout << "In anotherFunction, num is " << num << endl;

 27 num = 50;

 28 cout << "But, it is now changed to " << num << endl;

 29 }

Program Output

In main, num is 2

In anotherFunction, num is 2

But, it is now changed to 50

Back in main, num is 50

* The NULL character is stored as ASCII code 0.

Program 6-18

 1 // This program has an uninitialized global variable.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int globalNum; // Global variable, automatically set to zero

 6

 7 int main()

 8 {

 9 cout << "globalNum is " << globalNum << endl;

 10 return 0;

 11 }

(program output continues)

M06_GADD6253_07_SE_C06 Page 339 Wednesday, January 5, 2011 8:41 PM

340 Chapter 6 Functions

Now that you ve had a basic introduction to global variables, I must warn you to restrict

your use of them. When beginning students rst learn to write programs with multiple

functions, they are sometimes tempted to make all their variables global. This is usually

because global variables can be accessed by any function in the program without being

passed as arguments. Although this approach might make a program easier to create, it

usually causes problems later. The reasons are as follows:

Global variables make debugging difficult. Any statement in a program can

change the value of a global variable. If you find that the wrong value is being

stored in a global variable, you have to track down every statement that accesses

it to determine where the bad value is coming from. In a program with thousands

of lines of code, this can be difficult.

Functions that use global variables are usually dependent on those variables. If

you want to use such a function in a different program, most likely you will have

to redesign it so it does not rely on the global variable.

Global variables make a program hard to understand. A global variable can be

modified by any statement in the program. If you are to understand any part of

the program that uses a global variable, you have to be aware of all the other

parts of the program that access the global variable.

Because of this, you should not use global variables for the conventional purposes of stor-

ing, manipulating, and retrieving data. In most cases, you should declare variables locally

and pass them as arguments to the functions that need to access them.

Global Constants

Although you should try to avoid the use of global variables, it is generally permissible to

use global constants in a program. A global constant is a named constant that is available

to every function in a program. Because a global constant s value cannot be changed during

the program s execution, you do not have to worry about the potential hazards that are

associated with the use of global variables.

Global constants are typically used to represent unchanging values that are needed

throughout a program. For example, suppose a banking program uses a named constant

to represent an interest rate. If the interest rate is used in several functions, it is easier to

create a global constant, rather than a local named constant in each function. This also

simpli es maintenance. If the interest rate changes, only the declaration of the global con-

stant has to be changed, instead of several local declarations.

Program 6-19 shows an example of how global constants might be used. The program

calculates an employee s gross pay, including overtime. In addition to main, this program

has two functions: getBasePay and getOvertimePay. The getBasePay function accepts

the number of hours worked and returns the amount of pay for the non-overtime hours.

The getOvertimePay function accepts the number of hours worked and returns the

amount of pay for the overtime hours, if any.

Program Output

globalNum is 0

Program 6-18 (continued)

M06_GADD6253_07_SE_C06 Page 340 Wednesday, January 5, 2011 8:41 PM

6.10 Local and Global Variables 341

Program 6-19

 1 // This program calculates gross pay.

 2 #include <iostream>

 3 #include <iomanip>

 4 using namespace std;

 5

 6 // Global constants

 7 const double PAY_RATE = 22.55; // Hourly pay rate

 8 const double BASE_HOURS = 40.0; // Max non-overtime hours

 9 const double OT_MULTIPLIER = 1.5; // Overtime multiplier

 10

 11 // Function prototypes

 12 double getBasePay(double);

 13 double getOvertimePay(double);

 14

 15 int main()

 16 {

 17 double hours, // Hours worked

 18 basePay, // Base pay

 19 overtime = 0.0, // Overtime pay

 20 totalPay; // Total pay

 21

 22 // Get the number of hours worked.

 23 cout << "How many hours did you work? ";

 24 cin >> hours;

 25

 26 // Get the amount of base pay.

 27 basePay = getBasePay(hours);

 28

 29 // Get overtime pay, if any.

 30 if (hours > BASE_HOURS)

 31 overtime = getOvertimePay(hours);

 32

 33 // Calculate the total pay.

 34 totalPay = basePay + overtime;

 35

 36 // Set up numeric output formatting.

 37 cout << setprecision(2) << fixed << showpoint;

 38

 39 // Display the pay.

 40 cout << "Base pay: $" << basePay << endl

 41 << "Overtime pay $" << overtime << endl

 42 << "Total pay $" << totalPay << endl;

 43 return 0;

 44 }

 45

 46 //**

 47 // The getBasePay function accepts the number of *

 48 // hours worked as an argument and returns the *

 49 // employee's pay for non-overtime hours. *

 50 //**

 51

(program continues)

M06_GADD6253_07_SE_C06 Page 341 Wednesday, January 5, 2011 8:41 PM

342 Chapter 6 Functions

Let s take a closer look at the program. Three global constants are de ned in lines 7, 8,

and 9. The PAY_RATE constant is set to the employee s hourly pay rate, which is 22.55.

The BASE_HOURS constant is set to 40, which is the number of hours an employee can

work in a week without getting paid overtime. The OT_MULTIPLIER constant is set to 1.5,

which is the pay rate multiplier for overtime hours. This means that the employee s hourly

pay rate is multiplied by 1.5 for all overtime hours.

Because these constants are global, and are de ned before all of the functions in the pro-

gram, all the functions may access them. For example, the getBasePay function accesses

the BASE_HOURS constant in lines 57 and 58, and accesses the PAY_RATE constant in lines

58 and 60. The getOvertimePay function accesses the BASE_HOURS constant in lines 76

and 78, the PAY_RATE constant in line 79, and the OT_MULTIPLIER constant in line 79.

Program 6-19 (continued)

 52 double getBasePay(double hoursWorked)

 53 {

 54 double basePay; // To hold base pay

 55

 56 // Determine base pay.

 57 if (hoursWorked > BASE_HOURS)

 58 basePay = BASE_HOURS * PAY_RATE;

 59 else

 60 basePay = hoursWorked * PAY_RATE;

 61

 62 return basePay;

 63 }

 64

 65 //***

 66 // The getOvertimePay function accepts the number *

 67 // of hours worked as an argument and returns the *

 68 // employee's overtime pay. *

 69 //***

 70

 71 double getOvertimePay(double hoursWorked)

 72 {

 73 double overtimePay; // To hold overtime pay

 74

 75 // Determine overtime pay.

 76 if (hoursWorked > BASE_HOURS)

 77 {

 78 overtimePay = (hoursWorked - BASE_HOURS) *

 79 PAY_RATE * OT_MULTIPLIER;

 80 }

 81 else

 82 overtimePay = 0.0;

 83

 84 return overtimePay;

 85 }

Program Output with Example Input Shown in Bold

How many hours did you work? 48 [Enter]
Base pay: $902.00

Overtime pay: $270.60

Total pay: $1172.60

M06_GADD6253_07_SE_C06 Page 342 Wednesday, January 5, 2011 8:41 PM

6.10 Local and Global Variables 343

Local and Global Variables with the Same Name

You cannot have two local variables with the same name in the same function. This applies

to parameter variables as well. A parameter variable is, in essence, a local variable. So, you

cannot give a parameter variable and a local variable in the same function the same name.

However, you can have a local variable or a parameter variable with the same name as a glo-

bal variable, or a global constant. When you do, the name of the local or parameter variable

shadows the name of the global variable or global constant. This means that the global vari-

able or constant s name is hidden by the name of the local or parameter variable. For exam-

ple, look at Program 6-20. This program has a global constant named BIRDS, set to 500.

The california function has a local constant named BIRDS, set to 10000.

When the program is executing in the main function, the global constant BIRDS, which is set to

500, is visible. The cout statement in lines 14 and 15 displays In main there are 500 birds.

(My apologies to folks living in Maine for the difference in spelling.) When the program is exe-

cuting in the california function, however, the local constant BIRDS shadows the global con-

stant BIRDS. When the california function accesses BIRDS, it accesses the local constant. That

is why the cout statement in lines 27 and 28 displays In california there are 10000 birds.

Program 6-20

 1 // This program demonstrates how a local variable

 2 // can shadow the name of a global constant.

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Global constant.

 7 const int BIRDS = 500;

 8

 9 // Function prototype

 10 void california();

 11

 12 int main()

 13 {

 14 cout << "In main there are " << BIRDS

 15 << " birds.\n";

 16 california();

 17 return 0;

 18 }

 19

 20 //**

 21 // california function *

 22 //**

 23

 24 void california()

 25 {

 26 const int BIRDS = 10000;

 27 cout << "In california there are " << BIRDS

 28 << " birds.\n";

 29 }

Program Output

In main there are 500 birds.

In california there are 10000 birds.

M06_GADD6253_07_SE_C06 Page 343 Wednesday, January 5, 2011 8:41 PM

344 Chapter 6 Functions

6.11 Static Local Variables

If a function is called more than once in a program, the values stored in the function s

local variables do not persist between function calls. This is because the local variables are

destroyed when the function terminates and are then re-created when the function starts

again. This is shown in Program 6-21.

Even though in line 28 the last statement in the showLocal function stores 99 in localNum,

the variable is destroyed when the function returns. The next time the function is called,

localNum is re-created and initialized to 5 again.

Sometimes it s desirable for a program to remember what value is stored in a local vari-

able between function calls. This can be accomplished by making the variable static.

Program 6-21

 1 // This program shows that local variables do not retain

 2 // their values between function calls.

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Function prototype

 7 void showLocal();

 8

 9 int main()

 10 {

 11 showLocal();

 12 showLocal();

 13 return 0;

 14 }

 15

 16 //***

 17 // Definition of function showLocal. *

 18 // The initial value of localNum, which is 5, is displayed. *

 19 // The value of localNum is then changed to 99 before the *

 20 // function returns. *

 21 //***

 22

 23 void showLocal()

 24 {

 25 int localNum = 5; // Local variable

 26

 27 cout << "localNum is " << localNum << endl;

 28 localNum = 99;

 29 }

Program Output

localNum is 5

localNum is 5

M06_GADD6253_07_SE_C06 Page 344 Wednesday, January 5, 2011 8:41 PM

6.11 Static Local Variables 345

Static local variables are not destroyed when a function returns. They exist for the lifetime

of the program, even though their scope is only the function in which they are de ned.

Program 6-22 demonstrates some characteristics of static local variables:

In line 26 of Program 6-22, statNum is incremented in the showStatic function, and it

retains its value between each function call. Notice that even though statNum is not

explicitly initialized, it starts at zero. Like global variables, all static local variables are

initialized to zero by default. (Of course, you can provide your own initialization value, if

necessary.)

If you do provide an initialization value for a static local variable, the initialization only

occurs once. This is because initialization normally happens when the variable is created,

and static local variables are only created once during the running of a program. Pro-

gram 6-23, which is a slight modi cation of Program 6-22, illustrates this point.

Program 6-22

 1 // This program uses a static local variable.

 2 #include <iostream>

 3 using namespace std;

 4

 5 void showStatic(); // Function prototype

 6

 7 int main()

 8 {

 9 // Call the showStatic function five times.

 10 for (int count = 0; count < 5; count++)

 11 showStatic();

 12 return 0;

 13 }

 14

 15 //**

 16 // Definition of function showStatic. *

 17 // statNum is a static local variable. Its value is displayed *

 18 // and then incremented just before the function returns. *

 19 //**

 20

 21 void showStatic()

 22 {

 23 static int statNum;

 24

 25 cout << "statNum is " << statNum << endl;

 26 statNum++;

 27 }

Program Output

statNum is 0

statNum is 1

statNum is 2

statNum is 3

statNum is 4

M06_GADD6253_07_SE_C06 Page 345 Wednesday, January 5, 2011 8:41 PM

346 Chapter 6 Functions

Even though the statement that de nes statNum in line 24 initializes it to 5, the initializa-

tion does not happen each time the function is called. If it did, the variable would not be

able to retain its value between function calls.

Checkpoint

 www.myprogramminglab.com

6.16 What is the difference between a static local variable and a global variable?

6.17 What is the output of the following program?

#include <iostream>

using namespace std;

void myFunc(); // Function prototype

int main()

{

Program 6-23

 1 // This program shows that a static local variable is only

 2 // initialized once.

 3 #include <iostream>

 4 using namespace std;

 5

 6 void showStatic(); // Function prototype

 7

 8 int main()

 9 {

 10 // Call the showStatic function five times.

 11 for (int count = 0; count < 5; count++)

 12 showStatic();

 13 return 0;

 14 }

 15

 16 //***

 17 // Definition of function showStatic. *

 18 // statNum is a static local variable. Its value is displayed *

 19 // and then incremented just before the function returns. *

 20 //***

 21

 22 void showStatic()

 23 {

 24 static int statNum = 5;

 25

 26 cout << "statNum is " << statNum << endl;

 27 statNum++;

 28 }

Program Output

statNum is 5

statNum is 6

statNum is 7

statNum is 8

statNum is 9

M06_GADD6253_07_SE_C06 Page 346 Wednesday, January 5, 2011 8:41 PM

6.12 Default Arguments 347

 int var = 100;

 cout << var << endl;

 myFunc();

 cout << var << endl;

 return 0;

}

// Definition of function myFunc

void myFunc()

{

 int var = 50;

 cout << var << endl;

}

6.18 What is the output of the following program?

#include <iostream>

using namespace std;

void showVar(); // Function prototype

int main()

{

 for (int count = 0; count < 10; count++)

 showVar();

 return 0;

}

// Definition of function showVar

void showVar()

{

 static int var = 10;

 cout << var << endl;

 var++;

}

6.12 Default Arguments

CONCEPT: Default arguments are passed to parameters automatically if no argument

is provided in the function call.

It s possible to assign default arguments to function parameters. A default argument is

passed to the parameter when the actual argument is left out of the function call. The

default arguments are usually listed in the function prototype. Here is an example:

void showArea(double = 20.0, double = 10.0);

Default arguments are literal values or constants with an = operator in front of them,

appearing after the data types listed in a function prototype. Since parameter names are

optional in function prototypes, the example prototype could also be declared as

void showArea(double length = 20.0, double width = 10.0);

M06_GADD6253_07_SE_C06 Page 347 Wednesday, January 5, 2011 8:41 PM

348 Chapter 6 Functions

In both example prototypes, the function showArea has two double parameters. The rst

is assigned the default argument 20.0 and the second is assigned the default argument

10.0. Here is the de nition of the function:

void showArea(double length, double width)

{

 double area = length * width;

 cout << "The area is " << area << endl;

}

The default argument for length is 20.0 and the default argument for width is 10.0.

Because both parameters have default arguments, they may optionally be omitted in the

function call, as shown here:

showArea();

In this function call, both default arguments will be passed to the parameters. The param-

eter length will take the value 20.0 and width will take the value 10.0. The output of the

function will be

The area is 200

The default arguments are only used when the actual arguments are omitted from the

function call. In the call below, the rst argument is speci ed, but the second is omitted:

showArea(12.0);

The value 12.0 will be passed to length, while the default value 10.0 will be passed to

width. The output of the function will be

The area is 120

Of course, all the default arguments may be overridden. In the function call below, argu-

ments are supplied for both parameters:

showArea(12.0, 5.5);

The output of the function call above will be

The area is 66

Program 6-24 uses a function that displays asterisks on the screen. Arguments are passed

to the function specifying how many columns and rows of asterisks to display. Default

arguments are provided to display one row of 10 asterisks.

NOTE: If a function does not have a prototype, default arguments may be speci ed in

the function header. The showArea function could be de ned as follows:

 void showArea(double length = 20.0, double width = 10.0)

 {

 double area = length * width;

 cout << "The area is " << area << endl;

 }

WARNING! A function s default arguments should be assigned in the earliest

occurrence of the function name. This will usually be the function prototype.

M06_GADD6253_07_SE_C06 Page 348 Wednesday, January 5, 2011 8:41 PM

6.12 Default Arguments 349

Although C++ s default arguments are very convenient, they are not totally exible in their

use. When an argument is left out of a function call, all arguments that come after it must

be left out as well. In the displayStars function in Program 6-24, it is not possible to

omit the argument for cols without also omitting the argument for rows. For example,

the following function call would be illegal:

displayStars(, 3); // Illegal function call.

Program 6-24

 1 // This program demonstrates default function arguments.

 2 #include <iostream>

 3 using namespace std;

 4

 5 // Function prototype with default arguments

 6 void displayStars(int = 10, int = 1);

 7

 8 int main()

 9 {

 10 displayStars(); // Use default values for cols and rows.

 11 cout << endl;

 12 displayStars(5); // Use default value for rows.

 13 cout << endl;

 14 displayStars(7, 3); // Use 7 for cols and 3 for rows.

 15 return 0;

 16 }

 17

 18 //**

 19 // Definition of function displayStars. *

 20 // The default argument for cols is 10 and for rows is 1.*

 21 // This function displays a square made of asterisks. *

 22 //**

 23

 24 void displayStars(int cols, int rows)

 25 {

 26 // Nested loop. The outer loop controls the rows

 27 // and the inner loop controls the columns.

 28 for (int down = 0; down < rows; down++)

 29 {

 30 for (int across = 0; across < cols; across++)

 31 cout << "*";

 32 cout << endl;

 33 }

 34 }

Program Output

M06_GADD6253_07_SE_C06 Page 349 Wednesday, January 5, 2011 8:41 PM

350 Chapter 6 Functions

It s possible for a function to have some parameters with default arguments and some

without. For example, in the following function (which displays an employee s gross pay),

only the last parameter has a default argument:

// Function prototype

void calcPay(int empNum, double payRate, double hours = 40.0);

// Definition of function calcPay

void calcPay(int empNum, double payRate, double hours)

{

 double wages;

 wages = payRate * hours;

 cout << fixed << showpoint << setprecision(2);

 cout << "Gross pay for employee number ";

 cout << empNum << " is " << wages << endl;

}

When calling this function, arguments must always be speci ed for the rst two parame-

ters (empNum and payRate) since they have no default arguments. Here are examples of

valid calls:

calcPay(769, 15.75); // Use default arg for 40 hours

calcPay(142, 12.00, 20); // Specify number of hours

When a function uses a mixture of parameters with and without default arguments, the

parameters with default arguments must be de ned last. In the calcPay function, hours

could not have been de ned before either of the other parameters. The following proto-

types are illegal:

// Illegal prototype

void calcPay(int empNum, double hours = 40.0, double payRate);

// Illegal prototype

void calcPay(double hours = 40.0, int empNum, double payRate);

Here is a summary of the important points about default arguments:

The value of a default argument must be a literal value or a named constant.

When an argument is left out of a function call (because it has a default value), all

the arguments that come after it must be left out too.

When a function has a mixture of parameters both with and without default

arguments, the parameters with default arguments must be declared last.

6.13 Using Reference Variables as Parameters

CONCEPT: When used as parameters, reference variables allow a function to access

the parameter s original argument. Changes to the parameter are also

made to the argument.

Earlier you saw that arguments are normally passed to a function by value, and that the

function cannot change the source of the argument. C++ provides a special type of variable

M06_GADD6253_07_SE_C06 Page 350 Wednesday, January 5, 2011 8:41 PM

6.13 Using Reference Variables as Parameters 351

called a reference variable that, when used as a function parameter, allows access to the

original argument.

A reference variable is an alias for another variable. Any changes made to the reference

variable are actually performed on the variable for which it is an alias. By using a refer-

ence variable as a parameter, a function may change a variable that is de ned in another

function.

Reference variables are de ned like regular variables, except you place an ampersand (&)

in front of the name. For example, the following function de nition makes the parameter

refVar a reference variable:

void doubleNum(int &refVar)

{

 refVar *= 2;

}

This function doubles refVar by multiplying it by 2. Since refVar is a reference variable,

this action is actually performed on the variable that was passed to the function as an

argument. When prototyping a function with a reference variable, be sure to include the

ampersand after the data type. Here is the prototype for the doubleNum function:

void doubleNum(int &);

void doubleNum(int&);

Program 6-25 demonstrates how the doubleNum function works.

NOTE: The variable refVar is called a reference to an int.

NOTE: Some programmers prefer not to put a space between the data type and the

ampersand. The following prototype is equivalent to the one above:

NOTE: The ampersand must appear in both the prototype and the header of any function

that uses a reference variable as a parameter. It does not appear in the function call.

Program 6-25

 1 // This program uses a reference variable as a function

 2 // parameter.

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Function prototype. The parameter is a reference variable.

 7 void doubleNum(int &);

 8

 9 int main()

(program continues)

M06_GADD6253_07_SE_C06 Page 351 Wednesday, January 5, 2011 8:41 PM

352 Chapter 6 Functions

The parameter refVar in Program 6-25 points to the value variable in function main.

When a program works with a reference variable, it is actually working with the variable

it references, or points to. This is illustrated in Figure 6-15.

Recall that function arguments are normally passed by value, which means a copy of the

argument s value is passed into the parameter variable. When a reference parameter is

used, it is said that the argument is passed by reference.

Program 6-26 is a modi cation of Program 6-25. The function getNum has been added.

The function asks the user to enter a number, which is stored in userNum. userNum is a

reference to main s variable value.

 10 {

 11 int value = 4;

 12

 13 cout << "In main, value is " << value << endl;

 14 cout << "Now calling doubleNum..." << endl;

 15 doubleNum(value);

 16 cout << "Now back in main. value is " << value << endl;

 17 return 0;

 18 }

 19

 20 //**

 21 // Definition of doubleNum. *

 22 // The parameter refVar is a reference variable. The value *

 23 // in refVar is doubled. *

 24 //**

 25

 26 void doubleNum (int &refVar)

 27 {

 28 refVar *= 2;

 29 }

Program Output

In main, value is 4

Now calling doubleNum...

Now back in main. value is 8

Figure 6-15

Program 6-25 (continued)

 Reference Variable

Original Argument

4

M06_GADD6253_07_SE_C06 Page 352 Wednesday, January 5, 2011 8:41 PM

6.13 Using Reference Variables as Parameters 353

Program 6-26

 1 // This program uses reference variables as function parameters.

 2 #include <iostream>

 3 using namespace std;

 4

 5 // Function prototypes. Both functions use reference variables

 6 // as parameters.

 7 void doubleNum(int &);

 8 void getNum(int &);

 9

 10 int main()

 11 {

 12 int value;

 13

 14 // Get a number and store it in value.

 15 getNum(value);

 16

 17 // Double the number stored in value.

 18 doubleNum(value);

 19

 20 // Display the resulting number.

 21 cout << "That value doubled is " << value << endl;

 22 return 0;

 23 }

 24

 25 //***

 26 // Definition of getNum. *

 27 // The parameter userNum is a reference variable. The user is *

 28 // asked to enter a number, which is stored in userNum. *

 29 //***

 30

 31 void getNum(int &userNum)

 32 {

 33 cout << "Enter a number: ";

 34 cin >> userNum;

 35 }

 36

 37 //**

 38 // Definition of doubleNum. *

 39 // The parameter refVar is a reference variable. The value *

 40 // in refVar is doubled. *

 41 //**

 42

 43 void doubleNum (int &refVar)

 44 {

 45 refVar *= 2;

 46 }

Program Output with Example Input Shown in Bold

Enter a number: 12 [Enter]
That value doubled is 24

M06_GADD6253_07_SE_C06 Page 353 Wednesday, January 5, 2011 8:41 PM

354 Chapter 6 Functions

If a function uses more than one reference variable as a parameter, be sure to place the

ampersand before each reference variable name. Here is the prototype and de nition for a

function that uses four reference variable parameters:

// Function prototype with four reference variables

// as parameters.

void addThree(int &, int &, int &, int &);

// Definition of addThree.

// All four parameters are reference variables.

void addThree(int &sum, int &num1, int &num2, int &num3)

{

 cout << "Enter three integer values: ";

 cin >> num1 >> num2 >> num3;

 sum = num1 + num2 + num3;

}

Checkpoint

 www.myprogramminglab.com

6.19 What kinds of values may be speci ed as default arguments?

6.20 Write the prototype and header for a function called compute. The function

should have three parameters: an int, a double, and a long (not necessarily in

that order). The int parameter should have a default argument of 5, and the

long parameter should have a default argument of 65536. The double parameter

should not have a default argument.

6.21 Write the prototype and header for a function called calculate. The function

should have three parameters: an int, a reference to a double, and a long (not

necessarily in that order.) Only the int parameter should have a default argu-

ment, which is 47.

6.22 What is the output of the following program?

#include <iostream>

using namespace std;

void test(int = 2, int = 4, int = 6);

NOTE: Only variables may be passed by reference. If you attempt to pass a nonvariable

argument, such as a literal, a constant, or an expression, into a reference parameter, an

error will result. Using the doubleNum function as an example, the following statements

will generate an error.

doubleNum(5); // Error

doubleNum(userNum + 10); // Error

WARNING! Don t get carried away with using reference variables as function

parameters. Any time you allow a function to alter a variable that s outside the function,

you are creating potential debugging problems. Reference variables should only be used as

parameters when the situation requires them.

M06_GADD6253_07_SE_C06 Page 354 Wednesday, January 5, 2011 8:41 PM

6.13 Using Reference Variables as Parameters 355

int main()

{

 test();

 test(6);

 test(3, 9);

 test(1, 5, 7);

 return 0;

}

void test (int first, int second, int third)

{

 first += 3;

 second += 6;

 third += 9;

 cout << first << " " << second << " " << third << endl;

}

6.23 The following program asks the user to enter two numbers. What is the output of

the program if the user enters 12 and 14?

#include <iostream>

using namespace std;

void func1(int &, int &);

void func2(int &, int &, int &);

void func3(int, int, int);

int main()

{

 int x = 0, y = 0, z = 0;

 cout << x << " " << y << " " << z << endl;

 func1(x, y);

 cout << x << " " << y << " " << z << endl;

 func2(x, y, z);

 cout << x << " " << y << " " << z << endl;

 func3(x, y, z);

 cout << x << " " << y << " " << z << endl;

 return 0;

}

void func1(int &a, int &b)

{

 cout << "Enter two numbers: ";

 cin >> a >> b;

}

void func2(int &a, int &b, int &c)

{

 b++;

 c--;

 a = b + c;

}

void func3(int a, int b, int c)

{

 a = b - c;

}

M06_GADD6253_07_SE_C06 Page 355 Wednesday, January 5, 2011 8:41 PM

356 Chapter 6 Functions

6.14 Overloading Functions

CONCEPT: Two or more functions may have the same name, as long as their

parameter lists are different.

Sometimes you will create two or more functions that perform the same operation, but

use a different set of parameters or parameters of different data types. For instance, in

Program 6-13 there is a square function that uses a double parameter. But, suppose you

also wanted a square function that works exclusively with integers, accepting an int as

its argument. Both functions would do the same thing: return the square of their argu-

ment. The only difference is the data type involved in the operation. If you were to use

both these functions in the same program, you could assign a unique name to each func-

tion. For example, the function that squares an int might be named squareInt, and the

one that squares a double might be named squareDouble. C++, however, allows you to

overload function names. That means you may assign the same name to multiple func-

tions, as long as their parameter lists are different. Program 6-27 uses two overloaded

square functions.

Program 6-27

 1 // This program uses overloaded functions.

 2 #include <iostream>

 3 #include <iomanip>

 4 using namespace std;

 5

 6 // Function prototypes

 7 int square(int);

 8 double square(double);

 9

 10 int main()

 11 {

 12 int userInt;

 13 double userFloat;

 14

 15 // Get an int and a double.

 16 cout << fixed << showpoint << setprecision(2);

 17 cout << "Enter an integer and a floating-point value: ";

 18 cin >> userInt >> userFloat;

 19

 20 // Display their squares.

 21 cout << "Here are their squares: ";

 22 cout << square(userInt) << " and " << square(userFloat);

 23 return 0;

 24 }

 25

 26 //**

 27 // Definition of overloaded function square. *

 28 // This function uses an int parameter, number. It returns the *

 29 // square of number as an int. *

 30 //**

M06_GADD6253_07_SE_C06 Page 356 Wednesday, January 5, 2011 8:41 PM

6.14 Overloading Functions 357

Here are the headers for the square functions used in Program 6-27:

int square(int number)

double square(double number)

In C++, each function has a signature. The function signature is the name of the function

and the data types of the function s parameters in the proper order. The square functions

in Program 6-27 would have the following signatures:

square(int)

square(double)

When an overloaded function is called, C++ uses the function signature to distinguish it from

other functions with the same name. In Program 6-27, when an int argument is passed to

square, the version of the function that has an int parameter is called. Likewise, when a

double argument is passed to square, the version with a double parameter is called.

Note that the function s return value is not part of the signature. The following functions

could not be used in the same program because their parameter lists aren t different.

int square(int number)

{

 return number * number

}

double square(int number) // Wrong! Parameter lists must differ

{

 return number * number

}

 31

 32 int square(int number)

 33 {

 34 return number * number;

 35 }

 36

 37 //***

 38 // Definition of overloaded function square. *

 39 // This function uses a double parameter, number. It returns *

 40 // the square of number as a double. *

 41 //***

 42

 43 double square(double number)

 44 {

 45 return number * number;

 46 }

Program Output with Example Input Shown in Bold

Enter an integer and a floating-point value: 12 4.2 [Enter]
Here are their squares: 144 and 17.64

M06_GADD6253_07_SE_C06 Page 357 Wednesday, January 5, 2011 8:41 PM

358 Chapter 6 Functions

Overloading is also convenient when there are similar functions that use a different num-

ber of parameters. For example, consider a program with functions that return the sum of

integers. One returns the sum of two integers, another returns the sum of three integers,

and yet another returns the sum of four integers. Here are their function headers:

int sum(int num1, int num2)

int sum(int num1, int num2, int num3)

int sum(int num1, int num2, int num3, int num4)

Because the number of parameters is different in each, they all may be used in the same pro-

gram. Program 6-28 is an example that uses two functions, each named calcWeeklyPay, to

determine an employee s gross weekly pay. One version of the function uses an int and a

double parameter, while the other version only uses a double parameter.

Program 6-28

 1 // This program demonstrates overloaded functions to calculate

 2 // the gross weekly pay of hourly paid or salaried employees.

 3 #include <iostream>

 4 #include <iomanip>

 5 using namespace std;

 6

 7 // Function prototypes

 8 void getChoice(char &);

 9 double calcWeeklyPay(int, double);

 10 double calcWeeklyPay(double);

 11

 12 int main()

 13 {

 14 char selection; // Menu selection

 15 int worked; // Hours worked

 16 double rate; // Hourly pay rate

 17 double yearly; // Yearly salary

 18

 19 // Set numeric output formatting.

 20 cout << fixed << showpoint << setprecision(2);

 21

 22 // Display the menu and get a selection.

 23 cout << "Do you want to calculate the weekly pay of\n";

 24 cout << "(H) an hourly paid employee, or \n";

 25 cout << "(S) a salaried employee?\n";

 26 getChoice(selection);

 27

 28 // Process the menu selection.

 29 switch (selection)

 30 {

 31 // Hourly paid employee

 32 case 'H' :

 33 case 'h' : cout << "How many hours were worked? ";

M06_GADD6253_07_SE_C06 Page 358 Wednesday, January 5, 2011 8:41 PM

6.14 Overloading Functions 359

 34 cin >> worked;

 35 cout << "What is the hourly pay rate? ";

 36 cin >> rate;

 37 cout << "The gross weekly pay is $";

 38 cout << calcWeeklyPay(worked, rate) << endl;

 39 break;

 40

 41 // Salaried employee

 42 case 'S' :

 43 case 's' : cout << "What is the annual salary? ";

 44 cin >> yearly;

 45 cout << "The gross weekly pay is $";

 46 cout << calcWeeklyPay(yearly) << endl;

 47 break;

 48 }

 49 return 0;

 50 }

 51

 52 //***

 53 // Definition of function getChoice. *

 54 // The parameter letter is a reference to a char. *

 55 // This function asks the user for an H or an S and returns *

 56 // the validated input. *

 57 //***

 58

 59 void getChoice(char & letter)

 60 {

 61 // Get the user's selection.

 62 cout << "Enter your choice (H or S): ";

 63 cin >> letter;

 64

 65 // Validate the selection.

 66 while (letter != 'H' && letter != 'h' &&

 67 letter != 'S' && letter != 's')

 68 {

 69 cout << "Please enter H or S: ";

 70 cin >> letter;

 71 }

 72 }

 73

 74 //***

 75 // Definition of overloaded function calcWeeklyPay. *

 76 // This function calculates the gross weekly pay of *

 77 // an hourly paid employee. The parameter hours holds the *

 78 // number of hours worked. The parameter payRate holds the *

 79 // hourly pay rate. The function returns the weekly salary. *

 80 //***

(program continues)

M06_GADD6253_07_SE_C06 Page 359 Wednesday, January 5, 2011 8:41 PM

360 Chapter 6 Functions

6.15 The exit() Function

CONCEPT: The exit() function causes a program to terminate, regardless of which

function or control mechanism is executing.

A C++ program stops executing when the return statement in function main is encoun-

tered. When other functions end, however, the program does not stop. Control of the

program goes back to the place immediately following the function call. Sometimes, rare

circumstances make it necessary to terminate a program in a function other than main.

To accomplish this, the exit function is used.

When the exit function is called, it causes the program to stop, regardless of which func-

tion contains the call. Program 6-29 demonstrates its use.

Program 6-28 (continued)

 81

 82 double calcWeeklyPay(int hours, double payRate)

 83 {

 84 return hours * payRate;

 85 }

 86

 87 //***

 88 // Definition of overloaded function calcWeeklyPay. *

 89 // This function calculates the gross weekly pay of *

 90 // a salaried employee. The parameter holds the employee's *

 91 // annual salary. The function returns the weekly salary. *

 92 //***

 93

 94 double calcWeeklyPay(double annSalary)

 95 {

 96 return annSalary / 52;

 97 }

Program Output with Example Input Shown in Bold

Do you want to calculate the weekly pay of

(H) an hourly paid employee, or

(S) a salaried employee?

Enter your choice (H or S): H [Enter]
How many hours were worked? 40 [Enter]
What is the hourly pay rate? 18.50 [Enter]
The gross weekly pay is $740.00

Program Output with Example Input Shown in Bold

Do you want to calculate the weekly pay of

(H) an hourly paid employee, or

(S) a salaried employee?

Enter your choice (H or S): S [Enter]
What is the annual salary? 68000.00 [Enter]
The gross weekly pay is $1307.69

M06_GADD6253_07_SE_C06 Page 360 Wednesday, January 5, 2011 8:41 PM

6.15 The exit() Function 361

To use the exit function, you must include the cstdlib header le. Notice the function

takes an integer argument. This argument is the exit code you wish the program to pass

back to the computer s operating system. This code is sometimes used outside of the pro-

gram to indicate whether the program ended successfully or as the result of a failure. In

Program 6-29, the exit code zero is passed, which commonly indicates a successful exit. If

you are unsure which code to use with the exit function, there are two named constants,

EXIT_FAILURE and EXIT_SUCCESS, de ned in cstdlib for you to use. The constant

EXIT_FAILURE is de ned as the termination code that commonly represents an unsuccess-

ful exit under the current operating system. Here is an example of its use:

exit(EXIT_FAILURE);

The constant EXIT_SUCCESS is de ned as the termination code that commonly represents

a successful exit under the current operating system. Here is an example:

exit(EXIT_SUCCESS);

Program 6-29

 1 // This program shows how the exit function causes a program

 2 // to stop executing.

 3 #include <iostream>

 4 #include <cstdlib> // Needed for the exit function

 5 using namespace std;

 6

 7 void function(); // Function prototype

 8

 9 int main()

 10 {

 11 function();

 12 return 0;

 13 }

 14

 15 //***

 16 // This function simply demonstrates that exit can be used *

 17 // to terminate a program from a function other than main. *

 18 //***

 19

 20 void function()

 21 {

 22 cout << "This program terminates with the exit function.\n";

 23 cout << "Bye!\n";

 24 exit(0);

 25 cout << "This message will never be displayed\n";

 26 cout << "because the program has already terminated.\n";

 27 }

Program Output

This program terminates with the exit function.

Bye!

NOTE: Generally, the exit code is important only if you know it will be tested outside the

program. If it is not used, just pass zero, or EXIT_SUCCESS.

M06_GADD6253_07_SE_C06 Page 361 Wednesday, January 5, 2011 8:41 PM

362 Chapter 6 Functions

Checkpoint

 www.myprogramminglab.com

6.24 What is the output of the following program?

#include <iostream>

#include <cstdlib>

using namespace std;

void showVals(double, double);

int main()

{

 double x = 1.2, y = 4.5;

 showVals(x, y);

 return 0;

}

void showVals(double p1, double p2)

{

 cout << p1 << endl;

 exit(0);

 cout << p2 << endl;

}

6.25 What is the output of the following program?

#include <iostream>

using namespace std;

int manip(int);

int manip(int, int);

int manip(int, double);

int main()

{

 int x = 2, y= 4, z;

 double a = 3.1;

 z = manip(x) + manip(x, y) + manip(y, a);

 cout << z << endl;

 return 0;

}

int manip(int val)

{

 return val + val * 2;

}

int manip(int val1, int val2)

{

 return (val1 + val2) * 2;

}

int manip(int val1, double val2)

{

 return val1 * static_cast<int>(val2);

}

WARNING! The exit() function unconditionally shuts down your program. Because

it bypasses a program s normal logical ow, you should use it with caution.

M06_GADD6253_07_SE_C06 Page 362 Wednesday, January 5, 2011 8:41 PM

6.16 Stubs and Drivers 363

6.16 Stubs and Drivers

Stubs and drivers are very helpful tools for testing and debugging programs that use func-

tions. They allow you to test the individual functions in a program, in isolation from the

parts of the program that call the functions.

A stub is a dummy function that is called instead of the actual function it represents. It

usually displays a test message acknowledging that it was called, and nothing more. For

example, if a stub were used for the showFees function in Program 6-10 (the modular

health club membership program), it might look like this:

void showFees(double memberRate, int months)

{

 cout << "The showFees function was called with "

 << "the following arguments:\n"

 << "memberRate: " << memberRate << endl

 << "months: " << months << endl;

}

The following is an example output of the program if it were run with the stub instead of

the actual showFees function. (A version of the health club program using this stub function

is available from the book s companion Web site at www.pearsonhighered.com/gaddis. The

program is named HealthClubWithStub.cpp.)

 Health Club Membership Menu

1. Standard Adult Membership

2. Child Membership

3. Senior Citizen Membership

4. Quit the Program

Enter your choice: 1 [Enter]

For how many months? 4 [Enter]

The showFees function was called with the following arguments:

memberRate: 40.00

months: 4

 Health Club Membership Menu

1. Standard Adult Membership

2. Child Membership

3. Senior Citizen Membership

4. Quit the Program

Enter your choice: 4 [Enter]

As you can see, by replacing an actual function with a stub, you can concentrate your test-

ing efforts on the parts of the program that call the function. Primarily, the stub allows

you to determine whether your program is calling a function when you expect it to, and to

con rm that valid values are being passed to the function. If the stub represents a function

that returns a value, then the stub should return a test value. This helps you con rm that

the return value is being handled properly. When the parts of the program that call a func-

tion are debugged to your satisfaction, you can move on to testing and debugging the

actual functions themselves. This is where drivers become useful.

M06_GADD6253_07_SE_C06 Page 363 Wednesday, January 5, 2011 8:41 PM

364 Chapter 6 Functions

A driver is a program that tests a function by simply calling it. If the function accepts

arguments, the driver passes test data. If the function returns a value, the driver displays

the return value on the screen. This allows you to see how the function performs in isola-

tion from the rest of the program it will eventually be part of. Program 6-30 shows a

driver for testing the showFees function in the health club membership program.

Program 6-30

 1 // This program is a driver for testing the showFees function.

 2 #include <iostream>

 3 using namespace std;

 4

 5 // Prototype

 6 void showFees(double, int);

 7

 8 int main()

 9 {

 10 // Constants for membership rates

 11 const double ADULT = 40.0;

 12 const double SENIOR = 30.0;

 13 const double CHILD = 20.0;

 14

 15 // Perform a test for adult membership.

 16 cout << "Testing an adult membership...\n"

 17 << "Calling the showFees function with arguments "

 18 << ADULT << " and 10.\n";

 19 showFees(ADULT, 10);

 20

 21 // Perform a test for senior citizen membership.

 22 cout << "\nTesting a senior citizen membership...\n"

 23 << "Calling the showFees function with arguments "

 24 << SENIOR << " and 10.\n";

 25 showFees(SENIOR, 10);

 26

 27 // Perform a test for child membership.

 28 cout << "\nTesting a child membership...\n"

 29 << "\nCalling the showFees function with arguments "

 30 << CHILD << " and 10.\n";

 31 showFees(CHILD, 10);

 32 return 0;

 33 }

 34

 35 //***

 36 // Definition of function showFees. The memberRate parameter holds*

 37 // the monthly membership rate and the months parameter holds the *

 38 // number of months. The function displays the total charges. *

 39 //***

 40

 41 void showFees(double memberRate, int months)

 42 {

 43 cout << "The total charges are $"

 44 << (memberRate * months) << endl;

 45 }

M06_GADD6253_07_SE_C06 Page 364 Wednesday, January 5, 2011 8:41 PM

Review Questions and Exercises 365

As shown in Program 6-30, a driver can be used to thoroughly test a function. It can

repeatedly call the function with different test values as arguments. When the function

performs as desired, it can be placed into the actual program it will be part of.

Case Study: See High Adventure Travel Agency Part 1 Case Study on the book s companion

Web site at www.pearsonhighered.com/gaddis.

Review Questions and Exercises

Short Answer

1. Why do local variables lose their values between calls to the function in which they

are de ned?

2. What is the difference between an argument and a parameter variable?

3. Where do you de ne parameter variables?

4. If you are writing a function that accepts an argument and you want to make sure the

function cannot change the value of the argument, what do you do?

5. When a function accepts multiple arguments, does it matter in what order the argu-

ments are passed in?

6. How do you return a value from a function?

7. What is the advantage of breaking your application s code into several small procedures?

8. How would a static local variable be useful?

9. Give an example where passing an argument by reference would be useful.

Fill-in-the-Blank

10. The _________ is the part of a function de nition that shows the function name,

return type, and parameter list.

11. If a function doesn t return a value, the word _________ will appear as its return type.

12. Either a function s _________ or its _________ must precede all calls to the function.

13. Values that are sent into a function are called _________.

Program Output

Testing an adult membership...

Calling the showFees function with arguments 40 and 10.

The total charges are $400

Testing a senior citizen membership...

Calling the showFees function with arguments 30 and 10.

The total charges are $300

Testing a child membership...

Calling the showFees function with arguments 20 and 10.

The total charges are $200

M06_GADD6253_07_SE_C06 Page 365 Wednesday, January 5, 2011 8:41 PM

366 Chapter 6 Functions

14. Special variables that hold copies of function arguments are called _________.

15. When only a copy of an argument is passed to a function, it is said to be passed by

_________.

16. A(n) _________ eliminates the need to place a function de nition before all calls to the

function.

17. A(n) _________ variable is de ned inside a function and is not accessible outside the

function.

18. _________ variables are de ned outside all functions and are accessible to any func-

tion within their scope.

19. _________ variables provide an easy way to share large amounts of data among all

the functions in a program.

20. Unless you explicitly initialize global variables, they are automatically initialized to

_________.

21. If a function has a local variable with the same name as a global variable, only the

_________ variable can be seen by the function.

22. _________ local variables retain their value between function calls.

23. The _________ statement causes a function to end immediately.

24. _________ arguments are passed to parameters automatically if no argument is

provided in the function call.

25. When a function uses a mixture of parameters with and without default arguments,

the parameters with default arguments must be de ned _________.

26. The value of a default argument must be a(n) _________.

27. When used as parameters, _________ variables allow a function to access the

parameter s original argument.

28. Reference variables are de ned like regular variables, except there is a(n) _________ in

front of the name.

29. Reference variables allow arguments to be passed by ____________.

30. The _________ function causes a program to terminate.

31. Two or more functions may have the same name, as long as their _________ are

different.

Algorithm Workbench

32. Examine the following function header, then write an example call to the function.

void showValue(int quantity)

33. The following statement calls a function named half. The half function returns a

value that is half that of the argument. Write the function.

result = half(number);

M06_GADD6253_07_SE_C06 Page 366 Wednesday, January 5, 2011 8:41 PM

Review Questions and Exercises 367

34. A program contains the following function.

int cube(int num)

{

 return num * num * num;

}

Write a statement that passes the value 4 to this function and assigns its return value

to the variable result.

35. Write a function named timesTen that accepts an argument. When the function is

called, it should display the product of its argument multiplied times 10.

36. A program contains the following function.

void display(int arg1, double arg2, char arg3)

{

 cout << "Here are the values: "

 << arg1 << " " << arg2 << " "

 << arg3 << endl;

}

Write a statement that calls the procedure and passes the following variables to it:

int age;

double income;

char initial;

37. Write a function named getNumber that uses a reference parameter variable to accept

an integer argument. The function should prompt the user to enter a number in the

range of 1 through 100. The input should be validated and stored in the parameter

variable.

True or False

38. T F Functions should be given names that re ect their purpose.

39. T F Function headers are terminated with a semicolon.

40. T F Function prototypes are terminated with a semicolon.

41. T F If other functions are de ned before main, the program still starts executing

at function main.

42. T F When a function terminates, it always branches back to main, regardless of

where it was called from.

43. T F Arguments are passed to the function parameters in the order they appear in

the function call.

44. T F The scope of a parameter is limited to the function which uses it.

45. T F Changes to a function parameter always affect the original argument as well.

46. T F In a function prototype, the names of the parameter variables may be left out.

47. T F Many functions may have local variables with the same name.

48. T F Overuse of global variables can lead to problems.

49. T F Static local variables are not destroyed when a function returns.

50. T F All static local variables are initialized to 1 by default.

M06_GADD6253_07_SE_C06 Page 367 Wednesday, January 5, 2011 8:41 PM

368 Chapter 6 Functions

51. T F Initialization of static local variables only happens once, regardless of how

many times the function in which they are de ned is called.

52. T F When a function with default arguments is called and an argument is left out,

all arguments that come after it must be left out as well.

53. T F It is not possible for a function to have some parameters with default argu-

ments and some without.

54. T F The exit function can only be called from main.

55. T F A stub is a dummy function that is called instead of the actual function it

represents.

Find the Errors

Each of the following functions has errors. Locate as many errors as you can.

56. void total(int value1, value2, value3)

{

 return value1 + value2 + value3;

}

57. double average(int value1, int value2, int value3)

{

 double average;

 average = value1 + value2 + value3 / 3;

}

58. void area(int length = 30, int width)

{

 return length * width;

}

59. void getValue(int value&)

{

 cout << "Enter a value: ";

 cin >> value&;

}

60. (Overloaded functions)

int getValue()

{

 int inputValue;

 cout << "Enter an integer: ";

 cin >> inputValue;

 return inputValue;

}

double getValue()

{

 double inputValue;

 cout << "Enter a floating-point number: ";

 cin >> inputValue;

 return inputValue;

}

M06_GADD6253_07_SE_C06 Page 368 Wednesday, January 5, 2011 8:41 PM

Review Questions and Exercises 369

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. Markup

Write a program that asks the user to enter an item s wholesale cost and its markup

percentage. It should then display the item s retail price. For example:

If an item s wholesale cost is 5.00 and its markup percentage is 100%, then the

item s retail price is 10.00.

If an item s wholesale cost is 5.00 and its markup percentage is 50%, then the

item s retail price is 7.50.

The program should have a function named calculateRetail that receives the

wholesale cost and the markup percentage as arguments, and returns the retail price

of the item.

Input Validation: Do not accept negative values for either the wholesale cost of the
item or the markup percentage.

2. Rectangle Area Complete the Program

If you have downloaded this book s source code from the companion Web site, you

will nd a partially written program named AreaRectangle.cpp in the Chapter 06

folder. (The companion Web site is at www.pearsonhighered.com/gaddis.) Your job is

to complete the program. When it is complete, the program will ask the user to enter

the width and length of a rectangle, and then display the rectangle s area. The pro-

gram calls the following functions, which have not been written:

getLength This function should ask the user to enter the rectangle s length, and

then return that value as a double.

getWidth This function should ask the user to enter the rectangle s width, and

then return that value as a double.

getArea This function should accept the rectangle s length and width as argu-

ments, and return the rectangle s area. The area is calculated by multiplying the

length by the width.

displayData This function should accept the rectangle s length, width, and

area as arguments, and display them in an appropriate message on the screen.

3. Winning Division

Write a program that determines which of a company s four divisions (Northeast,

Southeast, Northwest, and Southwest) had the greatest sales for a quarter. It should

include the following two functions, which are called by main.

double getSales() is passed the name of a division. It asks the user for a division s

quarterly sales figure, validates the input, then returns it. It should be called once

for each division.

void findHighest() is passed the four sales totals. It determines which is the

largest and prints the name of the high grossing division, along with its sales figure.

Input Validation: Do not accept dollar amounts less than $0.00.

VideoNote

Solving the

Markup

Problem

Programming Challenges

M06_GADD6253_07_SE_C06 Page 369 Wednesday, January 5, 2011 8:41 PM

370 Chapter 6 Functions

4. Safest Driving Area

Write a program that determines which of ve geographic regions within a major city

(north, south, east, west, and central) had the fewest reported automobile accidents

last year. It should have the following two functions, which are called by main.

* int getNumAccidents() is passed the name of a region. It asks the user for the

number of automobile accidents reported in that region during the last year, vali-

dates the input, then returns it. It should be called once for each city region.

* void findLowest() is passed the five accident totals. It determines which is the

smallest and prints the name of the region, along with its accident figure.

Input Validation: Do not accept an accident number that is less than 0.

5. Falling Distance

When an object is falling because of gravity, the following formula can be used to

determine the distance the object falls in a speci c time period:

d = 1 2 gt2

The variables in the formula are as follows: d is the distance in meters, g is 9.8, and t

is the amount of time, in seconds, that the object has been falling.

Write a function named fallingDistance that accepts an object s falling time (in

seconds) as an argument. The function should return the distance, in meters, that the

object has fallen during that time interval. Write a program that demonstrates the

function by calling it in a loop that passes the values 1 through 10 as arguments, and

displays the return value.

6. Kinetic Energy

In physics, an object that is in motion is said to have kinetic energy. The following for-

mula can be used to determine a moving object s kinetic energy:

KE = 1 2 mv2

The variables in the formula are as follows: KE is the kinetic energy, m is the object s

mass in kilograms, and v is the object s velocity, in meters per second.

Write a function named kineticEnergy that accepts an object s mass (in kilograms)

and velocity (in meters per second) as arguments. The function should return the

amount of kinetic energy that the object has. Demonstrate the function by calling it in

a program that asks the user to enter values for mass and velocity.

7. Celsius Temperature Table

The formula for converting a temperature from Fahrenheit to Celsius is

where F is the Fahrenheit temperature and C is the Celsius temperature. Write a func-

tion named celsius that accepts a Fahrenheit temperature as an argument. The func-

tion should return the temperature, converted to Celsius. Demonstrate the function by

calling it in a loop that displays a table of the Fahrenheit temperatures 0 through 20

and their Celsius equivalents.

C
5
9
--- F 32()=

M06_GADD6253_07_SE_C06 Page 370 Wednesday, January 5, 2011 8:41 PM

Review Questions and Exercises 371

8. Coin Toss

Write a function named coinToss that simulates the tossing of a coin. When you
call the function, it should generate a random number in the range of 1 through 2. If
the random number is 1, the function should display heads. If the random num-
ber is 2, the function should display tails. Demonstrate the function in a program
that asks the user how many times the coin should be tossed, and then simulates the
tossing of the coin that number of times.

9. Present Value

Suppose you want to deposit a certain amount of money into a savings account, and
then leave it alone to draw interest for the next 10 years. At the end of 10 years you
would like to have $10,000 in the account. How much do you need to deposit today
to make that happen? You can use the following formula, which is known as the
present value formula, to nd out:

The terms in the formula are as follows:

* P is the present value, or the amount that you need to deposit today.
* F is the future value that you want in the account. (In this case, F is $10,000.)
* r is the annual interest rate.
* n is the number of years that you plan to let the money sit in the account.

Write a program that has a function named presentValue that performs this calcula-
tion. The function should accept the future value, annual interest rate, and number of
years as arguments. It should return the present value, which is the amount that you
need to deposit today. Demonstrate the function in a program that lets the user exper-
iment with different values for the formula s terms.

10. Lowest Score Drop

Write a program that calculates the average of a group of test scores, where the lowest
score in the group is dropped. It should use the following functions:

* void getScore() should ask the user for a test score, store it in a reference
parameter variable, and validate it. This function should be called by main once
for each of the five scores to be entered.

* void calcAverage() should calculate and display the average of the four high-
est scores. This function should be called just once by main, and should be passed
the five scores.

* int findLowest() should find and return the lowest of the five scores passed to
it. It should be called by calcAverage, which uses the function to determine which
of the five scores to drop.

Input Validation: Do not accept test scores lower than 0 or higher than 100.

P
F

1 r+()

n
=

Programming Challenges

M06_GADD6253_07_SE_C06 Page 371 Wednesday, January 5, 2011 8:41 PM

372 Chapter 6 Functions

11. Star Search

A particular talent competition has ve judges, each of whom awards a score between
0 and 10 to each performer. Fractional scores, such as 8.3, are allowed. A performer s
nal score is determined by dropping the highest and lowest score received, then aver-

aging the three remaining scores. Write a program that uses this method to calculate a
contestant s score. It should include the following functions:

* void getJudgeData() should ask the user for a judge s score, store it in a refer-
ence parameter variable, and validate it. This function should be called by main
once for each of the ve judges.

* void calcScore() should calculate and display the average of the three scores that
remain after dropping the highest and lowest scores the performer received. This
function should be called just once by main, and should be passed the ve scores.

The last two functions, described below, should be called by calcScore, which uses
the returned information to determine which of the scores to drop.
* int findLowest() should find and return the lowest of the ve scores passed to it.
* int findHighest() should find and return the highest of the ve scores passed to it.

Input Validation: Do not accept judge scores lower than 0 or higher than 10.

12. Days Out

Write a program that calculates the average number of days a company s employees
are absent. The program should have the following functions:

* A function called by main that asks the user for the number of employees in the
company. This value should be returned as an int. (The function accepts no
arguments.)

* A function called by main that accepts one argument: the number of employees in
the company. The function should ask the user to enter the number of days each
employee missed during the past year. The total of these days should be returned
as an int.

* A function called by main that takes two arguments: the number of employees in
the company and the total number of days absent for all employees during the
year. The function should return, as a double, the average number of days
absent. (This function does not perform screen output and does not ask the user
for input.)

Input Validation: Do not accept a number less than 1 for the number of employees.

Do not accept a negative number for the days any employee missed.

13. Order Status

The Middletown Wholesale Copper Wire Company sells spools of copper wiring for
$100 each. Write a program that displays the status of an order. The program should
have a function that asks for the following data:

* The number of spools ordered.
* The number of spools in stock.
* Whether there are special shipping and handling charges.

(Shipping and handling is normally $10 per spool.) If there are special charges, the
program should ask for the special charges per spool.

M06_GADD6253_07_SE_C06 Page 372 Wednesday, January 5, 2011 8:41 PM

Review Questions and Exercises 373

The gathered data should be passed as arguments to another function that displays

* The number of spools ready to ship from current stock.
* The number of spools on backorder (if the number ordered is greater than what is

in stock).
* Subtotal of the portion ready to ship (the number of spools ready to ship times $100).
* Total shipping and handling charges on the portion ready to ship.
* Total of the order ready to ship.

The shipping and handling parameter in the second function should have the default
argument 10.00.

Input Validation: Do not accept numbers less than 1 for spools ordered. Do not

accept a number less than 0 for spools in stock or shipping and handling charges.

14. Overloaded Hospital

Write a program that computes and displays the charges for a patient s hospital stay.
First, the program should ask if the patient was admitted as an in-patient or an out-
patient. If the patient was an in-patient, the following data should be entered:

* The number of days spent in the hospital
* The daily rate
* Hospital medication charges
* Charges for hospital services (lab tests, etc.)

The program should ask for the following data if the patient was an out-patient:

* Charges for hospital services (lab tests, etc.)
* Hospital medication charges

The program should use two overloaded functions to calculate the total charges. One
of the functions should accept arguments for the in-patient data, while the other func-
tion accepts arguments for out-patient information. Both functions should return the
total charges.

Input Validation: Do not accept negative numbers for any data.

15. Population

In a population, the birth rate is the percentage increase of the population due to
births and the death rate is the percentage decrease of the population due to deaths.
Write a program that displays the size of a population for any number of years. The
program should ask for the following data:

* The starting size of a population
* The annual birth rate
* The annual death rate
* The number of years to display

Write a function that calculates the size of the population for a year. The formula is

N = P + BP - DP

where N is the new population size, P is the previous population size, B is the birth
rate, and D is the death rate.

Programming Challenges

M06_GADD6253_07_SE_C06 Page 373 Wednesday, January 5, 2011 8:41 PM

374 Chapter 6 Functions

Input Validation: Do not accept numbers less than 2 for the starting size. Do not
accept negative numbers for birth rate or death rate. Do not accept numbers less than
1 for the number of years.

16. Transient Population

Modify Programming Challenge 13 to also consider the effect on population caused
by people moving into or out of a geographic area. Given as input a starting popula-
tion size, the annual birth rate, the annual death rate, the number of individuals who
typically move into the area each year, and the number of individuals who typically
leave the area each year, the program should project what the population will be
numYears from now. You can either prompt the user to input a value for numYears,
or you can set it within the program.

Input Validation: Do not accept numbers less than 2 for the starting size. Do not
accept negative numbers for birth rate, death rate, arrivals, or departures.

17. Paint Job Estimator

A painting company has determined that for every 115 square feet of wall space, one
gallon of paint and eight hours of labor will be required. The company charges
$18.00 per hour for labor. Write a modular program that allows the user to enter the
number of rooms that are to be painted and the price of the paint per gallon. It should
also ask for the square feet of wall space in each room. It should then display the
following data:

* The number of gallons of paint required
* The hours of labor required
* The cost of the paint
* The labor charges
* The total cost of the paint job

Input validation: Do not accept a value less than 1 for the number of rooms. Do not
accept a value less than $10.00 for the price of paint. Do not accept a negative value
for square footage of wall space.

18. Using Files Hospital Report

Modify Programming Challenge 14, Overloaded Hospital, to write the report it cre-
ates to a le.

19. Stock Pro t

The pro t from the sale of a stock can be calculated as follows:

Pro t = ((NS * SP) SC) ((NS * PP) + PC)

where NS is the number of shares, SP is the sale price per share, SC is the sale commis-
sion paid, PP is the purchase price per share, and PC is the purchase commission paid.
If the calculation yields a positive value, then the sale of the stock resulted in a pro t.
If the calculation yields a negative number, then the sale resulted in a loss.

Write a function that accepts as arguments the number of shares, the purchase price
per share, the purchase commission paid, the sale price per share, and the sale com-
mission paid. The function should return the pro t (or loss) from the sale of stock.

M06_GADD6253_07_SE_C06 Page 374 Wednesday, January 5, 2011 8:41 PM

Review Questions and Exercises 375

Demonstrate the function in a program that asks the user to enter the necessary data

and displays the amount of the pro t or loss.

20. Multiple Stock Sales

Use the function that you wrote for Programming Challenge 19 (Stock Pro t) in a

program that calculates the total pro t or loss from the sale of multiple stocks. The

program should ask the user for the number of stock sales, and the necessary data for

each stock sale. It should accumulate the pro t or loss for each stock sale and then

display the total.

21. isPrime Function

A prime number is a number that is only evenly divisible by itself and 1. For example,

the number 5 is prime because it can only be evenly divided by 1 and 5. The number

6, however, is not prime because it can be divided evenly by 1, 2, 3, and 6.

Write a function name isPrime, which takes an integer as an argument and returns

true if the argument is a prime number, or false otherwise. Demonstrate the function

in a complete program.

22. Prime Number List

Use the isPrime function that you wrote in Programming Challenge 21 in a program

that stores a list of all the prime numbers from 1 through 100 in a le.

23. Rock, Paper, Scissors Game

Write a program that lets the user play the game of Rock, Paper, Scissors against the

computer. The program should work as follows.

1. When the program begins, a random number in the range of 1 through 3 is gener-

ated. If the number is 1, then the computer has chosen rock. If the number is 2,

then the computer has chosen paper. If the number is 3, then the computer has

chosen scissors. (Don t display the computer s choice yet.)

2. The user enters his or her choice of rock , paper , or scissors at the key-

board. (You can use a menu if you prefer.)

3. The computer s choice is displayed.

4. A winner is selected according to the following rules:

If one player chooses rock and the other player chooses scissors, then rock

wins. (The rock smashes the scissors.)

If one player chooses scissors and the other player chooses paper, then scis-

sors wins. (Scissors cuts paper.)

If one player chooses paper and the other player chooses rock, then paper

wins. (Paper wraps rock.)

If both players make the same choice, the game must be played again to

determine the winner.

Be sure to divide the program into functions that perform each major task.

TIP: Recall that the % operator divides one number by another, and returns the

remainder of the division. In an expression such as num1 % num2, the % operator will

return 0 if num1 is evenly divisible by num2.

Programming Challenges

M06_GADD6253_07_SE_C06 Page 375 Wednesday, January 5, 2011 8:41 PM

376 Chapter 6 Functions

Group Project

24. Travel Expenses

This program should be designed and written by a team of students. Here are some
suggestions:

One student should design function main, which will call the other functions in
the program. The remainder of the functions will be designed by other members
of the team.
The requirements of the program should be analyzed so each student is given
about the same work load.
The parameters and return types of each function should be decided in advance.
Stubs and drivers should be used to test and debug the program.
The program can be implemented as a multifile program, or all the functions can
be cut and pasted into the main file.

Here is the assignment: Write a program that calculates and displays the total travel
expenses of a businessperson on a trip. The program should have functions that ask
for and return the following:

The total number of days spent on the trip
The time of departure on the first day of the trip, and the time of arrival back
home on the last day of the trip
The amount of any round-trip airfare
The amount of any car rentals
Miles driven, if a private vehicle was used. Calculate the vehicle expense as $0.27
per mile driven
Parking fees (The company allows up to $6 per day. Anything in excess of this
must be paid by the employee.)
Taxi fees, if a taxi was used anytime during the trip (The company allows up to
$10 per day, for each day a taxi was used. Anything in excess of this must be paid
by the employee.)
Conference or seminar registration fees
Hotel expenses (The company allows up to $90 per night for lodging. Anything in
excess of this must be paid by the employee.)
The amount of each meal eaten. On the first day of the trip, breakfast is allowed as an
expense if the time of departure is before 7 a.m. Lunch is allowed if the time of depar-
ture is before 12 noon. Dinner is allowed on the first day if the time of departure is
before 6 p.m. On the last day of the trip, breakfast is allowed if the time of arrival is
after 8 a.m. Lunch is allowed if the time of arrival is after 1 p.m. Dinner is allowed on
the last day if the time of arrival is after 7 p.m. The program should only ask for the
amounts of allowable meals. (The company allows up to $9 for breakfast, $12 for
lunch, and $16 for dinner. Anything in excess of this must be paid by the employee.)

The program should calculate and display the total expenses incurred by the busi-
nessperson, the total allowable expenses for the trip, the excess that must be reim-
bursed by the businessperson, if any, and the amount saved by the businessperson if
the expenses were under the total allowed.

Input Validation: Do not accept negative numbers for any dollar amount or for miles

driven in a private vehicle. Do not accept numbers less than 1 for the number of days.

Only accept valid times for the time of departure and the time of arrival.

M06_GADD6253_07_SE_C06 Page 376 Wednesday, January 5, 2011 8:41 PM

377

C
H

A
P

T
E

R

7

Arrays

7.1

Arrays Hold Multiple Values

CONCEPT:

An array allows you to store and work with multiple values of the same

data type.

The variables you have worked with so far are designed to hold only one value at a time.

Each of the variable de nitions in Figure 7-1 causes only enough memory to be reserved to

hold one value of the speci ed data type.

An array works like a variable that can store a group of values, all of the same type. The

values are stored together in consecutive memory locations. Here is a de nition of an

array of integers:

int days[6];

TOPICS

7.1 Arrays Hold Multiple Values

7.2 Accessing Array Elements

7.3 No Bounds Checking in C++

7.4 Array Initialization

7.5 Processing Array Contents

7.6 Focus on Software Engineering:

Using Parallel Arrays

7.7 Arrays as Function Arguments

7.8 Two-Dimensional Arrays

7.9 Arrays with Three or More

Dimensions

7.10 Focus on Problem Solving and

Program Design: A Case Study

7.11 If You Plan to Continue in

Computer Science: Introduction

to the STL

vector

M07_GADD6253_07_SE_C07 Page 377 Thursday, January 6, 2011 2:49 PM

378

Chapter 7 Arrays

The name of this array is

days

. The number inside the brackets is the array s

size declarator.

It indicates the number of

elements

, or values, the array can hold. The

days

 array can store

six elements, each one an integer. This is depicted in Figure 7-2.

An array s size declarator must be a constant integer expression with a value greater

than zero. It can be either a literal, as in the previous example, or a named constant, as

shown in the following:

const int NUM_DAYS = 6;

int days[NUM_DAYS];

Arrays of any data type can be de ned. The following are all valid array de nitions:

float temperatures[100]; // Array of 100 floats

string names[10]; // Array of 10 string objects

long units[50]; // Array of 50 long integers

double sizes[1200]; // Array of 1200 doubles

Memory Requirements of Arrays

The amount of memory used by an array depends on the array s data type and the number

of elements. The

hours

 array, de ned here, is an array of six

short

s.

short hours[6];

On a typical PC, a

short

 uses two bytes of memory, so the

hours

 array would occupy 12

bytes. This is shown in Figure 7-3.

Figure 7-1

Figure 7-2

int count; Enough memory for 1 int

 12314

float price; Enough memory for 1 float

 56.981

char letter; Enough memory for 1 char

 A

days array: enough memory for six int values

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

M07_GADD6253_07_SE_C07 Page 378 Thursday, January 6, 2011 2:49 PM

7.2 Accessing Array Elements

379

The size of an array can be calculated by multiplying the size of an individual element by

the number of elements in the array. Table 7-1 shows the typical sizes of various arrays.

7.2

Accessing Array Elements

CONCEPT:

The individual elements of an array are assigned unique subscripts. These

subscripts are used to access the elements.

Even though an entire array has only one name, the elements may be accessed and used as

individual variables. This is possible because each element is assigned a number known as

a

subscript

. A subscript is used as an index to pinpoint a speci c element within an array.

The rst element is assigned the subscript 0, the second element is assigned 1, and so

forth. The six elements in the array

hours

 would have the subscripts 0 through 5. This is

shown in Figure 7-4.

Figure 7-3

Table 7-1

Array De nition Number of Elements Size of Each Element Size of the Array

char letters[25];

25 1 byte 25 bytes

short rings[100];

100 2 bytes 200 bytes

int miles[84];

84 4 bytes 336 bytes

float temp[12];

12 4 bytes 48 bytes

double distance[1000];

1000 8 bytes 8000 bytes

Figure 7-4

hours array: Each element uses two bytes

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

0

Subscripts

5 4 3 2 1

M07_GADD6253_07_SE_C07 Page 379 Thursday, January 6, 2011 2:49 PM

380

Chapter 7 Arrays

Each element in the

hours

 array, when accessed by its subscript, can be used as a

short

variable. Here is an example of a statement that stores the number 20 in the rst element

of the array:

hours[0] = 20;

Figure 7-5 shows the contents of the array

hours

 after the statement assigns 20 to

hours[0]

.

The following statement stores the integer 30 in

hours[3]

.

 hours[3] = 30;

Figure 7-6 shows the contents of the array after the previous statement executes:

NOTE:

Subscript numbering in C++ always starts at zero. The subscript of the last

element in an array is one less than the total number of elements in the array. This means

that in the array shown in Figure 7-4, the element

hours[6]

 does not exist.

hours[5]

 is

the last element in the array.

NOTE:

The expression

hours[0]

 is pronounced hours sub zero. You would read this

assignment statement as hours sub zero is assigned twenty.

Figure 7-5

NOTE:

Because values have not been assigned to the other elements of the array,

question marks will be used to indicate that the contents of those elements are unknown.

If an array is de ned globally, all of its elements are initialized to zero by default. Local

arrays, however, have no default initialization value.

Figure 7-6

NOTE:

Understand the difference between the array size declarator and a subscript. The

number inside the brackets of an array de nition is the size declarator. The number inside

the brackets of an assignment statement or any statement that works with the contents of

an array is a subscript.

hours[0] hours[5] hours[4] hours[3] hours[2] hours[1]

20 ? ? ? ? ?

hours[0] hours[5] hours[4] hours[3] hours[2] hours[1]

20 ? ? ? 30 ?

M07_GADD6253_07_SE_C07 Page 380 Thursday, January 6, 2011 2:49 PM

7.2 Accessing Array Elements

381

Inputting and Outputting Array Contents

Array elements may be used with the

cin

 and

cout

 objects like any other variable.

Program 7-1 shows the array

hours

 being used to store and display values entered by

the user.

Figure 7-7 shows the contents of the array

hours

 with the values entered by the user in the

example output above.

Program 7-1

 1 // This program asks for the number of hours worked

 2 // by six employees. It stores the values in an array.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int NUM_EMPLOYEES = 6;

 9 int hours[NUM_EMPLOYEES];

 10

 11 // Get the hours worked by each employee.

 12 cout << "Enter the hours worked by "

 13 << NUM_EMPLOYEES << " employees: ";

 14 cin >> hours[0];

 15 cin >> hours[1];

 16 cin >> hours[2];

 17 cin >> hours[3];

 18 cin >> hours[4];

 19 cin >> hours[5];

 20

 21 // Display the values in the array.

 22 cout << "The hours you entered are:";

 23 cout << " " << hours[0];

 24 cout << " " << hours[1];

 25 cout << " " << hours[2];

 26 cout << " " << hours[3];

 27 cout << " " << hours[4];

 28 cout << " " << hours[5] << endl;

 29 return 0;

 30 }

Program Output with Example Input Shown in Bold

Enter the hours worked by 6 employees:

20 12 40 30 30 15 [Enter]

The hours you entered are: 20 12 40 30 30 15

Figure 7-7

hours[0] hours[5] hours[4] hours[3] hours[2] hours[1]

20 12 15 30 30 40

M07_GADD6253_07_SE_C07 Page 381 Thursday, January 6, 2011 2:49 PM

382

Chapter 7 Arrays

Even though the size declarator of an array de nition must be a constant or a literal, sub-

script numbers can be stored in variables. This makes it possible to use a loop to cycle

through an entire array, performing the same operation on each element. For example,

look at the following code:

const int ARRAY_SIZE = 5;

int numbers[ARRAY_SIZE];

for (int count = 0; count < ARRAY_SIZE; count++)

 numbers[count] = 99;

This code rst de nes a constant

int

 named

ARRAY_SIZE

 and initializes it with the value 5.

Then it de nes an

int

 array named

numbers

, using

ARRAY_SIZE

 as the size declarator. As

a result, the

numbers

 array will have ve elements. The

for

 loop uses a counter variable

named

count

. This loop will iterate ve times, and during the loop iterations the

count

variable will take on the values 0 through 4.

Notice that the statement inside the loop uses the

count

 variable as a subscript. It assigns

99 to

numbers[count]

. During the rst iteration, 99 is assigned to

numbers[0]

. During

the next iteration, 99 is assigned to

numbers[1]

. This continues until 99 has been

assigned to all of the array s elements. Figure 7-8 illustrates that the loop s initialization,

test, and update expressions have been written so the loop starts and ends the counter

variable with valid subscript values (0 through 4). This ensures that only valid subscripts

are used in the body of the loop.

Program 7-1 could be simpli ed by using two

for

 loops: one for inputting the values into

the array and another for displaying the contents of the array. This is shown in Program 7-2.

Figure 7-8

Program 7-2

 1 // This program asks for the number of hours worked

 2 // by six employees. It stores the values in an array.

 3 #include <iostream>

 4 using namespace std;

 5

VideoNote

Accessing

Array

Elements

with a Loop

for (count = 0; count < ARRAY_SIZE; count++)

 numbers[count] = 99;

The variable count starts at 0,

which is the first valid subscript value.

The loop ends when the

variable count reaches 5, which

is the first invalid subscript value.

The variable count is

incremented after

each iteration.

M07_GADD6253_07_SE_C07 Page 382 Thursday, January 6, 2011 2:49 PM

7.2 Accessing Array Elements

383

The rst

for

 loop, in lines 13 through 18, prompts the user for each employee s hours.

Take a closer look at lines 15 through 17:

cout << "Enter the hours worked by employee "

 << (count + 1) << ": ";

cin >> hours[count];

Notice that the

cout

 statement uses the expression

count

+

1

 to display the employee

number, but the cin statement uses count as the array subscript. This is because the hours

for employee number 1 are stored in hours[0], the hours for employee number 2 are

stored in hours[1], and so forth.

The loop in lines 22 through 23 also uses the count variable to step through the array, dis-

playing each element.

 6 int main()

 7 {

 8 const int NUM_EMPLOYEES = 6; // Number of employees

 9 int hours[NUM_EMPLOYEES]; // Each employee's hours

 10 int count; // Loop counter

 11

 12 // Input the hours worked.

 13 for (count = 0; count < NUM_EMPLOYEES; count++)

 14 {

 15 cout << "Enter the hours worked by employee "

 16 << (count + 1) << ": ";

 17 cin >> hours[count];

 18 }

 19

 20 // Display the contents of the array.

 21 cout << "The hours you entered are:";

 22 for (count = 0; count < NUM_EMPLOYEES; count++)

 23 cout << " " << hours[count];

 24 cout << endl;

 25 return 0;

 26 }

Program Output with Example Input Shown in Bold

Enter the hours worked by employee 1: 20 [Enter]
Enter the hours worked by employee 2: 12 [Enter]
Enter the hours worked by employee 3: 40 [Enter]
Enter the hours worked by employee 4: 30 [Enter]
Enter the hours worked by employee 5: 30 [Enter]
Enter the hours worked by employee 6: 15 [Enter]
The hours you entered are: 20 12 40 30 30 15

M07_GADD6253_07_SE_C07 Page 383 Thursday, January 6, 2011 2:49 PM

384 Chapter 7 Arrays

Inputting data into an array must normally be done one element at a time. For example,

the following cin statement will not input data into the hours array:

cin >> hours; // Wrong! This will NOT work.

Instead, you must use multiple cin statements to read data into each array element, or use

a loop to step through the array, reading data into its elements. Also, outputting an array s

contents must normally be done one element at a time. For example, the following cout

statement will not display the contents of the hours array:

cout << hours; // Wrong! This will NOT work.

Instead, you must output each element of the array separately.

Reading Data from a File into an Array

Reading the contents of a le into an array is straightforward: Open the le and use a loop

to read each item from the le, storing each item in an array element. The loop should

iterate until either the array is lled or the end of the le is reached. Program 7-3 demon-

strates by opening a le that has 10 numbers stored in it and then reading the le s con-

tents into an array.

NOTE: You can use any integer expression as an array subscript. For example, the rst

loop in Program 7-2 could have been written like this:

 for (count = 1; count <= NUM_EMPLOYEES; count++)

 {

 cout << "Enter the hours worked by employee "

 << count << ": ";

 cin >> hours[count - 1];

 }

In this code the cin statement uses the expression count - 1 as a subscript.

Program 7-3

 1 // This program reads data from a file into an array.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int ARRAY_SIZE = 10; // Array size

 9 int numbers[ARRAY_SIZE]; // Array with 10 elements

 10 int count = 0; // Loop counter variable

 11 ifstream inputFile; // Input file stream object

 12

 13 // Open the file.

 14 inputFile.open("TenNumbers.txt");

 15

M07_GADD6253_07_SE_C07 Page 384 Thursday, January 6, 2011 2:49 PM

7.2 Accessing Array Elements 385

The while loop in lines 17 and 18 reads items from the le and assigns them to elements

of the numbers array. Notice that the loop tests two Boolean expressions, connected by

the && operator:

The first expression is count < ARRAY_SIZE. The purpose of this expression is to

prevent the loop from writing beyond the end of the array. If the expression is

true, the second Boolean expression is tested. If this expression is false, however,

the loop stops.

The second expression is inputFile >> numbers[count]. This expression reads

a value from the file and stores it in the numbers[count] array element. If a value

is successfully read from the file, the expression is true and the loop continues. If

no value can be read from the file, however, the expression is false and the loop

stops.

Each time the loop iterates, it increments count in line 18.

Writing the Contents of an Array to a File

Writing the contents of an array to a le is also a straightforward matter. Use a loop to step

through each element of the array, writing its contents to a le. Program 7-4 demonstrates.

 16 // Read the numbers from the file into the array.

 17 while (count < ARRAY_SIZE && inputFile >> numbers[count])

 18 count++;

 19

 20 // Close the file.

 21 inputFile.close();

 22

 23 // Display the numbers read:

 24 cout << "The numbers are: ";

 25 for (count = 0; count < ARRAY_SIZE; count++)

 26 cout << numbers[count] << " ";

 27 cout << endl;

 28 return 0;

 29 }

Program Output

The numbers are: 101 102 103 104 105 106 107 108 109 110

Program 7-4

 1 // This program writes the contents of an array to a file.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int ARRAY_SIZE = 10; // Array size

 9 int numbers[ARRAY_SIZE]; // Array with 10 elements

 10 int count; // Loop counter variable

 11 ofstream outputFile; // Output file stream object

 12

(program continues)

M07_GADD6253_07_SE_C07 Page 385 Thursday, January 6, 2011 2:49 PM

386 Chapter 7 Arrays

Contents of the File SavedNumbers.txt

0

1

2

3

4

5

6

7

8

9

7.3 No Bounds Checking in C++

CONCEPT: C++ does not prevent you from overwriting an array s bounds.

C++ is a popular language for software developers who have to write fast, ef cient code. To

increase runtime ef ciency, C++ does not provide many of the common safeguards to pre-

vent unsafe memory access found in other languages. For example, C++ does not perform

array bounds checking. This means you can write programs with subscripts that go beyond

the boundaries of a particular array. Program 7-5 demonstrates this capability.

 13 // Store values in the array.

 14 for (count = 0; count < ARRAY_SIZE; count++)

 15 numbers[count] = count;

 16

 17 // Open a file for output.

 18 outputFile.open("SavedNumbers.txt");

 19

 20 // Write the array contents to the file.

 21 for (count = 0; count < ARRAY_SIZE; count++)

 22 outputFile << numbers[count] << endl;

 23

 24 // Close the file.

 25 outputFile.close();

 26

 27 // That's it!

 28 cout << "The numbers were saved to the file.\n ";

 29 return 0;

 30 }

Program Output

The numbers were saved to the file.

Program 7-4 (continued)

M07_GADD6253_07_SE_C07 Page 386 Thursday, January 6, 2011 2:49 PM

7.3 No Bounds Checking in C++ 387

The values array has three integer elements, with the subscripts 0, 1, and 2. The loop,

however, stores the number 100 in elements 0, 1, 2, 3, and 4. The elements with subscripts

3 and 4 do not exist, but C++ allows the program to write beyond the boundary of the

array, as if those elements were there. Figure 7-9 depicts the way the array is set up in

memory when the program rst starts to execute, and what happens when the loop writes

data beyond the boundary of the array.

WARNING! Think twice before you compile and run Program 7-5. The program will

attempt to write to an area of memory outside the array. This is an invalid operation, and

will most likely cause the program to crash.

Program 7-5

 1 // This program unsafely accesses an area of memory by writing

 2 // values beyond an array's boundary.

 3 // WARNING: If you compile and run this program, it could crash.

 4 #include <iostream>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 const int SIZE = 3; // Constant for the array size

 10 int values[SIZE]; // An array of 3 integers

 11 int count; // Loop counter variable

 12

 13 // Attempt to store five numbers in the three-element array.

 14 cout << "I will store 5 numbers in a 3-element array!\n";

 15 for (count = 0; count < 5; count++)

 16 values[count] = 100;

 17

 18 // If the program is still running, display the numbers.

 19 cout << "If you see this message, it means the program\n";

 20 cout << "has not crashed! Here are the numbers:\n";

 21 for (count = 0; count < 5; count++)

 22 cout << values[count] << endl;

 23 return 0;

 24 }

M07_GADD6253_07_SE_C07 Page 387 Thursday, January 6, 2011 2:49 PM

388 Chapter 7 Arrays

Although C++ programs are fast and ef cient, the absence of safeguards such as array

bounds checking usually proves to be a bad thing. It s easy for C++ programmers to make

careless mistakes that allow programs to access areas of memory that are supposed to be

off-limits. You must always make sure that any time you assign values to array elements,

the values are written within the array s boundaries.

Watch for Off-by-One Errors

In working with arrays, a common type of mistake is the off-by-one error. This is an easy

mistake to make because array subscripts start at 0 rather than 1. For example, look at the

following code:

// This code has an off-by-one error.

const int SIZE = 100;

int numbers[SIZE];

for (int count = 1; count <= SIZE; count++)

 numbers[count] = 0;

The intent of this code is to create an array of integers with 100 elements, and store the

value 0 in each element. However, this code has an off-by-one error. The loop uses its

counter variable, count, as a subscript with the numbers array. During the loop s execu-

tion, the variable count takes on the values 1 through 100, when it should take on the

values 0 through 99. As a result, the rst element, which is at subscript 0, is skipped. In

addition, the loop attempts to use 100 as a subscript during the last iteration. Because 100

is an invalid subscript, the program will write data beyond the array s boundaries.

Figure 7-9

The way the values array is set up in memory.

The outlined area represents the array.

values[0] values[1] values[2]

Memory outside the array

(Each block = 4 bytes)

Memory outside the array

(Each block = 4 bytes)

How the numbers assigned to the array overflow the array's boundaries.

The shaded area is the section of memory illegally written to.

values[3] values[4]

(Does not exist) (Does not exist)

Anything previously stored

here is overwritten.

values[0] values[1] values[2]

100 100 100 100 100

M07_GADD6253_07_SE_C07 Page 388 Thursday, January 6, 2011 2:49 PM

7.4 Array Initialization 389

Checkpoint

 www.myprogramminglab.com

7.1 De ne the following arrays:

A) empNums, a 100-element array of ints

B) payRates, a 25-element array of floats

C) miles, a 14-element array of longs

D) cityName, a 26-element array of string objects

E) lightYears, a 1,000-element array of doubles

7.2 What s wrong with the following array de nitions?

int readings[-1];

float measurements[4.5];

int size;

string names[size];

7.3 What would the valid subscript values be in a four-element array of doubles?

7.4 What is the difference between an array s size declarator and a subscript?

7.5 What is array bounds checking ? Does C++ perform it?

7.6 What is the output of the following code?

int values[5], count;

for (count = 0; count < 5; count++)

 values[count] = count + 1;

for (count = 0; count < 5; count++)

 cout << values[count] << endl;

7.7 The following program skeleton contains a 20-element array of ints called fish.

When completed, the program should ask how many sh were caught by sher-

men 1 through 20, and store this data in the array. Complete the program.

#include <iostream>

using namespace std;

int main()

{

 const int NUM_FISH = 20;

 int fish[NUM_FISH];

 // You must finish this program. It should ask how

 // many fish were caught by fishermen 1-20, and

 // store this data in the array fish.

 return 0;

}

7.4 Array Initialization

CONCEPT: Arrays may be initialized when they are de ned.

Like regular variables, C++ allows you to initialize an array s elements when you create

the array. Here is an example:

const int MONTHS = 12;

int days[MONTHS] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

M07_GADD6253_07_SE_C07 Page 389 Thursday, January 6, 2011 2:49 PM

390 Chapter 7 Arrays

The series of values inside the braces and separated with commas is called an initialization

list. These values are stored in the array elements in the order they appear in the list. (The

rst value, 31, is stored in days[0], the second value, 28, is stored in days[1], and so

forth.) Figure 7-10 shows the contents of the array after the initialization.

Program 7-6 demonstrates how an array may be initialized.

Figure 7-10

Program 7-6

 1 // This program displays the number of days in each month.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 const int MONTHS = 12;

 8 int days[MONTHS] = { 31, 28, 31, 30,

 9 31, 30, 31, 31,

 10 30, 31, 30, 31};

 11

 12 for (int count = 0; count < MONTHS; count++)

 13 {

 14 cout << "Month " << (count + 1) << " has ";

 15 cout << days[count] << " days.\n";

 16 }

 17 return 0;

 18 }

Program Output

Month 1 has 31 days.

Month 2 has 28 days.

Month 3 has 31 days.

Month 4 has 30 days.

Month 5 has 31 days.

Month 6 has 30 days.

Month 7 has 31 days.

Month 8 has 31 days.

Month 9 has 30 days.

Month 10 has 31 days.

Month 11 has 30 days.

Month 12 has 31 days.

31

0

28

1

31

2

30

3

31

4

30

5

31

6

31

7

30

8

31

9

30

10

31

11

Subscripts

M07_GADD6253_07_SE_C07 Page 390 Thursday, January 6, 2011 2:49 PM

7.4 Array Initialization 391

Program 7-7 shows an example with a string array that is initialized with strings.

Program 7-8 shows a character array being initialized with the rst ten letters of the

alphabet. The array is then used to display those characters ASCII codes.

NOTE: Notice that C++ allows you to spread the initialization list across multiple lines.

Both of the following array de nitions are equivalent:

 double coins[5] = {0.05, 0.1, 0.25, 0.5, 1.0};

 double coins[5] = {0.05,

 0.1,

 0.25,

 0.5,

 1.0};

Program 7-7

 1 // This program initializes a string array.

 2 #include <iostream>

 3 #include <string>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int SIZE = 9;

 9 string planets[SIZE] = { "Mercury", "Venus", "Earth", "Mars",

 10 "Jupiter", "Saturn", "Uranus",

 11 "Neptune", "Pluto (a dwarf planet)" };

 12

 13 cout << "Here are the planets:\n";

 14

 15 for (int count = 0; count < SIZE; count++)

 16 cout << planets[count] << endl;

 17 return 0;

 18 }

Program Output

Here are the planets:

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto (a dwarf planet)

M07_GADD6253_07_SE_C07 Page 391 Thursday, January 6, 2011 2:49 PM

392 Chapter 7 Arrays

Partial Array Initialization

When an array is being initialized, C++ does not require a value for every element. It s pos-

sible to only initialize part of an array, such as:

int numbers[7] = {1, 2, 4, 8};

This de nition initializes only the rst four elements of a seven-element array, as illus-

trated in Figure 7-11.

Program 7-8

 1 // This program uses an array of ten characters to store the

 2 // first ten letters of the alphabet. The ASCII codes of the

 3 // characters are displayed.

 4 #include <iostream>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 const int NUM_LETTERS = 10;

 10 char letters[NUM_LETTERS] = {'A', 'B', 'C', 'D', 'E',

 11 'F', 'G', 'H', 'I', 'J'};

 12

 13 cout << "Character" << "\t" << "ASCII Code\n";

 14 cout << "---------" << "\t" << "----------\n";

 15 for (int count = 0; count < NUM_LETTERS; count++)

 16 {

 17 cout << letters[count] << "\t\t";

 18 cout << static_cast<int>(letters[count]) << endl;

 19 }

 20 return 0;

 21 }

Program Output

Character ASCII Code

--------- ----------

A 65

B 66

C 67

D 68

E 69

F 70

G 71

H 72

I 73

J 74

NOTE: An array s initialization list cannot have more values than the array has elements.

M07_GADD6253_07_SE_C07 Page 392 Thursday, January 6, 2011 2:49 PM

7.4 Array Initialization 393

It s important to note that if an array is partially initialized, the uninitialized elements will

be set to zero. The uninitialized elements of a string array will contain empty strings.

This is true even if the array is de ned locally. (If a local array is completely uninitialized,

its elements will contain garbage, like all other local variables.) Program 7-9 shows the

contents of the array numbers after it is partially initialized.

If you leave an element uninitialized, you must leave all the elements that follow it unini-

tialized as well. C++ does not provide a way to skip elements in the initialization list. For

example, the following is not legal:

int array[6] = {2, 4, , 8, , 12}; // NOT Legal!

Implicit Array Sizing

It s possible to de ne an array without specifying its size, as long as you provide an initial-

ization list. C++ automatically makes the array large enough to hold all the initialization

values. For example, the following de nition creates an array with ve elements:

double ratings[] = {1.0, 1.5, 2.0, 2.5, 3.0};

Figure 7-11

Program 7-9

 1 // This program has a partially initialized array.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 const int SIZE = 7;

 8 int numbers[SIZE] = {1, 2, 4, 8}; // Initialize first 4 elements

 9

 10 cout << "Here are the contents of the array:\n";

 11 for (int index = 0; index < SIZE; index++)

 12 cout << numbers[index] << " ";

 13

 14 cout << endl;

 15 return 0;

 16 }

Program Output

Here are the contents of the array:

1 2 4 8 0 0 0

1

numbers

[0]

2

numbers

[1]

4

numbers

[2]

8

numbers

[3]

0

numbers

[4]

0

numbers

[5]

0

numbers

[6]

int numbers[7] = {1, 2, 4, 8};

Uninitialized Elements

M07_GADD6253_07_SE_C07 Page 393 Thursday, January 6, 2011 2:49 PM

394 Chapter 7 Arrays

Because the size declarator is omitted, C++ counts the number of items in the initialization

list and gives the array that many elements.

7.5 Processing Array Contents

CONCEPT: Individual array elements are processed like any other type of variable.

Processing array elements is no different than processing other variables. For example, the

following statement multiplies hours[3] by the variable rate:

pay = hours[3] * rate;

And the following are examples of pre-increment and post-increment operations on array

elements:

int score[5] = {7, 8, 9, 10, 11};

++score[2]; // Pre-increment operation on the value in score[2]

score[4]++; // Post-increment operation on the value in score[4]

Program 7-10 demonstrates the use of array elements in a simple mathematical statement.

A loop steps through each element of the array, using the elements to calculate the gross

pay of ve employees.

NOTE: You must provide an initialization list if you leave out an array s size declarator.

Otherwise, C++ doesn t know how large to make the array.

NOTE: When using increment and decrement operators, be careful not to confuse the

subscript with the array element. For example, the following statement decrements the

variable count, but does nothing to the value in amount[count]:

 amount[count--];

To decrement the value stored in amount[count], use the following statement:

 amount[count]--;

Program 7-10

 1 // This program stores, in an array, the hours worked by

 2 // employees who all make the same hourly wage.

 3 #include <iostream>

 4 #include <iomanip>

 5 using namespace std;

 6

M07_GADD6253_07_SE_C07 Page 394 Thursday, January 6, 2011 2:49 PM

7.5 Processing Array Contents 395

The following statement in line 32 de nes the variable grossPay and initializes it with the

value of hours[index] times payRate:

double grossPay = hours[index] * payRate;

 7 int main()

 8 {

 9 const int NUM_EMPLOYEES = 5;

 10 int hours[NUM_EMPLOYEES];

 11 double payrate;

 12

 13 // Input the hours worked.

 14 cout << "Enter the hours worked by ";

 15 cout << NUM_EMPLOYEES << " employees who all\n";

 16 cout << "earn the same hourly rate.\n";

 17 for (int index = 0; index < NUM_EMPLOYEES; index++)

 18 {

 19 cout << "Employee #" << (index + 1) << ": ";

 20 cin >> hours[index];

 21 }

 22

 23 // Input the hourly rate for all employees.

 24 cout << "Enter the hourly pay rate for all the employees: ";

 25 cin >> payrate;

 26

 27 // Display each employee's gross pay.

 28 cout << "Here is the gross pay for each employee:\n";

 29 cout << fixed << showpoint << setprecision(2);

 30 for (int index = 0; index < NUM_EMPLOYEES; index++)

 31 {

 32 double grossPay = hours[index] * payrate;

 33 cout << "Employee #" << (index + 1);

 34 cout << ": $" << grossPay << endl;

 35 }

 36 return 0;

 37 }

Program Output with Example Input Shown in Bold

Enter the hours worked by 5 employees who all

earn the same hourly rate.

Employee #1: 5 [Enter]
Employee #2: 10 [Enter]
Employee #3: 15 [Enter]
Employee #4: 20 [Enter]
Employee #5: 40 [Enter]
Enter the hourly pay rate for all the employees: 12.75 [Enter]
Here is the gross pay for each employee:

Employee #1: $63.75

Employee #2: $127.50

Employee #3: $191.25

Employee #4: $255.00

Employee #5: $510.00

M07_GADD6253_07_SE_C07 Page 395 Thursday, January 6, 2011 2:49 PM

396 Chapter 7 Arrays

Array elements may also be used in relational expressions. For example, the following if

statement tests cost[20] to determine whether it is less than cost[0]:

if (cost[20] < cost[0])

And the following statement sets up a while loop to iterate as long as value[place]

does not equal 0:

while (value[place] != 0)

Thou Shall Not Assign

The following code de nes two integer arrays: newValues and oldValues. newValues is

uninitialized and oldValues is initialized with 10, 100, 200, and 300:

const int SIZE = 4;

int oldValues[SIZE] = {10, 100, 200, 300};

int newValues[SIZE];

At rst glance, it might appear that the following statement assigns the contents of the

array oldValues to newValues:

newValues = oldValues; // Wrong!

Unfortunately, this statement will not work. The only way to assign one array to another

is to assign the individual elements in the arrays. Usually, this is best done with a loop,

such as:

for (int count = 0; count < SIZE; count++)

 newValues[count] = oldValues[count];

The reason the assignment operator will not work with an entire array at once is complex,

but important to understand. Anytime the name of an array is used without brackets and

a subscript, it is seen as the array s beginning memory address. To illustrate this, consider

the de nition of the arrays newValues and oldValues above. Figure 7-12 depicts the two

arrays in memory.

In the gure, newValues is shown starting at memory address 8012 and oldValues is

shown starting at 8024. (Of course, these are just arbitrary addresses, picked for illustra-

tion purposes. In reality the addresses would probably be different.) Table 7-2 shows vari-

ous expressions that use the names of these arrays, and their values.

Figure 7-12

Memory Address 8012 newValues Array

Memory Address 8024
oldValues Array

? ? ? ?

10 100 200 300

M07_GADD6253_07_SE_C07 Page 396 Thursday, January 6, 2011 2:49 PM

7.5 Processing Array Contents 397

Because the name of an array without the brackets and subscript stands for the array s

starting memory address, the following statement

newValues = oldValues;

is interpreted by C++ as

8012 = 8024;

The statement will not work because you cannot change the starting memory address of

an array.

Printing the Contents of an Array

Suppose we have the following array de nition:

const int SIZE = 5;

int array[SIZE] = {10, 20, 30, 40, 50};

You now know that an array s name is seen as the array s beginning memory address. This

explains why the following statement cannot be used to display the contents of array:

cout << array << endl; //Wrong!

When this statement executes, cout will display the array s memory address, not the

array s contents. You must use a loop to display the contents of each of the array s ele-

ments, as follows.

for (int count = 0; count < SIZE; count++)

 cout << array[count] << endl;

Summing the Values in a Numeric Array

To sum the values in an array, you must use a loop with an accumulator variable. The

loop adds the value in each array element to the accumulator. For example, assume that

the following statements appear in a program and that values have been stored in the

units array.

const int NUM_UNITS = 24;

int units[NUM_UNITS];

Table 7-2

Expression Value

oldValues[0] 10 (Contents of Element 0 of oldValues)

oldValues[1] 100 (Contents of Element 1 of oldValues)

oldValues[2] 200 (Contents of Element 2 of oldValues)

oldValues[3] 300 (Contents of Element 3 of oldValues)

newValues 8012 (Memory Address of newValues)

oldValues 8024 (Memory Address of oldValues)

M07_GADD6253_07_SE_C07 Page 397 Thursday, January 6, 2011 2:49 PM

398 Chapter 7 Arrays

The following loop adds the values of each element in the array to the total variable.

When the code is nished, total will contain the sum of the units array s elements.

int total = 0; // Initialize accumulator

for (int count = 0; count < NUM_UNITS; count++)

 total += units[count];

Getting the Average of the Values in a Numeric Array

The rst step in calculating the average of all the values in an array is to sum the values.

The second step is to divide the sum by the number of elements in the array. Assume that

the following statements appear in a program and that values have been stored in the

scores array.

const int NUM_SCORES = 10;

double scores[NUM_SCORES];

The following code calculates the average of the values in the scores array. When the

code completes, the average will be stored in the average variable.

double total = 0; // Initialize accumulator

double average; // Will hold the average

for (int count = 0; count < NUM_SCORES; count++)

 total += scores[count];

average = total / NUM_SCORES;

Notice that the last statement, which divides total by numScores, is not inside the loop.

This statement should only execute once, after the loop has nished its iterations.

Finding the Highest and Lowest Values in a Numeric Array

The algorithms for nding the highest and lowest values in an array are very similar. First,

let s look at code for nding the highest value in an array. Assume that the following code

exists in a program, and that values have been stored in the array.

const int SIZE = 50;

int numbers[SIZE];

The code to nd the highest value in the array is as follows.

int count;

int highest;

highest = numbers[0];

for (count = 1; count < SIZE; count++)

{

 if (numbers[count] > highest)

 highest = numbers[count];

}

NOTE: The rst statement in the code segment sets total to 0. Recall from Chapter 5

that an accumulator variable must be set to 0 before it is used to keep a running total or

the sum will not be correct.

M07_GADD6253_07_SE_C07 Page 398 Thursday, January 6, 2011 2:49 PM

7.5 Processing Array Contents 399

First we copy the value in the rst array element to the variable highest. Then the loop

compares all of the remaining array elements, beginning at subscript 1, to the value in

highest. Each time it nds a value in the array that is greater than highest, it copies that

value to highest. When the loop has nished, highest will contain the highest value in

the array.

The following code nds the lowest value in the array. As you can see, it is nearly identical

to the code for nding the highest value.

int count;

int lowest;

lowest = numbers[0];

for (count = 1; count < SIZE; count++)

{

 if (numbers[count] < lowest)

 lowest = numbers[count];

}

When the loop has nished, lowest will contain the lowest value in the array.

Partially Filled Arrays

Sometimes you need to store a series of items in an array, but you do not know the num-

ber of items that there are. As a result, you do not know the exact number of elements

needed for the array. One solution is to make the array large enough to hold the largest

possible number of items. This can lead to another problem, however. If the actual num-

ber of items stored in the array is less than the number of elements, the array will be only

partially lled. When you process a partially lled array, you must only process the ele-

ments that contain valid data items.

A partially lled array is normally used with an accompanying integer variable that holds

the number of items stored in the array. For example, suppose a program uses the follow-

ing code to create an array with 100 elements, and an int variable named count that will

hold the number of items stored in the array:

const int SIZE = 100;

int array[SIZE];

int count = 0;

Each time we add an item to the array, we must increment count. The following code

demonstrates.

int number;

cout << "Enter a number or -1 to quit: ";

cin >> number;

while (number != -1 && count < SIZE)

{

 count++;

 array[count - 1] = number;

 cout << "Enter a number or -1 to quit: ";

 cin >> number;

}

M07_GADD6253_07_SE_C07 Page 399 Thursday, January 6, 2011 2:49 PM

400 Chapter 7 Arrays

Each iteration of this sentinel-controlled loop allows the user to enter a number to be

stored in the array, or -1 to quit. The count variable is incremented, and then used to cal-

culate the subscript of the next available element in the array. When the user enters -1, or

count exceeds 99, the loop stops. The following code displays all of the valid items in the

array.

for (int index = 0; index < count; index++)

{

 cout << array[index] << endl;

}

Notice that this code uses count to determine the maximum array subscript to use.

Program 7-11 shows how this technique can be used to read an unknown number of items

from a le into an array. The program reads values from the le numbers.txt.

Program 7-11

 1 // This program reads data from a file into an array.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int ARRAY_SIZE = 100; // Array size

 9 int numbers[ARRAY_SIZE]; // Array with 100 elements

 10 int count = 0; // Loop counter variable

 11 ifstream inputFile; // Input file stream object

 12

 13 inputFile.open("numbers.txt"); // Open the file.

 14

 15 // Read the numbers from the file into the array.

 16 // After this loop executes, the count variable will hold

 17 // the number of values that were stored in the array.

 18 while (count < ARRAY_SIZE && inputFile >> numbers[count])

 19 count++;

 20

 21 // Close the file.

 22 inputFile.close();

 23

 24 // Display the numbers read.

 25 cout << "The numbers are: ";

 26 for (int index = 0; index < count; index++)

 27 cout << numbers[index] << " ";

 28 cout << endl;

 29 return 0;

 30 }

Program Output

The numbers are: 47 89 65 36 12 25 17 8 62 10 87 62

M07_GADD6253_07_SE_C07 Page 400 Thursday, January 6, 2011 2:49 PM

7.5 Processing Array Contents 401

Look closer at the while loop that begins in line 18. It repeats as long as count is less

than ARRAY_SIZE and the end of the le has not been encountered. The rst part of the

while loop s test expression, count < ARRAY_SIZE, prevents the loop from writing out-

side the array boundaries. Recall from Chapter 4 that the && operator performs short-

circuit evaluation, so the second part of the while loop s test expression, inputFile >>

values[count], will be executed only if count is less than ARRAY_SIZE.

Comparing Arrays

We have already noted that you cannot simply assign one array to another array. You

must assign each element of the rst array to an element of the second array. In addition,

you cannot use the == operator with the names of two arrays to determine whether the

arrays are equal. For example, the following code appears to compare two arrays, but in

reality does not.

int firstArray[] = { 5, 10, 15, 20, 25 };

int secondArray[] = { 5, 10, 15, 20, 25 };

if (firstArray == secondArray) // This is a mistake.

 cout << "The arrays are the same.\n";

else

 cout << "The arrays are not the same.\n";

When you use the == operator with array names, the operator compares the beginning

memory addresses of the arrays, not the contents of the arrays. The two array names in

this code will obviously have different memory addresses. Therefore, the result of the

expression firstArray == secondArray is false and the code reports that the arrays are

not the same.

To compare the contents of two arrays, you must compare the elements of the two arrays.

For example, look at the following code.

const int SIZE = 5;

int firstArray[SIZE] = { 5, 10, 15, 20, 25 };

int secondArray[SIZE] = { 5, 10, 15, 20, 25 };

bool arraysEqual = true; // Flag variable

int count = 0; // Loop counter variable

// Determine whether the elements contain the same data.

while (arraysEqual && count < SIZE)

{

 if (firstArray[count] != secondArray[count])

 arraysEqual = false;

 count++;

}

if (arraysEqual)

 cout << "The arrays are equal.\n";

else

 cout << "The arrays are not equal.\n";

This code determines whether firstArray and secondArray contain the same values. A

bool variable, arraysEqual, which is initialized to true, is used to signal whether the

arrays are equal. Another variable, count, which is initialized to 0, is used as a loop

counter variable.

M07_GADD6253_07_SE_C07 Page 401 Thursday, January 6, 2011 2:49 PM

402 Chapter 7 Arrays

Then a while loop begins. The loop executes as long as arraysEqual is true and the

counter variable count is less than SIZE. During each iteration, it compares a different set

of corresponding elements in the arrays. When it nds two corresponding elements that

have different values, the arraysEqual variable is set to false. After the loop nishes, an

if statement examines the arraysEqual variable. If the variable is true, then the arrays

are equal and a message indicating so is displayed. Otherwise, they are not equal, so a dif-

ferent message is displayed.

7.6 Focus on Software Engineering:
Using Parallel Arrays

CONCEPT: By using the same subscript, you can build relationships between data stored

in two or more arrays.

Sometimes it s useful to store related data in two or more arrays. It s especially useful

when the related data is of unlike types. For example, Program 7-12 is another variation

of the payroll program. It uses two arrays: one to store the hours worked by each

employee (as ints), and another to store each employee s hourly pay rate (as doubles).

Program 7-12

 1 // This program uses two parallel arrays: one for hours

 2 // worked and one for pay rate.

 3 #include <iostream>

 4 #include <iomanip>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 const int NUM_EMPLOYEES = 5; // Number of employees

 10 int hours[NUM_EMPLOYEES]; // Holds hours worked

 11 double payRate[NUM_EMPLOYEES]; // Holds pay rates

 12

 13 // Input the hours worked and the hourly pay rate.

 14 cout << "Enter the hours worked by " << NUM_EMPLOYEES

 15 << " employees and their\n"

 16 << "hourly pay rates.\n";

 17 for (int index = 0; index < NUM_EMPLOYEES; index++)

 18 {

 19 cout << "Hours worked by employee #" << (index+1) << ": ";

 20 cin >> hours[index];

 21 cout << "Hourly pay rate for employee #" << (index+1) << ": ";

 22 cin >> payRate[index];

 23 }

 24

 25 // Display each employee's gross pay.

M07_GADD6253_07_SE_C07 Page 402 Thursday, January 6, 2011 2:49 PM

7.6 Focus on Software Engineering: Using Parallel Arrays 403

Notice in the loops that the same subscript is used to access both arrays. That s because

the data for one employee is stored in the same relative position in each array. For exam-

ple, the hours worked by employee #1 are stored in hours[0], and the same employee s

pay rate is stored in payRate[0]. The subscript relates the data in both arrays.

This concept is illustrated in Figure 7-13.

 26 cout << "Here is the gross pay for each employee:\n";

 27 cout << fixed << showpoint << setprecision(2);

 28 for (int index = 0; index < NUM_EMPLOYEES; index++)

 29 {

 30 double grossPay = hours[index] * payRate[index];

 31 cout << "Employee #" << (index + 1);

 32 cout << ": $" << grossPay << endl;

 33 }

 34 return 0;

 35 }

Program Output with Example Input Shown in Bold

Enter the hours worked by 5 employees and their

hourly pay rates.

Hours worked by employee #1: 10 [Enter]
Hourly pay rate for employee #1: 9.75 [Enter]
Hours worked by employee #2: 15 [Enter]
Hourly pay rate for employee #2: 8.62 [Enter]
Hours worked by employee #3: 20 [Enter]
Hourly pay rate for employee #3: 10.50 [Enter]
Hours worked by employee #4: 40 [Enter]
Hourly pay rate for employee #4: 18.75 [Enter]
Hours worked by employee #5: 40 [Enter]
Hourly pay rate for employee #5: 15.65 [Enter]
Here is the gross pay for each employee:

Employee #1: $97.50

Employee #2: $129.30

Employee #3: $210.00

Employee #4: $750.00

Employee #5: $626.00

Figure 7-13

10

hours[0]

Employee

#1

15

hours[1]

20

hours[2]

40

hours[3]

40

hours[4]

9.75

payRate[0]

8.62

payRate[1]

10.50

payRate[2]

18.75

payRate[3]

15.65

payRate[4]

Employee

#2

Employee

#3

Employee

#4

Employee

#5

M07_GADD6253_07_SE_C07 Page 403 Thursday, January 6, 2011 2:49 PM

404 Chapter 7 Arrays

Checkpoint

 www.myprogramminglab.com

7.8 De ne the following arrays:

A) ages, a 10-element array of ints initialized with the values 5, 7, 9, 14, 15,
17, 18, 19, 21, and 23.

B) temps, a 7-element array of floats initialized with the values 14.7, 16.3,
18.43, 21.09, 17.9, 18.76, and 26.7.

C) alpha, an 8-element array of chars initialized with the values J , B , L , A ,
* , $, H , and M .

7.9 Is each of the following a valid or invalid array de nition? (If a de nition is
invalid, explain why.)

int numbers[10] = {0, 0, 1, 0, 0, 1, 0, 0, 1, 1};

int matrix[5] = {1, 2, 3, 4, 5, 6, 7};

double radii[10] = {3.2, 4.7};

int table[7] = {2, , , 27, , 45, 39};

char codes[] = {'A', 'X', '1', '2', 's'};

int blanks[];

7.10 Given the following array de nition:

int values[] = {2, 6, 10, 14};

What does each of the following display?

A) cout << values[2];

B) cout << ++values[0];

C) cout << values[1]++;

D) x = 2;

cout << values[++x];

7.11 Given the following array de nition:

int nums[5] = {1, 2, 3};

What will the following statement display?

cout << nums[3];

7.12 What is the output of the following code? (You may need to use a calculator.)

double balance[5] = {100.0, 250.0, 325.0, 500.0, 1100.0};

const double INTRATE = 0.1;

cout << fixed << showpoint << setprecision(2);

for (int count = 0; count < 5; count++)

 cout << (balance[count] * INTRATE) << endl;

7.13 What is the output of the following code? (You may need to use a calculator.)

const int SIZE = 5;

int time[SIZE] = {1, 2, 3, 4, 5},

 speed[SIZE] = {18, 4, 27, 52, 100},

 dist[SIZE];

M07_GADD6253_07_SE_C07 Page 404 Thursday, January 6, 2011 2:49 PM

7.7 Arrays as Function Arguments 405

for (int count = 0; count < SIZE; count++)

 dist[count] = time[count] * speed[count];

for (int count = 0; count < SIZE; count++)

{

 cout << time[count] << " ";

 cout << speed[count] << " ";

 cout << dist[count] << endl;

}

7.7 Arrays as Function Arguments

CONCEPT: To pass an array as an argument to a function, pass the name of the array.

Quite often you ll want to write functions that process the data in arrays. For example,

functions could be written to put values in an array, display an array s contents on the

screen, total all of an array s elements, or calculate their average. Usually, such functions

accept an array as an argument.

When a single element of an array is passed to a function, it is handled like any other vari-

able. For example, Program 7-13 shows a loop that passes one element of the array

numbers to the function showValue each time the loop iterates.

Program 7-13

 1 // This program demonstrates that an array element is passed

 2 // to a function like any other variable.

 3 #include <iostream>

 4 using namespace std;

 5

 6 void showValue(int); // Function prototype

 7

 8 int main()

 9 {

 10 const int SIZE = 8;

 11 int numbers[SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};

 12

 13 for (int index = 0; index < SIZE; index++)

 14 showValue(numbers[index]);

 15 return 0;

 16 }

 17

 18 //**

 19 // Definition of function showValue. *

 20 // This function accepts an integer argument. *

 21 // The value of the argument is displayed. *

 22 //**

 23

 24 void showValue(int num)

 25 {

 26 cout << num << " ";

 27 }

Program Output

5 10 15 20 25 30 35 40

VideoNote

Passing an

Array to a

Function

M07_GADD6253_07_SE_C07 Page 405 Thursday, January 6, 2011 2:49 PM

406 Chapter 7 Arrays

Each time showValue is called in line 14, a copy of an array element is passed into the

parameter variable num. The showValue function simply displays the contents of num, and

doesn t work directly with the array element itself. (In other words, the array element is

passed by value.)

If the function were written to accept the entire array as an argument, however, the

parameter would be set up differently. In the following function de nition, the parameter

nums is followed by an empty set of brackets. This indicates that the argument will be an

array, not a single value.

void showValues(int nums[], int size)

{

 for (int index = 0; index < size; index++)

 cout << nums[index] << " ";

 cout << endl;

}

The reason there is no size declarator inside the brackets of nums is because nums is not

actually an array. It s a special variable that can accept the address of an array. When an

entire array is passed to a function, it is not passed by value, but passed by reference.

Imagine the CPU time and memory that would be necessary if a copy of a 10,000-element

array were created each time it was passed to a function! Instead, only the starting mem-

ory address of the array is passed. Program 7-14 shows the function showValues in use.

NOTE: Notice that in the function prototype, empty brackets appear after the data

type of the array parameter. This indicates that showValues accepts the address of an

array of integers.

Program 7-14

 1 // This program demonstrates an array being passed to a function.

 2 #include <iostream>

 3 using namespace std;

 4

 5 void showValues(int [], int); // Function prototype

 6

 7 int main()

 8 {

 9 const int ARRAY_SIZE = 8;

 10 int numbers[ARRAY_SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};

 11

 12 showValues(numbers, ARRAY_SIZE);

 13 return 0;

 14 }

 15

 16 //**

 17 // Definition of function showValue. *

 18 // This function accepts an array of integers and *

 19 // the array's size as its arguments. The contents *

 20 // of the array are displayed. *

 21 //**

 22

M07_GADD6253_07_SE_C07 Page 406 Thursday, January 6, 2011 2:49 PM

7.7 Arrays as Function Arguments 407

In Program 7-14, the function showValues is called in the following statement which

appears in line 12:

showValues(numbers, ARRAY_SIZE);

The rst argument is the name of the array. Remember, in C++ the name of an array with-

out brackets and a subscript is actually the beginning address of the array. In this function

call, the address of the numbers array is being passed as the rst argument to the function.

The second argument is the size of the array.

In the showValues function, the beginning address of the numbers array is copied into the

nums parameter variable. The nums variable is then used to reference the numbers array.

Figure 7-14 illustrates the relationship between the numbers array and the nums parame-

ter variable. When the contents of nums[0] is displayed, it is actually the contents of

numbers[0] that appears on the screen.

The nums parameter variable in the showValues function can accept the address of any inte-

ger array and can be used to reference that array. So, we can use the showValues function to

display the contents of any integer array by passing the name of the array and its size as

arguments. Program 7-15 uses the function to display the contents of two different arrays.

 23 void showValues(int nums[], int size)

 24 {

 25 for (int index = 0; index < size; index++)

 26 cout << nums[index] << " ";

 27 cout << endl;

 28 }

Program Output

5 10 15 20 25 30 35 40

Figure 7-14

NOTE: Although nums is not a reference variable, it works like one.

Program 7-15

 1 // This program demonstrates the showValues function being

 2 // used to display the contents of two arrays.

 3 #include <iostream>

 4 using namespace std;

 5

(program continues)

numbers Array of eight integers

nums[0]

references

numbers[0]

nums[1]

references

numbers[1]

nums[2]

references

numbers[2]

... and so forth

5 10 15 20 25 30 35 40

M07_GADD6253_07_SE_C07 Page 407 Thursday, January 6, 2011 2:49 PM

408 Chapter 7 Arrays

Recall from Chapter 6 that when a reference variable is used as a parameter, it gives the

function access to the original argument. Any changes made to the reference variable are

actually performed on the argument referenced by the variable. Array parameters work

very much like reference variables. They give the function direct access to the original

array. Any changes made with the array parameter are actually made on the original array

used as the argument. The function doubleArray in Program 7-16 uses this capability to

double the contents of each element in the array.

 6 void showValues(int [], int); // Function prototype

 7

 8 int main()

 9 {

 10 const int SIZE1 = 8; // Size of set1 array

 11 const int SIZE2 = 5; // Size of set2 array

 12 int set1[SIZE1] = {5, 10, 15, 20, 25, 30, 35, 40};

 13 int set2[SIZE2] = {2, 4, 6, 8, 10};

 14

 15 // Pass set1 to showValues.

 16 showValues(set1, SIZE1);

 17

 18 // Pass set2 to showValues.

 19 showValues(set2, SIZE2);

 20 return 0;

 21 }

 22

 23 //**

 24 // Definition of function showValues. *

 25 // This function accepts an array of integers and *

 26 // the array's size as its arguments. The contents *

 27 // of the array are displayed. *

 28 //**

 29

 30 void showValues(int nums[], int size)

 31 {

 32 for (int index = 0; index < size; index++)

 33 cout << nums[index] << " ";

 34 cout << endl;

 35 }

Program Output

5 10 15 20 25 30 35 40

2 4 6 8 10

Program 7-16

 1 // This program uses a function to double the value of

 2 // each element of an array.

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Function prototypes

 7 void doubleArray(int [], int);

Program 7-15 (continued)

M07_GADD6253_07_SE_C07 Page 408 Thursday, January 6, 2011 2:49 PM

7.7 Arrays as Function Arguments 409

 8 void showValues(int [], int);

 9

 10 int main()

 11 {

 12 const int ARRAY_SIZE = 7;

 13 int set[ARRAY_SIZE] = {1, 2, 3, 4, 5, 6, 7};

 14

 15 // Display the initial values.

 16 cout << "The array's values are:\n";

 17 showValues(set, ARRAY_SIZE);

 18

 19 // Double the values in the array.

 20 doubleArray(set, ARRAY_SIZE);

 21

 22 // Display the resulting values.

 23 cout << "After calling doubleArray the values are:\n";

 24 showValues(set, ARRAY_SIZE);

 25

 26 return 0;

 27 }

 28

 29 //***

 30 // Definition of function doubleArray *

 31 // This function doubles the value of each element *

 32 // in the array passed into nums. The value passed *

 33 // into size is the number of elements in the array. *

 34 //***

 35

 36 void doubleArray(int nums[], int size)

 37 {

 38 for (int index = 0; index < size; index++)

 39 nums[index] *= 2;

 40 }

 41

 42 //**

 43 // Definition of function showValues. *

 44 // This function accepts an array of integers and *

 45 // the array's size as its arguments. The contents *

 46 // of the array are displayed. *

 47 //**

 48

 49 void showValues(int nums[], int size)

 50 {

 51 for (int index = 0; index < size; index++)

 52 cout << nums[index] << " ";

 53 cout << endl;

 54 }

Program Output

The array's values are:

1 2 3 4 5 6 7

After calling doubleArray the values are:

2 4 6 8 10 12 14

M07_GADD6253_07_SE_C07 Page 409 Thursday, January 6, 2011 2:49 PM

410 Chapter 7 Arrays

Using const Array Parameters

Sometimes you want a function to be able to modify the contents of an array that is

passed to it as an argument, and sometimes you don't. You can prevent a function from

making changes to an array argument by using the const key word in the parameter dec-

laration. Here is an example of the showValues function, shown previously, rewritten

with a const array parameter:

void showValues(const int nums[], int size)

{

 for (int index = 0; index < size; index++)

 cout << nums[index] << " ";

 cout << endl;

}

When an array parameter is declared as const, the function is not allowed to make

changes to the array's contents. If a statement in the function attempts to modify the

array, an error will occur at compile time. As a precaution, you should always use const

array parameters in any function that is not intended to modify its array argument. That

way, the function will fail to compile if you inadvertently write code in it that modi es the

array.

Some Useful Array Functions

Section 7.5 introduced you to algorithms such as summing an array and nding the high-

est and lowest values in an array. Now that you know how to pass an array as an argu-

ment to a function, you can write general purpose functions that perform those

operations. The following In the Spotlight section shows an example.

In the Spotlight:

Processing an Array

Dr. LaClaire gives four exams during the semester in her chemistry class. At the end of the

semester she drops each student s lowest test score before averaging the scores. She has

asked you to write a program that will read a student s four test scores as input, and calcu-

late the average with the lowest score dropped. Here is the pseudocode algorithm that you

developed:

Read the student s four test scores.

Calculate the total of the scores.

Find the lowest score.

Subtract the lowest score from the total. This gives the adjusted total.

Divide the adjusted total by 3. This is the average.

Display the average.

M07_GADD6253_07_SE_C07 Page 410 Thursday, January 6, 2011 2:49 PM

7.7 Arrays as Function Arguments 411

Program 7-17 shows the program, which is modularized. Rather than presenting the

entire program at once, let s rst examine the main function, and then each additional

function separately. Here is the rst part of the program, including the main function:

Program 7-17 (main function)

 1 // This program gets a series of test scores and

 2 // calculates the average of the scores with the

 3 // lowest score dropped.

 4 #include <iostream>

 5 #include <iomanip>

 6 using namespace std;

 7

 8 // Function prototypes

 9 void getTestScores(double[], int);

 10 double getTotal(const double[], int);

 11 double getLowest(const double[], int);

 12

 13 int main()

 14 {

 15 const int SIZE = 4; // Array size

 16 double testScores[SIZE], // Array of test scores

 17 total, // Total of the scores

 18 lowestScore, // Lowest test score

 19 average; // Average test score

 20

 21 // Set up numeric output formatting.

 22 cout << fixed << showpoint << setprecision(1);

 23

 24 // Get the test scores from the user.

 25 getTestScores(testScores, SIZE);

 26

 27 // Get the total of the test scores.

 28 total = getTotal(testScores, SIZE);

 29

 30 // Get the lowest test score.

 31 lowestScore = getLowest(testScores, SIZE);

 32

 33 // Subtract the lowest score from the total.

 34 total -= lowestScore;

 35

 36 // Calculate the average. Divide by 3 because

 37 // the lowest test score was dropped.

 38 average = total / (SIZE - 1);

 39

 40 // Display the average.

 41 cout << "The average with the lowest score "

 42 << "dropped is " << average << ".\n";

 43

 44 return 0;

 45 }

 46

M07_GADD6253_07_SE_C07 Page 411 Thursday, January 6, 2011 2:49 PM

412 Chapter 7 Arrays

Lines 15 through 19 de ne the following items:

SIZE, an int constant that is used as an array size declarator

testScores, a double array to hold the test scores

total, a double variable that will hold the test score totals

lowestScore, a double variable that will hold the lowest test score

average, a double variable that will hold the average of the test scores

Line 25 calls the getTestScores function, passing the testScores array and the value of

the SIZE constant as arguments. The function gets the test scores from the user and stores

them in the array.

Line 28 calls the getTotal function, passing the testScores array and the value of the

SIZE constant as arguments. The function returns the total of the values in the array. This

value is assigned to the total variable.

Line 31 calls the getLowest function, passing the testScores array and the value of the

SIZE constant as arguments. The function returns the lowest value in the array. This value

is assigned to the lowestScore variable.

Line 34 subtracts the lowest test score from the total variable. Then, line 38 calculates

the average by dividing total by SIZE 1. (The program divides by SIZE 1 because

the lowest test score was dropped.) Lines 41 and 42 display the average.

The getTestScores function appears next, as shown here:

The getTestScores function has two parameters:

scores[] A double array

size An int specifying the size of the array that is passed into the scores[]

parameter

The purpose of this function is to get a student s test scores from the user and store them

in the array that is passed as an argument into the scores[] parameter.

Program 7-17 (getTestScores function)

 47 //***

 48 // The getTestScores function accepts an array and its size *

 49 // as arguments. It prompts the user to enter test scores, *

 50 // which are stored in the array. *

 51 //***

 52

 53 void getTestScores(double scores[], int size)

 54 {

 55 // Loop counter

 56 int index;

 57

 58 // Get each test score.

 59 for(index = 0; index <= size - 1; index++)

 60 {

 61 cout << "Enter test score number "

 62 << (index + 1) << ": ";

 63 cin >> scores[index];

 64 }

 65 }

 66

M07_GADD6253_07_SE_C07 Page 412 Thursday, January 6, 2011 2:49 PM

7.7 Arrays as Function Arguments 413

The getTotal function appears next, as shown here:

The getTotal function has two parameters:

array[] A const double array

size An int specifying the size of the array that is passed into the array[]

parameter

This function returns the total of the values in the array that is passed as an argument into

the array[] parameter.

The getLowest function appears next, as shown here:

Program 7-17 (getTotal function)

 67 //**

 68 // The getTotal function accepts a double array *

 69 // and its size as arguments. The sum of the array's *

 70 // elements is returned as a double. *

 71 //**

 72

 73 double getTotal(const double array[], int size)

 74 {

 75 double total = 0; // Accumulator

 76

 77 // Add each element to total.

 78 for (int count = 0; count < size; count++)

 79 total += array[count];

 80

 81 // Return the total.

 82 return total;

 83 }

 84

Program 7-17 (getLowest function)

 85 //**

 86 // The getLowest function accepts a double array and *

 87 // its size as arguments. The lowest value in the *

 88 // array is returned as a double. *

 89 //**

 90

 91 double getLowest(const double array[], int size)

 92 {

 93 double lowest; // To hold the lowest value

 94

 95 // Get the first array's first element.

 96 lowest = array[0];

 97

 98 // Step through the rest of the array. When a

 99 // value less than lowest is found, assign it

 100 // to lowest.

(program continues)

M07_GADD6253_07_SE_C07 Page 413 Thursday, January 6, 2011 2:49 PM

414 Chapter 7 Arrays

The getLowest function has two parameters:

array[] A const double array

size An int specifying the size of the array that is passed into the array[]

parameter

This function returns the lowest value in the array that is passed as an argument into the

array[] parameter. Here is an example of the program s output:

Checkpoint

 www.myprogramminglab.com

7.14 Given the following array de nitions

double array1[4] = {1.2, 3.2, 4.2, 5.2};

double array2[4];

will the following statement work? If not, why?

array2 = array1;

7.15 When an array name is passed to a function, what is actually being passed?

7.16 When used as function arguments, are arrays passed by value?

7.17 What is the output of the following program? (You may need to consult the

ASCII table in Appendix B.)

#include <iostream>

using namespace std;

// Function prototypes

void fillArray(char [], int);

void showArray(const char [], int);

 101 for (int count = 1; count < size; count++)

 102 {

 103 if (array[count] < lowest)

 104 lowest = array[count];

 105 }

 106

 107 // Return the lowest value.

 108 return lowest;

 109 }

Program 7-17

Program Output with Example Input Shown in Bold

Enter test score number 1: 92 [Enter]
Enter test score number 2: 67 [Enter]
Enter test score number 3: 75 [Enter]
Enter test score number 4: 88 [Enter]
The average with the lowest score dropped is 85.0.

Program 7-17 (getLowest function)(continued)

Chapter 7 Arrays

M07_GADD6253_07_SE_C07 Page 414 Thursday, January 6, 2011 2:49 PM

7.7 Arrays as Function Arguments 415

int main ()

{

 const int SIZE = 8;

 char prodCode[SIZE] = {'0', '0', '0', '0', '0', '0', '0', '0'};

 fillArray(prodCode, SIZE);

 showArray(prodCode, SIZE);

 return 0;

}

// Definition of function fillArray.

// (Hint: 65 is the ASCII code for 'A')

void fillArray(char arr[], int size)

{

char code = 65;

for (int k = 0; k < size; code++, k++)

arr[k] = code;

}

// Definition of function showArray.

void showArray(const char codes[], int size)

{

for (int k = 0; k < size; k++)

cout << codes[k];

cout << endl;

}

7.18 The following program skeleton, when completed, will ask the user to enter 10

integers, which are stored in an array. The function avgArray, which you must

write, is to calculate and return the average of the numbers entered.

#include <iostream>

using namespace std;

// Write your function prototype here

int main()

{

 const int SIZE = 10;

 int userNums[SIZE];

 cout << "Enter 10 numbers: ";

 for (int count = 0; count < SIZE; count++)

 {

 cout << "#" << (count + 1) << " ";

 cin >> userNums[count];

 }

 cout << "The average of those numbers is ";

 cout << avgArray(userNums, SIZE) << endl;

 return 0;

}

//

// Write the function avgArray here.

//

M07_GADD6253_07_SE_C07 Page 415 Thursday, January 6, 2011 2:49 PM

416 Chapter 7 Arrays

7.8 Two-Dimensional Arrays

CONCEPT: A two-dimensional array is like several identical arrays put together. It is

useful for storing multiple sets of data.

An array is useful for storing and working with a set of data. Sometimes, though, it s nec-

essary to work with multiple sets of data. For example, in a grade-averaging program a

teacher might record all of one student s test scores in an array of doubles. If the teacher

has 30 students, that means she ll need 30 arrays of doubles to record the scores for the

entire class. Instead of de ning 30 individual arrays, however, it would be better to de ne

a two-dimensional array.

The arrays that you have studied so far are one-dimensional arrays. They are called one-

dimensional because they can only hold one set of data. Two-dimensional arrays, which

are sometimes called 2D arrays, can hold multiple sets of data. It s best to think of a two-

dimensional array as having rows and columns of elements, as shown in Figure 7-15. This

gure shows an array of test scores, having three rows and four columns.

The array depicted in Figure 7-15 has three rows (numbered 0 through 2), and four col-

umns (numbered 0 through 3). There are a total of 12 elements in the array.

To de ne a two-dimensional array, two size declarators are required. The rst one is for

the number of rows and the second one is for the number of columns. Here is an example

de nition of a two-dimensional array with three rows and four columns:

The rst size declarator speci es the number of rows, and the second size declarator speci-

es the number of columns. Notice that each number is enclosed in its own set of brackets.

When processing the data in a two-dimensional array, each element has two subscripts:

one for its row and another for its column. In the scores array de ned above, the ele-

ments in row 0 are referenced as

scores[0][0]

scores[0][1]

scores[0][2]

scores[0][3]

Figure 7-15

Column 0

Row 0

Row 1

Row 2

Column 1

scores[0] [0]

scores[1] [0]

scores[2] [0]

scores[0] [1]

scores[1] [1]

scores[2] [1]

Column 2

scores[0] [2]

scores[1] [2]

scores[2] [2]

Column 3

scores[0] [3]

scores[1] [3]

scores[2] [3]

Rows Columns

double scores[3][4];

M07_GADD6253_07_SE_C07 Page 416 Thursday, January 6, 2011 2:49 PM

7.8 Two-Dimensional Arrays 417

The elements in row 1 are

scores[1][0]

scores[1][1]

scores[1][2]

scores[1][3]

And the elements in row 2 are

scores[2][0]

scores[2][1]

scores[2][2]

scores[2][3]

The subscripted references are used in a program just like the references to elements in a single-

dimensional array, except now you use two subscripts. The rst subscript represents the row

position, and the second subscript represents the column position. For example, the following

statement assigns the value 92.25 to the element at row 2, column 1 of the scores array:

scores[2][1] = 92.25;

And the following statement displays the element at row 0, column 2:

cout << scores[0][2];

Programs that cycle through each element of a two-dimensional array usually do so with

nested loops. Program 7-18 is an example.

Program 7-18

 1 // This program demonstrates a two-dimensional array.

 2 #include <iostream>

 3 #include <iomanip>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int NUM_DIVS = 3; // Number of divisions

 9 const int NUM_QTRS = 4; // Number of quarters

 10 double sales[NUM_DIVS][NUM_QTRS]; // Array with 3 rows and 4 columns.

 11 double totalSales = 0; // To hold the total sales.

 12 int div, qtr; // Loop counters.

 13

 14 cout << "This program will calculate the total sales of\n";

 15 cout << "all the company's divisions.\n";

 16 cout << "Enter the following sales information:\n\n";

 17

 18 // Nested loops to fill the array with quarterly

 19 // sales figures for each division.

 20 for (div = 0; div < NUM_DIVS; div++)

 21 {

 22 for (qtr = 0; qtr < NUM_QTRS; qtr++)

 23 {

 24 cout << "Division " << (div + 1);

 25 cout << ", Quarter " << (qtr + 1) << ": $";

 26 cin >> sales[div][qtr];

(program continues)

M07_GADD6253_07_SE_C07 Page 417 Thursday, January 6, 2011 2:49 PM

418 Chapter 7 Arrays

When initializing a two-dimensional array, it helps to enclose each row s initialization list

in a set of braces. Here is an example:

int hours[3][2] = {{8, 5}, {7, 9}, {6, 3}};

The same de nition could also be written as:

int hours[3][2] = {{8, 5},

 {7, 9},

 {6, 3}};

In either case, the values are assigned to hours in the following manner:

hours[0][0] is set to 8

hours[0][1] is set to 5

hours[1][0] is set to 7

 27 }

 28 cout << endl; // Print blank line.

 29 }

 30

 31 // Nested loops used to add all the elements.

 32 for (div = 0; div < NUM_DIVS; div++)

 33 {

 34 for (qtr = 0; qtr < NUM_QTRS; qtr++)

 35 totalSales += sales[div][qtr];

 36 }

 37

 38 cout << fixed << showpoint << setprecision(2);

 39 cout << "The total sales for the company are: $";

 40 cout << totalSales << endl;

 41 return 0;

 42 }

Program Output with Example Input Shown in Bold

This program will calculate the total sales of

all the company's divisions.

Enter the following sales data:

Division 1, Quarter 1: $31569.45 [Enter]
Division 1, Quarter 2: $29654.23 [Enter]
Division 1, Quarter 3: $32982.54 [Enter]
Division 1, Quarter 4: $39651.21 [Enter]

Division 2, Quarter 1: $56321.02 [Enter]
Division 2, Quarter 2: $54128.63 [Enter]
Division 2, Quarter 3: $41235.85 [Enter]
Division 2, Quarter 4: $54652.33 [Enter]

Division 3, Quarter 1: $29654.35 [Enter]
Division 3, Quarter 2: $28963.32 [Enter]
Division 3, Quarter 3: $25353.55 [Enter]
Division 3, Quarter 4: $32615.88 [Enter]

The total sales for the company are: $456782.34

Program 7-18 (continued)

M07_GADD6253_07_SE_C07 Page 418 Thursday, January 6, 2011 2:49 PM

7.8 Two-Dimensional Arrays 419

hours[1][1] is set to 9

hours[2][0] is set to 6

hours[2][1] is set to 3

Figure 7-16 illustrates the initialization.

The extra braces that enclose each row s initialization list are optional. Both of the follow-

ing statements perform the same initialization:

int hours[3][2] = {{8, 5}, {7, 9}, {6, 3}};

int hours[3][2] = {8, 5, 7, 9, 6, 3};

Because the extra braces visually separate each row, however, it s a good idea to use them.

In addition, the braces give you the ability to leave out initializers within a row without

omitting the initializers for the rows that follow it. For instance, look at the following

array de nition:

int table[3][2] = {{1}, {3, 4}, {5}};

table[0][0] is initialized to 1, table[1][0] is initialized to 3, table[1][1] is initial-

ized to 4, and table[2][0] is initialized to 5. table[0][1] and table[2][1] are not

initialized. Because some of the array elements are initialized, these two initialized ele-

ments are automatically set to zero.

Passing Two-Dimensional Arrays to Functions

Program 7-19 demonstrates passing a two-dimensional array to a function. When a two-

dimensional array is passed to a function, the parameter type must contain a size declarator for

the number of columns. Here is the header for the function showArray, from Program 7-19:

void showArray(const int array[][COLS], int rows)

COLS is a global named constant which is set to 4. The function can accept any two-

dimensional integer array, as long as it consists of four columns. In the program, the con-

tents of two separate arrays are displayed by the function.

Figure 7-16

Program 7-19

 1 // This program demonstrates accepting a 2D array argument.

 2 #include <iostream>

 3 #include <iomanip>

 4 using namespace std;

 5

(program continues)

Column 0

Row 0

Row 1

Row 2

Column 1

8

7

6

5

9

3

M07_GADD6253_07_SE_C07 Page 419 Thursday, January 6, 2011 2:49 PM

420 Chapter 7 Arrays

 6 // Global constants

 7 const int COLS = 4; // Number of columns in each array

 8 const int TBL1_ROWS = 3; // Number of rows in table1

 9 const int TBL2_ROWS = 4; // Number of rows in table2

 10

 11 void showArray(const int [][COLS], int); // Function prototype

 12

 13 int main()

 14 {

 15 int table1[TBL1_ROWS][COLS] = {{1, 2, 3, 4},

 16 {5, 6, 7, 8},

 17 {9, 10, 11, 12}};

 18 int table2[TBL2_ROWS][COLS] = {{10, 20, 30, 40},

 19 {50, 60, 70, 80},

 20 {90, 100, 110, 120},

 21 {130, 140, 150, 160}};

 22

 23 cout << "The contents of table1 are:\n";

 24 showArray(table1, TBL1_ROWS);

 25 cout << "The contents of table2 are:\n";

 26 showArray(table2, TBL2_ROWS);

 27 return 0;

 28 }

 29

 30 //***

 31 // Function Definition for showArray *

 32 // The first argument is a two-dimensional int array with COLS *

 33 // columns. The second argument, rows, specifies the number of *

 34 // rows in the array. The function displays the array's contents. *

 35 //***

 36

 37 void showArray(const int array[][COLS], int rows)

 38 {

 39 for (int x = 0; x < rows; x++)

 40 {

 41 for (int y = 0; y < COLS; y++)

 42 {

 43 cout << setw(4) << array[x][y] << " ";

 44 }

 45 cout << endl;

 46 }

 47 }

Program Output

The contents of table1 are:

 1 2 3 4

 5 6 7 8

 9 10 11 12

The contents of table2 are:

 10 20 30 40

 50 60 70 80

 90 100 110 120

130 140 150 160

Program 7-19 (continued)

M07_GADD6253_07_SE_C07 Page 420 Thursday, January 6, 2011 2:49 PM

7.8 Two-Dimensional Arrays 421

C++ requires the columns to be speci ed in the function prototype and header because of

the way two-dimensional arrays are stored in memory. One row follows another, as

shown in Figure 7-17.

When the compiler generates code for accessing the elements of a two-dimensional array,

it needs to know how many bytes separate the rows in memory. The number of columns is

a critical factor in this calculation.

Summing All the Elements of a Two-Dimensional Array

To sum all the elements of a two-dimensional array, you can use a pair of nested loops to

add the contents of each element to an accumulator. The following code is an example.

const int NUM_ROWS = 5; // Number of rows

const int NUM_COLS = 5; // Number of columns

int total = 0; // Accumulator

int numbers[NUM_ROWS][NUM_COLS] = {{2, 7, 9, 6, 4},

 {6, 1, 8, 9, 4},

 {4, 3, 7, 2, 9},

 {9, 9, 0, 3, 1},

 {6, 2, 7, 4, 1}};

// Sum the array elements.

for (int row = 0; row < NUM_ROWS; row++)

{

 for (int col = 0; col < NUM_COLS; col++)

 total += numbers[row][col];

}

// Display the sum.

cout << "The total is " << total << endl;

Summing the Rows of a Two-Dimensional Array

Sometimes you may need to calculate the sum of each row in a two-dimensional array. For

example, suppose a two-dimensional array is used to hold a set of test scores for a set of

students. Each row in the array is a set of test scores for one student. To get the sum of a

student s test scores (perhaps so an average may be calculated), you use a loop to add all

the elements in one row. The following code shows an example.

const int NUM_STUDENTS = 3; // Number of students

const int NUM_SCORES = 5; // Number of test scores

double total; // Accumulator is set in the loops

double average; // To hold each student's average

double scores[NUM_STUDENTS][NUM_SCORES] = {{88, 97, 79, 86, 94},

 {86, 91, 78, 79, 84},

 {82, 73, 77, 82, 89}};

Figure 7-17

M07_GADD6253_07_SE_C07 Page 421 Thursday, January 6, 2011 2:49 PM

422 Chapter 7 Arrays

// Get each student's average score.

for (int row = 0; row < NUM_STUDENTS; row++)

{

 // Set the accumulator.

 total = 0;

 // Sum a row.

 for (int col = 0; col < NUM_SCORES; col++)

 total += scores[row][col];

 // Get the average.

 average = total / NUM_SCORES;

 // Display the average.

 cout << "Score average for student "

 << (row + 1) << " is " << average <<endl;

}

Notice that the total variable, which is used as an accumulator, is set to zero just before

the inner loop executes. This is because the inner loop sums the elements of a row and

stores the sum in total. Therefore, the total variable must be set to zero before each

iteration of the inner loop.

Summing the Columns of a Two-Dimensional Array

Sometimes you may need to calculate the sum of each column in a two-dimensional array.

In the previous example a two-dimensional array is used to hold a set of test scores for a

set of students. Suppose you wish to calculate the class average for each of the test scores.

To do this, you calculate the average of each column in the array. This is accomplished

with a set of nested loops. The outer loop controls the column subscript and the inner

loop controls the row subscript. The inner loop calculates the sum of a column, which is

stored in an accumulator. The following code demonstrates.

const int NUM_STUDENTS = 3; // Number of students

const int NUM_SCORES = 5; // Number of test scores

double total; // Accumulator is set in the loops

double average; // To hold each score's class average

double scores[NUM_STUDENTS][NUM_SCORES] = {{88, 97, 79, 86, 94},

 {86, 91, 78, 79, 84},

 {82, 73, 77, 82, 89}};

// Get the class average for each score.

for (int col = 0; col < NUM_SCORES; col++)

{

// Reset the accumulator.

total = 0;

// Sum a column.

for (int row = 0; row < NUM_STUDENTS; row++)

total += scores[row][col];

// Get the average.

average = total / NUM_STUDENTS;

M07_GADD6253_07_SE_C07 Page 422 Thursday, January 6, 2011 2:49 PM

7.9 Arrays with Three or More Dimensions 423

// Display the class average.

cout << "Class average for test " << (col + 1)

 << " is " << average << endl;

}

7.9 Arrays with Three or More Dimensions

CONCEPT: C++ does not limit the number of dimensions that an array may have. It is

possible to create arrays with multiple dimensions, to model data that occur

in multiple sets.

C++ allows you to create arrays with virtually any number of dimensions. Here is an

example of a three-dimensional array de nition:

double seats[3][5][8];

This array can be thought of as three sets of ve rows, with each row containing eight ele-

ments. The array might be used to store the prices of seats in an auditorium, where there

are eight seats in a row, ve rows in a section, and a total of three sections.

Figure 7-18 illustrates the concept of a three-dimensional array as pages of two-

dimensional arrays.

Arrays with more than three dimensions are dif cult to visualize, but can be useful in

some programming problems. For example, in a factory warehouse where cases of wid-

gets are stacked on pallets, an array with four dimensions could be used to store a part

number for each widget. The four subscripts of each element could represent the pallet

number, case number, row number, and column number of each widget. Similarly, an

array with ve dimensions could be used if there were multiple warehouses.

Figure 7-18

NOTE: When writing functions that accept multi-dimensional arrays as arguments, all

but the rst dimension must be explicitly stated in the parameter list.

0

1

2

3

4

0 1 2 3 4 5 6 7

0

1

2

M07_GADD6253_07_SE_C07 Page 423 Thursday, January 6, 2011 2:49 PM

424 Chapter 7 Arrays

Checkpoint

 www.myprogramminglab.com

7.19 De ne a two-dimensional array of ints named grades. It should have 30 rows

and 10 columns.

7.20 How many elements are in the following array?

double sales[6][4];

7.21 Write a statement that assigns the value 56893.12 to the rst column of the rst

row of the array de ned in Question 7.20.

7.22 Write a statement that displays the contents of the last column of the last row of

the array de ned in Question 7.20.

7.23 De ne a two-dimensional array named settings large enough to hold the table

of data below. Initialize the array with the values in the table.

7.24 Fill in the table below so it shows the contents of the following array:

int table[3][4] = {{2, 3}, {7, 9, 2}, {1}};

7.25 Write a function called displayArray7. The function should accept a two-

dimensional array as an argument and display its contents on the screen. The

function should work with any of the following arrays:

int hours[5][7];

int stamps[8][7];

int autos[12][7];

int cats[50][7];

7.26 A video rental store keeps DVDs on 50 racks with 10 shelves each. Each shelf

holds 25 DVDs. De ne a three-dimensional array large enough to represent the

store s storage system.

7.10
Focus on Problem Solving and Program Design:
A Case Study

The National Commerce Bank has hired you as a contract programmer. Your rst assign-

ment is to write a function that will be used by the bank s automated teller machines

(ATMs) to validate a customer s personal identi cation number (PIN).

12 24 32 21 42

14 67 87 65 90

19 1 24 12 8

M07_GADD6253_07_SE_C07 Page 424 Thursday, January 6, 2011 2:49 PM

7.10 Focus on Problem Solving and Program Design: A Case Study 425

Your function will be incorporated into a larger program that asks the customer to input

his or her PIN on the ATM s numeric keypad. (PINs are seven-digit numbers. The pro-

gram stores each digit in an element of an integer array.) The program also retrieves a

copy of the customer s actual PIN from a database. (The PINs are also stored in the data-

base as seven-element arrays.) If these two numbers match, then the customer s identity is

validated. Your function is to compare the two arrays and determine whether they contain

the same numbers.

Here are the speci cations your function must meet:

Parameters The function is to accept as arguments two integer arrays of seven ele-

ments each. The rst argument will contain the number entered by the

customer. The second argument will contain the number retrieved from

the bank s database.

Return value The function should return a Boolean true value if the two arrays are

identical. Otherwise, it should return false.

Here is the pseudocode for the function:

For each element in the first array

Compare the element with the element in the second array

that is in the corresponding position.

If the two elements contain different values

Return false.

End If.

End For.

Return true.

The C++ code is shown below.

bool testPIN(const int custPIN[], const int databasePIN[], int size)

{

for (int index = 0; index < size; index++)

{

if (custPIN[index] != databasePIN[index])

 return false; // We've found two different values.

}

return true; // If we make it this far, the values are the same.

}

Because you have only been asked to write a function that performs the comparison

between the customer s input and the PIN that was retrieved from the database, you will

also need to design a driver. Program 7-20 shows the complete program.

Program 7-20

 1 // This program is a driver that tests a function comparing the

 2 // contents of two int arrays.

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Function Prototype

 7 bool testPIN(const int [], const int [], int);

 8

(program continues)

M07_GADD6253_07_SE_C07 Page 425 Thursday, January 6, 2011 2:49 PM

426

Chapter 7 Arrays

Case Study: See the Intersection of Sets Case Study on the book s companion Web site at

www.pearsonhighered.com/gaddis.

 9 int main ()

 10 {

 11 const int NUM_DIGITS = 7; // Number of digits in a PIN

 12 int pin1[NUM_DIGITS] = {2, 4, 1, 8, 7, 9, 0}; // Base set of values.

 13 int pin2[NUM_DIGITS] = {2, 4, 6, 8, 7, 9, 0}; // Only 1 element is

 14 // different from pin1.

 15 int pin3[NUM_DIGITS] = {1, 2, 3, 4, 5, 6, 7}; // All elements are

 16 // different from pin1.

 17 if (testPIN(pin1, pin2, NUM_DIGITS))

 18 cout << "ERROR: pin1 and pin2 report to be the same.\n";

 19 else

 20 cout << "SUCCESS: pin1 and pin2 are different.\n";

 21

 22 if (testPIN(pin1, pin3, NUM_DIGITS))

 23 cout << "ERROR: pin1 and pin3 report to be the same.\n";

 24 else

 25 cout << "SUCCESS: pin1 and pin3 are different.\n";

 26

 27 if (testPIN(pin1, pin1, NUM_DIGITS))

 28 cout << "SUCCESS: pin1 and pin1 report to be the same.\n";

 29 else

 30 cout << "ERROR: pin1 and pin1 report to be different.\n";

 31 return 0;

 32 }

 33

 34 //**

 35 // The following function accepts two int arrays. The arrays are *

 36 // compared. If they contain the same values, true is returned. *

 37 // If they contain different values, false is returned. *

 38 //**

 39

 40 bool testPIN(const int custPIN[], const int databasePIN[], int size)

 41 {

 42 for (int index = 0; index < size; index++)

 43 {

 44 if (custPIN[index] != databasePIN[index])

 45 return false; // We've found two different values.

 46 }

 47 return true; // If we make it this far, the values are the same.

 48 }

Program Output

SUCCESS: pin1 and pin2 are different.

SUCCESS: pin1 and pin3 are different.

SUCCESS: pin1 and pin1 report to be the same.

Program 7-20

(continued)

M07_GADD6253_07_SE_C07 Page 426 Monday, January 17, 2011 2:50 PM

7.11 If You Plan to Continue in Computer Science: Introduction to the STL vector 427

7.11
If You Plan to Continue in Computer Science:
Introduction to the STL vector

CONCEPT: The Standard Template Library offers a vector data type, which in many

ways, is superior to standard arrays.

The Standard Template Library (STL) is a collection of data types and algorithms that you

may use in your programs. These data types and algorithms are programmer-de ned.

They are not part of the C++ language, but were created in addition to the built-in data

types. If you plan to continue your studies in the eld of computer science, you should

become familiar with the STL. This section introduces one of the STL data types. For

more information on the STL, see Chapter 16.

The data types that are de ned in the STL are commonly called containers. They are

called containers because they store and organize data. There are two types of containers

in the STL: sequence containers and associative containers. A sequence container orga-

nizes data in a sequential fashion, similar to an array. Associative containers organize data

with keys, which allow rapid, random access to elements stored in the container.

In this section you will learn to use the vector data type, which is a sequence container. A

vector is like an array in the following ways:

A vector holds a sequence of values, or elements.

A vector stores its elements in contiguous memory locations.

You can use the array subscript operator [] to read the individual elements in the

vector.

However, a vector offers several advantages over arrays. Here are just a few:

You do not have to declare the number of elements that the vector will have.

If you add a value to a vector that is already full, the vector will automatically

increase its size to accommodate the new value.

vectors can report the number of elements they contain.

De ning a vector

To use vectors in your program, you must include the vector header le with the follow-

ing statement:

#include <vector>

NOTE: Many older compilers do not support the STL.

NOTE: To use the vector data type, you must have the using namespace std;

statement in your program.

M07_GADD6253_07_SE_C07 Page 427 Thursday, January 6, 2011 2:49 PM

428 Chapter 7 Arrays

Now you are ready to de ne an actual vector object. The syntax for de ning a vector is

somewhat different from the syntax used in de ning a regular variable or array. Here is an

example:

vector<int> numbers;

This statement de nes numbers as a vector of ints. Notice that the data type is enclosed

in angled brackets, immediately after the word vector. Because the vector expands in

size as you add values to it, there is no need to declare a size. You can de ne a starting

size, if you prefer. Here is an example:

vector<int> numbers(10);

This statement de nes numbers as a vector of 10 ints. This is only a starting size, how-

ever. Although the vector has 10 elements, its size will expand if you add more than 10

values to it.

When you specify a starting size for a vector, you may also specify an initialization value.

The initialization value is copied to each element. Here is an example:

vector<int> numbers(10, 2);

In this statement, numbers is de ned as a vector of 10 ints. Each element in numbers is

initialized to the value 2.

You may also initialize a vector with the values in another vector. For example, look at

the following statement. Assume that set1 is a vector of ints that already has values

stored in it.

vector<int> set2(set1);

After this statement executes, set2 will be a copy of set1.

Table 7-3 summarizes the vector de nition procedures we have discussed.

Storing and Retrieving Values in a vector

To store a value in an element that already exists in a vector, you may use the array sub-

script operator []. For example, look at Program 7-21.

NOTE: If you specify a starting size for a vector, the size declarator is enclosed in

parentheses, not square brackets.

Table 7-3

De nition Format Description

vector<float> amounts; De nes amounts as an empty vector of floats.

vector<string> names; De nes names as an empty vector of string objects.

vector<int> scores(15); De nes scores as a vector of 15 ints.

vector<char> letters(25, 'A'); De nes letters as a vector of 25 characters. Each

element is initialized with 'A'.

vector<double> values2(values1); De nes values2 as a vector of doubles. All the

elements of values1, which is also a vector of

doubles, are copied to value2.

M07_GADD6253_07_SE_C07 Page 428 Thursday, January 6, 2011 2:49 PM

7.11 If You Plan to Continue in Computer Science: Introduction to the STL vector 429

Program 7-21

 1 // This program stores, in two vectors, the hours worked by 5

 2 // employees, and their hourly pay rates.

 3 #include <iostream>

 4 #include <iomanip>

 5 #include <vector> // Needed to define vectors

 6 using namespace std;

 7

 8 int main()

 9 {

 10 const int NUM_EMPLOYEES = 5; // Number of employees

 11 vector<int> hours(NUM_EMPLOYEES); // A vector of integers

 12 vector<double> payRate(NUM_EMPLOYEES); // A vector of doubles

 13 int index; // Loop counter

 14

 15 // Input the data.

 16 cout << "Enter the hours worked by " << NUM_EMPLOYEES;

 17 cout << " employees and their hourly rates.\n";

 18 for (index = 0; index < NUM_EMPLOYEES; index++)

 19 {

 20 cout << "Hours worked by employee #" << (index + 1);

 21 cout << ": ";

 22 cin >> hours[index];

 23 cout << "Hourly pay rate for employee #";

 24 cout << (index + 1) << ": ";

 25 cin >> payRate[index];

 26 }

 27

 28 // Display each employee's gross pay.

 29 cout << "\nHere is the gross pay for each employee:\n";

 30 cout << fixed << showpoint << setprecision(2);

 31 for (index = 0; index < NUM_EMPLOYEES; index++)

 32 {

 33 double grossPay = hours[index] * payRate[index];

 34 cout << "Employee #" << (index + 1);

 35 cout << ": $" << grossPay << endl;

 36 }

 37 return 0;

 38 }

Program Output with Example Input Shown in Bold

Enter the hours worked by 5 employees and their hourly rates.

Hours worked by employee #1: 10 [Enter]
Hourly pay rate for employee #1: 9.75 [Enter]
Hours worked by employee #2: 15 [Enter]
Hourly pay rate for employee #2: 8.62 [Enter]
Hours worked by employee #3: 20 [Enter]
Hourly pay rate for employee #3: 10.50 [Enter]
Hours worked by employee #4: 40 [Enter]
Hourly pay rate for employee #4: 18.75 [Enter]
Hours worked by employee #5: 40 [Enter]
Hourly pay rate for employee #5: 15.65 [Enter]

(program output continues)

M07_GADD6253_07_SE_C07 Page 429 Thursday, January 6, 2011 2:49 PM

430 Chapter 7 Arrays

Notice that Program 7-21 uses the following statements in lines 11 and 12 to de ne two

vectors.

vector<int> hours(NUM_EMPLOYEES); // A vector of integers

vector<double> payRate(NUM_EMPLOYEES); // A vector of doubles

Both of the vectors are de ned with the starting size 5, which is the value of the named

constant NUM_EMPLOYEES. The program uses the following loop in lines 18 through 26 to

store a value in each element of both vectors:

for (index = 0; index < NUM_EMPLOYEES; index++)

{

 cout << "Hours worked by employee #" << (index + 1);

 cout << ": ";

 cin >> hours[index];

 cout << "Hourly pay rate for employee #";

 cout << (index + 1) << ": ";

 cin >> payRate[index];

}

Because the values entered by the user are being stored in vector elements that already

exist, the program uses the array subscript operator [], as shown in the following state-

ments, which appear in lines 22 and 25:

cin >> hours[index];

cin >> payRate[index];

Using the push_back Member Function

You cannot use the [] operator to access a vector element that does not exist. To store a

value in a vector that does not have a starting size, or that is already full, use the

push_back member function. The push_back member function accepts a value as an

argument, and stores that value after the last element in the vector. (It pushes the value

onto the back of the vector.) Here is an example:

numbers.push_back(25);

Assuming numbers is a vector of ints, this statement stores 25 as the last element. If

numbers is full, the statement creates a new last element, and stores 25 in it. If there are

no elements in numbers, this statement creates an element and stores 25 in it.

Program 7-22 is a modi cation of Program 7-21. This version, however, allows the user to

specify the number of employees. The two vectors, hours and payRate, are de ned

without starting sizes. Because these vectors have no starting elements, the push_back

member function is used to store values in the vectors.

Here is the gross pay for each employee:

Employee #1: $97.50

Employee #2: $129.30

Employee #3: $210.00

Employee #4: $750.00

Employee #5: $626.00

Program 7-21 (continued)

M07_GADD6253_07_SE_C07 Page 430 Thursday, January 6, 2011 2:49 PM

7.11 If You Plan to Continue in Computer Science: Introduction to the STL vector 431

Program 7-22

 1 // This program stores, in two arrays, the hours worked by 5

 2 // employees, and their hourly pay rates.

 3 #include <iostream>

 4 #include <iomanip>

 5 #include <vector> // Needed to define vectors

 6 using namespace std;

 7

 8 int main()

 9 {

 10 vector<int> hours; // hours is an empty vector

 11 vector<double> payRate; // payRate is an empty vector

 12 int numEmployees; // The number of employees

 13 int index; // Loop counter

 14

 15 // Get the number of employees.

 16 cout << "How many employees do you have? ";

 17 cin >> numEmployees;

 18

 19 // Input the payroll data.

 20 cout << "Enter the hours worked by " << numEmployees;

 21 cout << " employees and their hourly rates.\n";

 22 for (index = 0; index < numEmployees; index++)

 23 {

 24 int tempHours; // To hold the number of hours entered

 25 double tempRate; // To hold the pay rate entered

 26

 27 cout << "Hours worked by employee #" << (index + 1);

 28 cout << ": ";

 29 cin >> tempHours;

 30 hours.push_back(tempHours); // Add an element to hours

 31 cout << "Hourly pay rate for employee #";

 32 cout << (index + 1) << ": ";

 33 cin >> tempRate;

 34 payRate.push_back(tempRate); // Add an element to payRate

 35 }

 36

 37 // Display each employee's gross pay.

 38 cout << "Here is the gross pay for each employee:\n";

 39 cout << fixed << showpoint << setprecision(2);

 40 for (index = 0; index < numEmployees; index++)

 41 {

 42 double grossPay = hours[index] * payRate[index];

 43 cout << "Employee #" << (index + 1);

 44 cout << ": $" << grossPay << endl;

 45 }

 46 return 0;

 47 }

(program output continues)

M07_GADD6253_07_SE_C07 Page 431 Thursday, January 6, 2011 2:49 PM

432 Chapter 7 Arrays

Notice that in lines 40 through 45 the second loop, which calculates and displays each

employee s gross pay, uses the [] operator to access the elements of the hours and

payRate vectors:

for (index = 0; index < numEmployees; index++)

{

 double grossPay = hours[index] * payRate[index];

 cout << "Employee #" << (index + 1);

 cout << ": $" << grossPay << endl;

}

This is possible because the rst loop in lines 22 through 35 uses the push_back member

function to create the elements in the two vectors.

Determining the Size of a vector

Unlike arrays, vectors can report the number of elements they contain. This is accom-

plished with the size member function. Here is an example of a statement that uses the

size member function:

numValues = set.size();

In this statement, assume that numValues is an int and set is a vector. After the state-

ment executes, numValues will contain the number of elements in set.

The size member function is especially useful when you are writing functions that accept

vectors as arguments. For example, look at the following code for the showValues function:

void showValues(vector<int> vect)

{

 for (int count = 0; count < vect.size(); count++)

 cout << vect[count] << endl;

}

Because the vector can report its size, this function does not need to accept a second

argument indicating the number of elements in the vector. Program 7-23 demonstrates

this function.

Program Output with Example Input Shown in Bold

How many employees do you have? 3 [Enter]
Enter the hours worked by 3 employees and their hourly rates.

Hours worked by employee #1: 40 [Enter]
Hourly pay rate for employee #1: 12.63 [Enter]
Hours worked by employee #2: 25 [Enter]
Hourly pay rate for employee #2: 10.35 [Enter]
Hours worked by employee #3: 45 [Enter]
Hourly pay rate for employee #3: 22.65 [Enter]

Here is the gross pay for each employee:

Employee #1: $505.20

Employee #2: $258.75

Employee #3: $1019.2

Program 7-22 (continued)

M07_GADD6253_07_SE_C07 Page 432 Thursday, January 6, 2011 2:49 PM

7.11 If You Plan to Continue in Computer Science: Introduction to the STL vector 433

Removing Elements from a vector

Use the pop_back member function to remove the last element from a vector. In the fol-

lowing statement, assume that collection is the name of a vector.

collection.pop_back();

This statement removes the last element from the collection vector. Program 7-24 dem-

onstrates the function.

Program 7-23

 1 // This program demonstrates the vector size

 2 // member function.

 3 #include <iostream>

 4 #include <vector>

 5 using namespace std;

 6

 7 // Function prototype

 8 void showValues(vector<int>);

 9

 10 int main()

 11 {

 12 vector<int> values;

 13

 14 // Put a series of numbers in the vector.

 15 for (int count = 0; count < 7; count++)

 16 values.push_back(count * 2);

 17

 18 // Display the numbers.

 19 showValues(values);

 20 return 0;

 21 }

 22

 23 //**

 24 // Definition of function showValues. *

 25 // This function accepts an int vector as its *

 26 // argument. The value of each of the vector's *

 27 // elements is displayed. *

 28 //**

 29

 30 void showValues(vector<int> vect)

 31 {

 32 for (int count = 0; count < vect.size(); count++)

 33 cout << vect[count] << endl;

 34 }

Program Output

0

2

4

6

8

10

12

M07_GADD6253_07_SE_C07 Page 433 Thursday, January 6, 2011 2:49 PM

434 Chapter 7 Arrays

Clearing a vector

To completely clear the contents of a vector, use the clear member function, as shown

in the following statement:

numbers.clear();

After this statement executes, numbers will be cleared of all its elements. Program 7-25

demonstrates the function.

Program 7-24

 1 // This program demonstrates the vector pop_back member function.

 2 #include <iostream>

 3 #include <vector>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 vector<int> values;

 9

 10 // Store values in the vector.

 11 values.push_back(1);

 12 values.push_back(2);

 13 values.push_back(3);

 14 cout << "The size of values is " << values.size() << endl;

 15

 16 // Remove a value from the vector.

 17 cout << "Popping a value from the vector...\n";

 18 values.pop_back();

 19 cout << "The size of values is now " << values.size() << endl;

 20

 21 // Now remove another value from the vector.

 22 cout << "Popping a value from the vector...\n";

 23 values.pop_back();

 24 cout << "The size of values is now " << values.size() << endl;

 25

 26 // Remove the last value from the vector.

 27 cout << "Popping a value from the vector...\n";

 28 values.pop_back();

 29 cout << "The size of values is now " << values.size() << endl;

 30 return 0;

 31 }

Program Output

The size of values is 3

Popping a value from the vector...

The size of values is now 2

Popping a value from the vector...

The size of values is now 1

Popping a value from the vector...

The size of values is now 0

M07_GADD6253_07_SE_C07 Page 434 Thursday, January 6, 2011 2:49 PM

7.11 If You Plan to Continue in Computer Science: Introduction to the STL vector 435

Detecting an Empty vector

To determine if a vector is empty, use the empty member function. The function returns

true if the vector is empty, and false if the vector has elements stored in it. Assuming

set is a vector, here is an example of its use:

if (set.empty())

 cout << "No values in set.\n";

Program 7-26 uses a function named avgVector, which demonstrates the empty member

function.

Program 7-25

 1 // This program demonstrates the vector clear member function.

 2 #include <iostream>

 3 #include <vector>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 vector<int> values(100);

 9

 10 cout << "The values vector has "

 11 << values.size() << " elements.\n";

 12 cout << "I will call the clear member function...\n";

 13 values.clear();

 14 cout << "Now, the values vector has "

 15 << values.size() << " elements.\n";

 16 return 0;

 17 }

Program Output

The values vector has 100 elements.

I will call the clear member function...

Now, the values vector has 0 elements.

Program 7-26

 1 // This program demonstrates the vector's empty member function.

 2 #include <iostream>

 3 #include <vector>

 4 using namespace std;

 5

 6 // Function prototype

 7 double avgVector(vector<int>);

 8

 9 int main()

 10 {

 11 vector<int> values; // A vector to hold values

 12 int numValues; // The number of values

 13 double average; // To hold the average

 14

(program continues)

M07_GADD6253_07_SE_C07 Page 435 Thursday, January 6, 2011 2:49 PM

436 Chapter 7 Arrays

 15 // Get the number of values to average.

 16 cout << "How many values do you wish to average? ";

 17 cin >> numValues;

 18

 19 // Get the values and store them in the vector.

 20 for (int count = 0; count < numValues; count++)

 21 {

 22 int tempValue;

 23 cout << "Enter a value: ";

 24 cin >> tempValue;

 25 values.push_back(tempValue);

 26 }

 27

 28 // Get the average of the values and display it.

 29 average = avgVector(values);

 30 cout << "Average: " << average << endl;

 31 return 0;

 32 }

 33

 34 //***

 35 // Definition of function avgVector. *

 36 // This function accepts an int vector as its argument. If *

 37 // the vector contains values, the function returns the *

 38 // average of those values. Otherwise, an error message is *

 39 // displayed and the function returns 0.0. *

 40 //***

 41

 42 double avgVector(vector<int> vect)

 43 {

 44 int total = 0; // accumulator

 45 double avg; // average

 46

 47 if (vect.empty()) // Determine if the vector is empty

 48 {

 49 cout << "No values to average.\n";

 50 avg = 0.0;

 51 }

 52 else

 53 {

 54 for (int count = 0; count < vect.size(); count++)

 55 total += vect[count];

 56 avg = total / vect.size();

 57 }

 58 return avg;

 59 }

Program Output with Example Input Shown in Bold

How many values do you wish to average? 5 [Enter]
Enter a value: 12

Enter a value: 18

Enter a value: 3

Enter a value: 7

Enter a value: 9

Average: 9

Program 7-26 (continued)

M07_GADD6253_07_SE_C07 Page 436 Thursday, January 6, 2011 2:49 PM

7.11 If You Plan to Continue in Computer Science: Introduction to the STL vector 437

Summary of vector Member Functions

Table 7-4 provides a summary of the vector member function we have discussed, as well

as some additional ones.

Program Output with Different Example Input Shown in Bold

How many values do you wish to average? 0 [Enter]
No values to average.

Average: 0

Table 7-4

Member Function Description

at(element) Returns the value of the element located at element in the vector.

Example:

 x = vect.at(5);

This statement assigns the value of the fth element of vect to x.

capacity() Returns the maximum number of elements that may be stored in the

vector without additional memory being allocated. (This is not the

same value as returned by the size member function).

Example:

 x = vect.capacity();

This statement assigns the capacity of vect to x.

clear() Clears a vector of all its elements.

Example:

 vect.clear();

This statement removes all the elements from vect.

empty() Returns true if the vector is empty. Otherwise, it returns false.

Example:

 if (vect.empty())

 cout << "The vector is empty.";

This statement displays the message if vect is empty.

pop_back() Removes the last element from the vector.

Example:

 vect.pop_back();

This statement removes the last element of vect, thus reducing its size

by 1.

(table continues)

M07_GADD6253_07_SE_C07 Page 437 Thursday, January 6, 2011 2:49 PM

438 Chapter 7 Arrays

Checkpoint

 www.myprogramminglab.com

7.27 What header le must you #include in order to de ne vector objects?

7.28 Write a de nition statement for a vector named frogs. frogs should be an

empty vector of ints.

7.29 Write a de nition statement for a vector named lizards. lizards should be a

vector of 20 floats.

7.30 Write a de nition statement for a vector named toads. toads should be a vector

of 100 chars, with each element initialized to 'Z'.

7.31 gators is an empty vector of ints. Write a statement that stores the value 27 in

gators.

7.32 snakes is a vector of doubles, with 10 elements. Write a statement that stores

the value 12.897 in element 4 of the snakes vector.

push_back(value) Stores a value in the last element of the vector. If the vector is full

or empty, a new element is created.

Example:

 vect.push_back(7);

This statement stores 7 in the last element of vect.

reverse() Reverses the order of the elements in the vector. (The last element

becomes the rst element, and the rst element becomes the last

element.)

Example:

 vect.reverse();

This statement reverses the order of the element in vect.

resize(elements, value) Resizes a vector by elements elements. Each of the new elements is

initialized with the value in value.

Example:

 vect.resize(5, 1);

This statement increases the size of vect by ve elements. The ve

new elements are initialized to the value 1.

swap(vector2) Swaps the contents of the vector with the contents of vector2.

Example:

 vect1.swap(vect2);

This statement swaps the contents of vect1 and vect2

Table 7-4 (continued)

Member Function Description

M07_GADD6253_07_SE_C07 Page 438 Thursday, January 6, 2011 2:49 PM

Review Questions and Exercises 439

Review Questions and Exercises

Short Answer

1. What is the difference between a size declarator and a subscript?

2. Look at the following array definition.

int values[10];

How many elements does the array have?

What is the subscript of the rst element in the array?

What is the subscript of the last element in the array?

Assuming that an int uses four bytes of memory, how much memory does the array use?

3. Why should a function that accepts an array as an argument, and processes that
array, also accept an argument specifying the array s size?

4. Consider the following array definition:

int values[5] = { 4, 7, 6, 8, 2 };

What does each of the following statements display?

cout << values[4] << endl; __________

cout << (values[2] + values[3]) << endl; __________

cout << ++values[1] << endl; __________

5. How do you define an array without providing a size declarator?

6. Look at the following array definition.

int numbers[5] = { 1, 2, 3 };

What value is stored in numbers[2]?

What value is stored in numbers[4]?

7. Assuming that array1 and array2 are both arrays, why is it not possible to assign
the contents of array2 to array1 with the following statement?

array1 = array2;

8. Assuming that numbers is an array of doubles, will the following statement display
the contents of the array?

cout << numbers << endl;

9. Is an array passed to a function by value or by reference?

10. When you pass an array name as an argument to a function, what is actually being
passed?

11. How do you establish a parallel relationship between two or more arrays?

12. Look at the following array definition.

double sales[8][10];

How many rows does the array have?

How many columns does the array have?

M07_GADD6253_07_SE_C07 Page 439 Thursday, January 6, 2011 2:49 PM

440 Chapter 7 Arrays

How many elements does the array have?

Write a statement that stores a number in the last column of the last row in the array.

13. When writing a function that accepts a two-dimensional array as an argument, which
size declarator must you provide in the parameter for the array?

14. What advantages does a vector offer over an array?

Fill-in-the-Blank

15. The _________ indicates the number of elements, or values, an array can hold.

16. The size declarator must be a(n) _________ with a value greater than _________.

17. Each element of an array is accessed and indexed by a number known as a(n)
_________.

18. Subscript numbering in C++ always starts at _________.

19. The number inside the brackets of an array definition is the _________, but the num-
ber inside an array s brackets in an assignment statement, or any other statement that
works with the contents of the array, is the _________.

20. C++ has no array _________ checking, which means you can inadvertently store data
past the end of an array.

21. Starting values for an array may be specified with a(n) _________ list.

22. If an array is partially initialized, the uninitialized elements will be set to _________.

23. If the size declarator of an array definition is omitted, C++ counts the number of items
in the _________ to determine how large the array should be.

24. By using the same _________ for multiple arrays, you can build relationships between
the data stored in the arrays.

25. You cannot use the _________ operator to copy data from one array to another in a
single statement.

26. Any time the name of an array is used without brackets and a subscript, it is seen as
_________.

27. To pass an array to a function, pass the _________ of the array.

28. A(n) _________ array is like several arrays of the same type put together.

29. It s best to think of a two-dimensional array as having _________ and _________.

30. To define a two-dimensional array, _________ size declarators are required.

31. When initializing a two-dimensional array, it helps to enclose each row s initialization
list in _________.

32. When a two-dimensional array is passed to a function the _________ size must
be specified.

33. The ____________________ is a collection of programmer-defined data types and
algorithms that you may use in your programs

34. The two types of containers defined by the STL are ___________ and
______________.

M07_GADD6253_07_SE_C07 Page 440 Thursday, January 6, 2011 2:49 PM

Review Questions and Exercises 441

35. The vector data type is a(n) ______________ container.

36. To define a vector in your program, you must #include the ____________ header
file.

37. To store a value in a vector that does not have a starting size, or that is already full,
use the ________________ member function.

38. To determine the number of elements in a vector, use the _____________ member
function.

39. Use the ________________ member function to remove the last element from a vector.

40. To completely clear the contents of a vector, use the ___________ member function.

Algorithm Workbench

41. names is an integer array with 20 elements. Write a for loop that prints each element
of the array.

42. The arrays numberArray1 and numberArray2 have 100 elements. Write code that
copies the values in numberArray1 to numberArray2.

43. In a program you need to store the identification numbers of 10 employees (as ints)
and their weekly gross pay (as doubles).

A) De ne two arrays that may be used in parallel to store the 10 employee identi ca-

tion numbers and gross pay amounts.

B) Write a loop that uses these arrays to print each employee s identi cation number

and weekly gross pay.

44. Define a two-dimensional array of integers named grades. It should have 30 rows
and 10 columns.

45. In a program you need to store the populations of 12 countries.

A) De ne two arrays that may be used in parallel to store the names of the countries

and their populations.

B) Write a loop that uses these arrays to print each country s name and its population.

46. The following code totals the values in two arrays: numberArray1 and
numberArray2. Both arrays have 25 elements. Will the code print the correct sum of
values for both arrays? Why or why not?

int total = 0; // Accumulator

int count; // Loop counter

// Calculate and display the total of the first array.

for (count = 0; count < 24; count++)

 total += numberArray1[count];

cout << "The total for numberArray1 is " << total << endl;

// Calculate and display the total of the second array.

for (count = 0; count < 24; count++)

 total += numberArray2[count];

cout << "The total for numberArray2 is " << total << endl;

47. Look at the following array definition.

int numberArray[9][11];

Write a statement that assigns 145 to the rst column of the rst row of this array.

Write a statement that assigns 18 to the last column of the last row of this array.

M07_GADD6253_07_SE_C07 Page 441 Thursday, January 6, 2011 2:49 PM

442

Chapter 7 Arrays

48.

values

 is a two-dimensional array of

float

s with 10 rows and 20 columns. Write
code that sums all the elements in the array and stores the sum in the variable

total

.

49. An application uses a two-dimensional array defined as follows.

int days[29][5];

Write code that sums each row in the array and displays the results.

Write code that sums each column in the array and displays the results.

True or False

50. T F An array s size declarator can be either a literal, a named constant, or a variable.

51. T F To calculate the amount of memory used by an array, multiply the number of

elements by the number of bytes each element uses.

52. T F The individual elements of an array are accessed and indexed by unique

numbers.

53. T F The rst element in an array is accessed by the subscript 1.

54. T F The subscript of the last element in a single-dimensional array is one less than

the total number of elements in the array.

55. T F The contents of an array element cannot be displayed with

cout

.

56. T F Subscript numbers may be stored in variables.

57. T F You can write programs that use invalid subscripts for an array.

58. T F Arrays cannot be initialized when they are de ned. A loop or other means must

be used.

59. T F The values in an initialization list are stored in the array in the order they

appear in the list.

60. T F C++ allows you to partially initialize an array.

61. T F If an array is partially initialized, the uninitialized elements will contain

garbage.

62. T F If you leave an element uninitialized, you do not have to leave all the ones that

follow it uninitialized.

63. T F If you leave out the size declarator of an array de nition, you do not have to

include an initialization list.

64. T F The uninitialized elements of a

string

 array will automatically be set to the

value

"0"

.

65. T F You cannot use the assignment operator to copy one array s contents to

another in a single statement.

66. T F When an array name is used without brackets and a subscript, it is seen as the

value of the rst element in the array.

67. T F To pass an array to a function, pass the name of the array.

68. T F When de ning a parameter variable to hold a single-dimensional array argu-

ment, you do not have to include the size declarator.

69. T F When an array is passed to a function, the function has access to the original

array.

70. T F A two-dimensional array is like several identical arrays put together.

M07_GADD6253_07_SE_C07 Page 442 Monday, January 17, 2011 2:50 PM

Review Questions and Exercises 443

71. T F It s best to think of two-dimensional arrays as having rows and columns.

72. T F The rst size declarator (in the declaration of a two-dimensional array) repre-

sents the number of columns. The second size de nition represents the number

of rows.

73. T F Two-dimensional arrays may be passed to functions, but the row size must be

speci ed in the de nition of the parameter variable.

74. T F C++ allows you to create arrays with three or more dimensions.

75. T F A vector is an associative container.

76. T F To use a vector, you must include the vector header le.

77. T F vectors can report the number of elements they contain.

78. T F You can use the [] operator to insert a value into a vector that has no elements.

79. T F If you add a value to a vector that is already full, the vector will automati-

cally increase its size to accommodate the new value.

Find the Error

Each of the following de nitions and program segments has errors. Locate as many as you can.

80. int size;

double values[size];

81. int collection[-20];

82. int table[10];

for (int x = 0; x < 20; x++)

{

 cout << "Enter the next value: ";

 cin >> table[x];

}

83. int hours[3] = 8, 12, 16;

84. int numbers[8] = {1, 2, , 4, , 5};

85. float ratings[];

86. char greeting[] = {'H', 'e', 'l', 'l', 'o'};

cout << greeting;

87. int array1[4], array2[4] = {3, 6, 9, 12};

array1 = array2;

88. void showValues(int nums)

{

 for (int count = 0; count < 8; count++)

 cout << nums[count];

}

89. void showValues(int nums[4][])

{

 for (rows = 0; rows < 4; rows++)

 for (cols = 0; cols < 5; cols++)

 cout << nums[rows][cols];

}

M07_GADD6253_07_SE_C07 Page 443 Thursday, January 6, 2011 2:49 PM

444 Chapter 7 Arrays

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. Largest/Smallest Array Values

Write a program that lets the user enter 10 values into an array. The program should

then display the largest and smallest values stored in the array.

2. Rainfall Statistics

Write a program that lets the user enter the total rainfall for each of 12 months into an

array of doubles. The program should calculate and display the total rainfall for the

year, the average monthly rainfall, and the months with the highest and lowest amounts.

Input Validation: Do not accept negative numbers for monthly rainfall gures.

3. Chips and Salsa

Write a program that lets a maker of chips and salsa keep track of sales for ve differ-

ent types of salsa: mild, medium, sweet, hot, and zesty. The program should use two

parallel 5-element arrays: an array of strings that holds the ve salsa names and an

array of integers that holds the number of jars sold during the past month for each

salsa type. The salsa names should be stored using an initialization list at the time the

name array is created. The program should prompt the user to enter the number of

jars sold for each type. Once this sales data has been entered, the program should pro-

duce a report that displays sales for each salsa type, total sales, and the names of the

highest selling and lowest selling products.

Input Validation: Do not accept negative values for number of jars sold.

4. Monkey Business

A local zoo wants to keep track of how many pounds of food each of its three monkeys eats

each day during a typical week. Write a program that stores this information in a two-

dimensional 3 * 7 array, where each row represents a different monkey and each column

represents a different day of the week. The program should rst have the user input the data

for each monkey. Then it should create a report that includes the following information:

Average amount of food eaten per day by the whole family of monkeys.

The least amount of food eaten during the week by any one monkey.

The greatest amount of food eaten during the week by any one monkey.

Input Validation: Do not accept negative numbers for pounds of food eaten.

5. Rain or Shine

An amateur meteorologist wants to keep track of weather conditions during the past

year s three-month summer season and has designated each day as either rainy (R),

cloudy (C), or sunny (S). Write a program that stores this information in a 3 * 30

array of characters, where the row indicates the month (0 = June, 1 = July, 2 = August)

and the column indicates the day of the month. Note that data are not being collected

for the 31st of any month. The program should begin by reading the weather data in

from a le. Then it should create a report that displays, for each month and for the

whole three-month period, how many days were rainy, how many were cloudy, and

how many were sunny. It should also report which of the three months had the largest

number of rainy days. Data for the program can be found in the RainOrShine.dat le.

VideoNote

Solving the

Chips and

Salsa Problem

M07_GADD6253_07_SE_C07 Page 444 Thursday, January 6, 2011 2:49 PM

Review Questions and Exercises 445

6. Number Analysis Program

Write a program that asks the user for a le name. Assume the le contains a series of

numbers, each written on a separate line. The program should read the contents of the

le into an array and then display the following data:

* The lowest number in the array

* The highest number in the array

* The total of the numbers in the array

* The average of the numbers in the array

If you have downloaded this book s source code from the companion Web site, you

will nd a le named numbers.txt in the Chapter 06 folder. You can use the le to test

the program. (The companion Web site is at www.pearsonhighered.com/gaddis.)

7. Quarterly Sales Statistics

Write a program that lets the user enter four quarterly sales gures for six divisions of

a company. The gures should be stored in a two-dimensional array. Once the gures

are entered, the program should display the following data for each quarter:

* A list of the sales figures by division

* Each division s increase or decrease from the previous quarter (This will not be

displayed for the first quarter.)

* The total sales for the quarter

* The company s increase or decrease from the previous quarter (This will not be

displayed for the first quarter.)

* The average sales for all divisions that quarter

* The division with the highest sales for that quarter

The program should be modular, with functions that calculate the statistics above.

Input Validation: Do not accept negative numbers for sales gures.

8. Payroll

Write a program that uses the following arrays:

* empId: an array of seven long integers to hold employee identification numbers.

The array should be initialized with the following numbers:

5658845 4520125 7895122 8777541

8451277 1302850 7580489

* hours: an array of seven integers to hold the number of hours worked by each

employee

* payRate: an array of seven doubles to hold each employee s hourly pay rate

* wages: an array of seven doubles to hold each employee s gross wages

The program should relate the data in each array through the subscripts. For exam-

ple, the number in element 0 of the hours array should be the number of hours

worked by the employee whose identi cation number is stored in element 0 of the

empId array. That same employee s pay rate should be stored in element 0 of the

payRate array.

The program should display each employee number and ask the user to enter that

employee s hours and pay rate. It should then calculate the gross wages for that

employee (hours times pay rate) and store them in the wages array. After the data has

Programming Challenges

M07_GADD6253_07_SE_C07 Page 445 Thursday, January 6, 2011 2:49 PM

446 Chapter 7 Arrays

been entered for all the employees, the program should display each employee s iden-

ti cation number and gross wages.

Input Validation: Do not accept negative values for hours or numbers less than 6.00

for pay rate.

9. Driver s License Exam

The local Driver s License Of ce has asked you to write a program that grades the

written portion of the driver s license exam. The exam has 20 multiple choice ques-

tions. Here are the correct answers:

1. B 6. A 11. B 16. C
2. D 7. B 12. C 17. C
3. A 8. A 13. D 18. B
4. A 9. C 14. A 19. D
5. C 10. D 15. D 20. A

Your program should store the correct answers shown above in an array. It should ask

the user to enter the student s answers for each of the 20 questions, and the answers

should be stored in another array. After the student s answers have been entered, the

program should display a message indicating whether the student passed or failed the

exam. (A student must correctly answer 15 of the 20 questions to pass the exam.)

It should then display the total number of correctly answered questions, the total

number of incorrectly answered questions, and a list showing the question numbers of

the incorrectly answered questions.

Input Validation: Only accept the letters A, B, C, or D as answers.

10. Exam Grader

One of your professors has asked you to write a program to grade her nal exams,

which consist of only 20 multiple-choice questions. Each question has one of four possi-

ble answers: A, B, C, or D. The le CorrectAnswers.txt contains the correct answers for

all of the questions, with each answer written on a separate line. The rst line contains

the answer to the rst question, the second line contains the answer to the second ques-

tion, and so forth. (Download the book s source code from the companion Web site at

www.pearsonhighered.com/gaddis. You will nd the le in the Chapter 07 folder.)

Write a program that reads the contents of the CorrectAnswers.txt le into a char

array, and then reads the contents of another le, containing a student s answers, into

a second char array. (You can use the le StudentAnswers.txt for testing purposes.

This le is also in the Chapter 07 source code folder, available on the book s companion

Web site.) The program should determine the number of questions that the student

missed, and then display the following:

* A list of the questions missed by the student, showing the correct answer and the

incorrect answer provided by the student for each missed question

* The total number of questions missed

* The percentage of questions answered correctly. This can be calculated as

Correctly Answered Questions ÷ Total Number of Questions

* If the percentage of correctly answered questions is 70% or greater, the program

should indicate that the student passed the exam. Otherwise, it should indicate

that the student failed the exam.

M07_GADD6253_07_SE_C07 Page 446 Thursday, January 6, 2011 2:49 PM

Review Questions and Exercises 447

11. Grade Book

A teacher has ve students who have taken four tests. The teacher uses the following

grading scale to assign a letter grade to a student, based on the average of his or her

four test scores.

Write a program that uses an array of string objects to hold the ve student names,

an array of ve characters to hold the ve students letter grades, and ve arrays of

four doubles to hold each student s set of test scores.

The program should allow the user to enter each student s name and his or her four

test scores. It should then calculate and display each student s average test score and a

letter grade based on the average.

Input Validation: Do not accept test scores less than 0 or greater than 100.

12. Grade Book Modi cation

Modify the grade book application in Programming Challenge 13 so it drops each

student s lowest score when determining the test score averages and letter grades.

13. Lottery Application

Write a program that simulates a lottery. The program should have an array of ve

integers named lottery, and should generate a random number in the range of 0

through 9 for each element in the array. The user should enter ve digits which should

be stored in an integer array named user. The program is to compare the correspond-

ing elements in the two arrays and keep a count of the digits that match. For example,

the following shows the lottery array and the user array with sample numbers

stored in each. There are two matching digits (elements 2 and 4).

lottery array:

user array:

The program should display the random numbers stored in the lottery array and the

number of matching digits. If all of the digits match, display a message proclaiming

the user as a grand prize winner.

Test Score Letter Grade

90 100 A

80 89 B

70 79 C

60 69 D

0 59 F

7 4 9 1 3

4 2 9 7 3

Programming Challenges

M07_GADD6253_07_SE_C07 Page 447 Thursday, January 6, 2011 2:49 PM

448 Chapter 7 Arrays

14. vector Modi cation

Modify the National Commerce Bank case study presented in Program 7-21 so pin1,

pin2, and pin3 are vectors instead of arrays. You must also modify the testPIN

function to accept a vector instead of an array.

15. Tic-Tac-Toe Game

Write a program that allows two players to play a game of tic-tac-toe. Use a two-

dimensional char array with three rows and three columns as the game board. Each

element of the array should be initialized with an asterisk (*). The program should run a

loop that

* Displays the contents of the board array

* Allows player 1 to select a location on the board for an X. The program should

ask the user to enter the row and column number.

* Allows player 2 to select a location on the board for an O. The program should

ask the user to enter the row and column number.

* Determines whether a player has won, or a tie has occurred. If a player has won,

the program should declare that player the winner and end. If a tie has occurred,

the program should say so and end.

Player 1 wins when there are three Xs in a row on the game board. The Xs can appear

in a row, in a column, or diagonally across the board. A tie occurs when all of the

locations on the board are full, but there is no winner.

16. 2D Array Operations

Write a program that creates a two-dimensional array initialized with test data. Use

any data type you wish. The program should have the following functions:

* getTotal. This function should accept a two-dimensional array as its argument

and return the total of all the values in the array.

* getAverage. This function should accept a two-dimensional array as its argu-

ment and return the average of all the values in the array.

* getRowTotal. This function should accept a two-dimensional array as its first

argument and an integer as its second argument. The second argument should be

the subscript of a row in the array. The function should return the total of the val-

ues in the specified row.

* getColumnTotal. This function should accept a two-dimensional array as its first

argument and an integer as its second argument. The second argument should be

the subscript of a column in the array. The function should return the total of the

values in the specified column.

* getHighestInRow. This function should accept a two-dimensional array as its

first argument and an integer as its second argument. The second argument

should be the subscript of a row in the array. The function should return the high-

est value in the specified row of the array.

* getLowestInRow. This function should accept a two-dimensional array as its first

argument and an integer as its second argument. The second argument should be

the subscript of a row in the array. The function should return the lowest value in

the specified row of the array.

Demonstrate each of the functions in this program.

M07_GADD6253_07_SE_C07 Page 448 Thursday, January 6, 2011 2:49 PM

Review Questions and Exercises 449

Group Project

17. Theater Seating

This program should be designed and written by a team of students. Here are some

suggestions:

One student should design function main, which will call the other functions in

the program. The remainder of the functions will be designed by other members

of the team.

The requirements of the program should be analyzed so each student is given

about the same work load.

The parameters and return types of each function should be decided in advance.

The program can be implemented as a multi-file program, or all the functions can

be cut and pasted into the main file.

Here is the assignment: Write a program that can be used by a small theater to sell

tickets for performances. The theater s auditorium has 15 rows of seats, with 30 seats

in each row. The program should display a screen that shows which seats are avail-

able and which are taken. For example, the following screen shows a chart depicting

each seat in the theater. Seats that are taken are represented by an * symbol, and seats

that are available are represented by a # symbol:

Seats

123456789012345678901234567890

Row 1 ***###***###*########*****####

Row 2 ####*************####*******##

Row 3 **###**********########****###

Row 4 **######**************##******

Row 5 ********#####*********########

Row 6 ##############************####

Row 7 #######************###########

Row 8 ************##****############

Row 9 #########*****############****

Row 10 #####*************############

Row 11 #**********#################**

Row 12 #############********########*

Row 13 ###***********########**######

Row 14 ##############################

Row 15 ##############################

Here is a list of tasks this program must perform:

When the program begins, it should ask the user to enter the seat prices for each

row. The prices can be stored in a separate array. (Alternatively, the prices may

be read from a file.)

Once the prices are entered, the program should display a seating chart similar to

the one shown above. The user may enter the row and seat numbers for tickets

being sold. Every time a ticket or group of tickets is purchased, the program

should display the total ticket prices and update the seating chart.

The program should keep a total of all ticket sales. The user should be given an

option of viewing this amount.

Programming Challenges

M07_GADD6253_07_SE_C07 Page 449 Thursday, January 6, 2011 2:49 PM

450 Chapter 7 Arrays

* The program should also give the user an option to see a list of how many seats

have been sold, how many seats are available in each row, and how many seats

are available in the entire auditorium.

Input Validation: When tickets are being sold, do not accept row or seat numbers that

do not exist. When someone requests a particular seat, the program should make sure

that seat is available before it is sold.

M07_GADD6253_07_SE_C07 Page 450 Thursday, January 6, 2011 2:49 PM

451

C
H

A
P

T
E

R

8

Searching and Sorting
Arrays

8.1

Focus on Software Engineering:
Introduction to Search Algorithms

CONCEPT:

A search algorithm is a method of locating a speci c item in a larger collection

of data. This section discusses two algorithms for searching the contents of

an array.

It s very common for programs not only to store and process data stored in arrays, but to

search arrays for speci c items. This section will show you two methods of searching an

array: the linear search and the binary search. Each has its advantages and disadvantages.

The Linear Search

The

linear search

 is a very simple algorithm. Sometimes called a

sequential search

, it uses

a loop to sequentially step through an array, starting with the rst element. It compares

each element with the value being searched for, and stops when either the value is found

or the end of the array is encountered. If the value being searched for is not in the array,

the algorithm will unsuccessfully search to the end of the array.

TOPICS

8.1 Focus on Software Engineering:

Introduction to Search Algorithms

8.2 Focus on Problem Solving

and Program Design: A Case Study

8.3 Focus on Software Engineering:

Introduction to Sorting Algorithms

8.4 Focus on Problem Solving

and Program Design: A Case Study

8.5 If You Plan to Continue in

Computer Science: Sorting

and Searching

vector

s

M08_GADD6253_07_SE_C08 Page 451 Thursday, January 6, 2011 3:09 PM

452

Chapter 8 Searching and Sorting Arrays

Here is the pseudocode for a function that performs the linear search:

Set found to false.

Set position to -1.

Set index to 0.

While found is false and index < number of elements

 If list[index] is equal to search value

 found = true.

 position = index.

 End If

 Add 1 to index.

End While.

Return position.

The function

searchList

 shown below is an example of C++ code used to perform a

linear search on an integer array. The array

list

, which has a maximum of

numElems

elements, is searched for an occurrence of the number stored in

value

. If the number is

found, its array subscript is returned. Otherwise, 1 is returned indicating the value did

not appear in the array.

int searchList(const int list[], int numElems, int value)

{

 int index = 0; // Used as a subscript to search array

 int position = -1; // To record position of search value

 bool found = false; // Flag to indicate if the value was found

 while (index < numElems && !found)

 {

 if (list[index] == value) // If the value is found

 {

 found = true; // Set the flag

 position = index; // Record the value's subscript

 }

 index++; // Go to the next element

 }

 return position; // Return the position, or -1

}

Program 8-1 is a complete program that uses the

searchList

 function. It searches the

ve-element array

tests

 to nd a score of 100.

NOTE:

The reason 1 is returned when the search value is not found in the array is

because 1 is not a valid subscript.

Program 8-1

 1 // This program demonstrates the searchList function, which

 2 // performs a linear search on an integer array.

 3 #include <iostream>

 4 using namespace std;

 5

M08_GADD6253_07_SE_C08 Page 452 Thursday, January 6, 2011 3:09 PM

8.1 Focus on Software Engineering: Introduction to Search Algorithms

453

 6 // Function prototype

 7 int searchList(const int [], int, int);

 8 const int SIZE = 5;

 9

 10 int main()

 11 {

 12 int tests[SIZE] = {87, 75, 98, 100, 82};

 13 int results;

 14

 15 // Search the array for 100.

 16 results = searchList(tests, SIZE, 100);

 17

 18 // If searchList returned -1, then 100 was not found.

 19 if (results == -1)

 20 cout << "You did not earn 100 points on any test\n";

 21 else

 22 {

 23 // Otherwise results contains the subscript of

 24 // the first 100 found in the array.

 25 cout << "You earned 100 points on test ";

 26 cout << (results + 1) << endl;

 27 }

 28 return 0;

 29 }

 30

 31 //***

 32 // The searchList function performs a linear search on an *

 33 // integer array. The array list, which has a maximum of numElems *

 34 // elements, is searched for the number stored in value. If the *

 35 // number is found, its array subscript is returned. Otherwise, *

 36 // -1 is returned indicating the value was not in the array. *

 37 //***

 38

 39 int searchList(const int list[], int numElems, int value)

 40 {

 41 int index = 0; // Used as a subscript to search array

 42 int position = -1; // To record position of search value

 43 bool found = false; // Flag to indicate if the value was found

 44

 45 while (index < numElems && !found)

 46 {

 47 if (list[index] == value) // If the value is found

 48 {

 49 found = true; // Set the flag

 50 position = index; // Record the value's subscript

 51 }

 52 index++; // Go to the next element

 53 }

 54 return position; // Return the position, or -1

 55 }

Program Output

You earned 100 points on test 4

M08_GADD6253_07_SE_C08 Page 453 Thursday, January 6, 2011 3:09 PM

454

Chapter 8 Searching and Sorting Arrays

Inef ciency of the Linear Search

The advantage of the linear search is its simplicity. It is very easy to understand and imple-

ment. Furthermore, it doesn t require the data in the array to be stored in any particular

order. Its disadvantage, however, is its inef ciency. If the array being searched contains

20,000 elements, the algorithm will have to look at all 20,000 elements in order to nd a

value stored in the last element (so the algorithm actually reads an element of the array

20,000 times).

In an average case, an item is just as likely to be found near the beginning of the array as

near the end. Typically, for an array of N items, the linear search will locate an item in

N/2 attempts. If an array has 50,000 elements, the linear search will make a comparison

with 25,000 of them in a typical case. This is assuming, of course, that the search item is

consistently found in the array. (N/2 is the average number of comparisons. The maxi-

mum number of comparisons is always N.)

When the linear search fails to locate an item, it must make a comparison with every ele-

ment in the array. As the number of failed search attempts increases, so does the average

number of comparisons. Obviously, the linear search should not be used on large arrays if

the speed is important.

The Binary Search

The

binary search

 is a clever algorithm that is much more ef cient than the linear search.

Its only requirement is that the values in the array be sorted in order. Instead of testing the

array s rst element, this algorithm starts with the element in the middle. If that element

happens to contain the desired value, then the search is over. Otherwise, the value in the

middle element is either greater than or less than the value being searched for. If it is

greater, then the desired value (if it is in the list) will be found somewhere in the rst half

of the array. If it is less, then the desired value (again, if it is in the list) will be found some-

where in the last half of the array. In either case, half of the array s elements have been

eliminated from further searching.

If the desired value wasn t found in the middle element, the procedure is repeated for the

half of the array that potentially contains the value. For instance, if the last half of the

array is to be searched, the algorithm immediately tests

its

 middle element. If the desired

value isn t found there, the search is narrowed to the quarter of the array that resides

before or after that element. This process continues until either the value being searched

for is found or there are no more elements to test.

Here is the pseudocode for a function that performs a binary search on an array:

Set first index to 0.

Set last index to the last subscript in the array.

Set found to false.

Set position to -1.

While found is not true and first is less than or equal to last

 Set middle to the subscript halfway between array[first]

 and array[last].

 If array[middle] equals the desired value

VideoNote

The Binary

Search

M08_GADD6253_07_SE_C08 Page 454 Thursday, January 6, 2011 3:09 PM

8.1 Focus on Software Engineering: Introduction to Search Algorithms

455

 Set found to true.

 Set position to middle.

 Else If array[middle] is greater than the desired value

 Set last to middle - 1.

 Else

 Set first to middle + 1.

 End If.

End While.

Return position.

This algorithm uses three index variables:

first

,

last

, and

middle

. The

first

 and

last

variables mark the boundaries of the portion of the array currently being searched. They

are initialized with the subscripts of the array s rst and last elements. The subscript of the

element halfway between

first

 and

last

 is calculated and stored in the

middle

 variable.

If the element in the middle of the array does not contain the search value, the

first

 or

last

 variables are adjusted so that only the top or bottom half of the array is searched

during the next iteration. This cuts the portion of the array being searched in half each

time the loop fails to locate the search value.

The function

binarySearch

 shown in the following example is used to perform a binary

search on an integer array. The rst parameter,

array

, which has a maximum of

numElems

 elements, is searched for an occurrence of the number stored in

value

. If the

number is found, its array subscript is returned. Otherwise, 1 is returned indicating the

value did not appear in the array.

int binarySearch(const int array[], int numElems, int value)

{

 int first = 0, // First array element

 last = numElems - 1, // Last array element

 middle, // Midpoint of search

 position = -1; // Position of search value

 bool found = false; // Flag

 while (!found && first <= last)

 {

 middle = (first + last) / 2; // Calculate midpoint

 if (array[middle] == value) // If value is found at mid

 {

 found = true;

 position = middle;

 }

 else if (array[middle] > value) // If value is in lower half

 last = middle - 1;

 else

 first = middle + 1; // If value is in upper half

 }

 return position;

}

Program 8-2 is a complete program using the

binarySearch

 function. It searches an

array of employee ID numbers for a speci c value.

M08_GADD6253_07_SE_C08 Page 455 Thursday, January 6, 2011 3:09 PM

456

Chapter 8 Searching and Sorting Arrays

Program 8-2

 1 // This program demonstrates the binarySearch function, which

 2 // performs a binary search on an integer array.

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Function prototype

 7 int binarySearch(const int [], int, int);

 8 const int SIZE = 20;

 9

 10 int main()

 11 {

 12 // Array with employee IDs sorted in ascending order.

 13 int idNums[SIZE] = {101, 142, 147, 189, 199, 207, 222,

 14 234, 289, 296, 310, 319, 388, 394,

 15 417, 429, 447, 521, 536, 600};

 16 int results; // To hold the search results

 17 int empID; // To hold an employee ID

 18

 19 // Get an employee ID to search for.

 20 cout << "Enter the employee ID you wish to search for: ";

 21 cin >> empID;

 22

 23 // Search for the ID.

 24 results = binarySearch(idNums, SIZE, empID);

 25

 26 // If results contains -1 the ID was not found.

 27 if (results == -1)

 28 cout << "That number does not exist in the array.\n";

 29 else

 30 {

 31 // Otherwise results contains the subscript of

 32 // the specified employee ID in the array.

 33 cout << "That ID is found at element " << results;

 34 cout << " in the array.\n";

 35 }

 36 return 0;

 37 }

 38

 39 //***

 40 // The binarySearch function performs a binary search on an *

 41 // integer array. array, which has a maximum of size elements, *

 42 // is searched for the number stored in value. If the number is *

 43 // found, its array subscript is returned. Otherwise, -1 is *

 44 // returned indicating the value was not in the array. *

 45 //***

 46

M08_GADD6253_07_SE_C08 Page 456 Thursday, January 6, 2011 3:09 PM

8.1 Focus on Software Engineering: Introduction to Search Algorithms

457

The Ef ciency of the Binary Search

Obviously, the binary search is much more ef cient than the linear search. Every time it

makes a comparison and fails to nd the desired item, it eliminates half of the remaining

portion of the array that must be searched. For example, consider an array with 1,000 ele-

ments. If the binary search fails to nd an item on the rst attempt, the number of ele-

ments that remains to be searched is 500. If the item is not found on the second attempt,

the number of elements that remains to be searched is 250. This process continues until

the binary search has either located the desired item or determined that it is not in the

array. With 1,000 elements, this takes no more than 10 comparisons. (Compare this to the

linear search, which would make an average of 500 comparisons!)

Powers of 2 are used to calculate the maximum number of comparisons the binary search

will make on an array of any size. (A power of 2 is 2 raised to the power of some number.)

Simply nd the smallest power of 2 that is greater than or equal to the number of elements

in the array. For example, a maximum of 16 comparisons will be made on an array of

50,000 elements (2

16

 = 65,536), and a maximum of 20 comparisons will be made on an

array of 1,000,000 elements (2

20

 = 1,048,576).

 47 int binarySearch(const int array[], int size, int value)

 48 {

 49 int first = 0, // First array element

 50 last = size - 1, // Last array element

 51 middle, // Midpoint of search

 52 position = -1; // Position of search value

 53 bool found = false; // Flag

 54

 55 while (!found && first <= last)

 56 {

 57 middle = (first + last) / 2; // Calculate midpoint

 58 if (array[middle] == value) // If value is found at mid

 59 {

 60 found = true;

 61 position = middle;

 62 }

 63 else if (array[middle] > value) // If value is in lower half

 64 last = middle - 1;

 65 else

 66 first = middle + 1; // If value is in upper half

 67 }

 68 return position;

 69 }

Program Output with Example Input Shown in Bold

Enter the employee ID you wish to search for:

199 [Enter]

That ID is found at element 4 in the array.

WARNING!

Notice that the array in Program 8-2 is initialized with its values already

sorted in ascending order. The binary search algorithm will not work properly unless the

values in the array are sorted.

M08_GADD6253_07_SE_C08 Page 457 Thursday, January 6, 2011 3:09 PM

458

Chapter 8 Searching and Sorting Arrays

8.2

Focus on Problem Solving and Program Design:
A Case Study

The Demetris Leadership Center (DLC, Inc.) publishes the books, DVDs, and audio CDs
listed in Table 8-1.

The manager of the Telemarketing Group has asked you to write a program that will help
order-entry operators look up product prices. The program should prompt the user to enter
a product number, and will then display the title, description, and price of the product.

Variables

Table 8-2 lists the variables needed:

Table 8-1

Product Title

Product

Description

Product

Number Unit Price

Six Steps to Leadership Book 914 $12.95

Six Steps to Leadership Audio CD 915 $14.95

The Road to Excellence DVD 916 $18.95

Seven Lessons of Quality Book 917 $16.95

Seven Lessons of Quality Audio CD 918 $21.95

Seven Lessons of Quality DVD 919 $31.95

Teams Are Made, Not Born Book 920 $14.95

Leadership for the Future Book 921 $14.95

Leadership for the Future Audio CD 922 $16.95

Table 8-2

Variable Description

NUM_PRODS

A constant integer initialized with the number of products the Demetris Leadership

Center sells. This value will be used in the de nition of the program s array.

MIN_PRODNUM

A constant integer initialized with the lowest product number.

MAX_PRODNUM

A constant integer initialized with the highest product number.

id

Array of integers. Holds each product s number.

title

Array of strings, initialized with the titles of products.

description

Array of strings, initialized with the descriptions of each product.

prices

Array of

double

s. Holds each product s price.

M08_GADD6253_07_SE_C08 Page 458 Thursday, January 6, 2011 3:09 PM

8.2 Focus on Problem Solving and Program Design: A Case Study

459

Modules

The program will consist of the functions listed in Table 8-3.

Function

main

Function

main

 contains the variable de nitions and calls the other functions. Here is its

pseudocode:

do

 Call getProdNum.

 Call binarySearch.

 If binarySearch returned -1

 Inform the user that the product number was not found.

 else

 Call displayProd.

 End If.

 Ask the user if the program should repeat.

While the user wants to repeat the program.

Here is its actual C++ code.

do

{

 // Get the desired product number.

 prodNum = getProdNum();

 // Search for the product number.

 index = binarySearch(id, NUM_PRODS, prodNum);

 // Display the results of the search.

 if (index == -1)

 cout << "That product number was not found.\n";

 else

 displayProd(title, description, prices, index);

 // Does the user want to do this again?

 cout << "Would you like to look up another product? (y/n) ";

 cin >> again;

} while (again == 'y' || again == 'Y');

Table 8-3

Function Description

main

The program s

main

 function. It calls the program s other functions.

getProdNum

Prompts the user to enter a product number. The function validates input and

rejects any value outside the range of correct product numbers.

binarySearch

A standard binary search routine. Searches an array for a speci ed value. If the

value is found, its subscript is returned. If the value is not found, 1 is returned.

displayProd

Uses a common subscript into the

title, description, and prices arrays to

display the title, description, and price of a product.

M08_GADD6253_07_SE_C08 Page 459 Thursday, January 6, 2011 3:09 PM

460 Chapter 8 Searching and Sorting Arrays

The named constant NUM_PRODS is de ned globally and initialized with the value 9. The

arrays id, title, description, and prices will already be initialized with data.

The getProdNum Function

The getProdNum function prompts the user to enter a product number. It tests the value to

ensure it is in the range of 914 922 (which are the valid product numbers). If an invalid

value is entered, it is rejected and the user is prompted again. When a valid product num-

ber is entered, the function returns it. The pseudocode is shown below.

Display a prompt to enter a product number.

Read prodNum.

While prodNum is invalid

 Display an error message.

 Read prodNum.

End While.

Return prodNum.

Here is the actual C++ code.

int getProdNum()

{

 int prodNum;

 cout << "Enter the item's product number: ";

 cin >> prodNum;

 // Validate input.

 while (prodNum < MIN_PRODNUM || prodNum > MAX_PRODNUM)

 {

 cout << "Enter a number in the range of " << MIN_PRODNUM;

 cout <<" through " << MAX_PRODNUM << ".\n";

 cin >> prodNum;

 }

 return prodNum;

}

The binarySearch Function

The binarySearch function is identical to the function discussed earlier in this chapter.

The displayProd Function

The displayProd function has parameter variables named title, desc, price, and

index. These accept as arguments (respectively) the title, description, and price

arrays, and a subscript value. The function displays the data stored in each array at the

subscript passed into index. Here is the C++ code.

M08_GADD6253_07_SE_C08 Page 460 Thursday, January 6, 2011 3:09 PM

8.2 Focus on Problem Solving and Program Design: A Case Study 461

void displayProd(const string title[], const string desc[],

 const double price[], int index)

{

 cout << "Title: " << title[index] << endl;

 cout << "Description: " << desc[index] << endl;

 cout << "Price: $" << price[index] << endl;

}

The Entire Program

Program 8-3 shows the entire program s source code.

Program 8-3

 1 // Demetris Leadership Center (DLC) product lookup program

 2 // This program allows the user to enter a product number

 3 // and then displays the title, description, and price of

 4 // that product.

 5 #include <iostream>

 6 #include <string>

 7 using namespace std;

 8

 9 const int NUM_PRODS = 9; // The number of products produced

 10 const int MIN_PRODNUM = 914; // The lowest product number

 11 const int MAX_PRODNUM = 922; // The highest product number

 12

 13 // Function prototypes

 14 int getProdNum();

 15 int binarySearch(const int [], int, int);

 16 void displayProd(const string [], const string [], const double [], int);

 17

 18 int main()

 19 {

 20 // Array of product IDs

 21 int id[NUM_PRODS] = {914, 915, 916, 917, 918, 919, 920,

 22 921, 922};

 23

 24 // Array of product titles

 25 string title[NUM_PRODS] =

 26 { "Six Steps to Leadership",

 27 "Six Steps to Leadership",

 28 "The Road to Excellence",

 29 "Seven Lessons of Quality",

 30 "Seven Lessons of Quality",

 31 "Seven Lessons of Quality",

 32 "Teams Are Made, Not Born",

 33 "Leadership for the Future",

 34 "Leadership for the Future"

 35 };

 36

(program continues)

M08_GADD6253_07_SE_C08 Page 461 Thursday, January 6, 2011 3:09 PM

462 Chapter 8 Searching and Sorting Arrays

 37 // Array of product descriptions

 38 string description[NUM_PRODS] =

 39 { "Book", "Audio CD", "DVD",

 40 "Book", "Audio CD", "DVD",

 41 "Book", "Book", "Audio CD"

 42 };

 43

 44 // Array of product prices

 45 double prices[NUM_PRODS] = {12.95, 14.95, 18.95, 16.95, 21.95,

 46 31.95, 14.95, 14.95, 16.95};

 47

 48 int prodNum; // To hold a product number

 49 int index; // To hold search results

 50 char again; // To hold a Y or N answer

 51

 52 do

 53 {

 54 // Get the desired product number.

 55 prodNum = getProdNum();

 56

 57 // Search for the product number.

 58 index = binarySearch(id, NUM_PRODS, prodNum);

 59

 60 // Display the results of the search.

 61 if (index == -1)

 62 cout << "That product number was not found.\n";

 63 else

 64 displayProd(title, description, prices, index);

 65

 66 // Does the user want to do this again?

 67 cout << "Would you like to look up another product? (y/n) ";

 68 cin >> again;

 69 } while (again == 'y' || again == 'Y');

 70 return 0;

 71 }

 72

 73 //***

 74 // Definition of getProdNum function *

 75 // The getProdNum function asks the user to enter a *

 76 // product number. The input is validated, and when *

 77 // a valid number is entered, it is returned. *

 78 //***

 79

 80 int getProdNum()

 81 {

 82 int prodNum; // Product number

 83

 84 cout << "Enter the item's product number: ";

 85 cin >> prodNum;

 86 // Validate input

 87 while (prodNum < MIN_PRODNUM || prodNum > MAX_PRODNUM)

Program 8-3 (continued)

M08_GADD6253_07_SE_C08 Page 462 Thursday, January 6, 2011 3:09 PM

8.2 Focus on Problem Solving and Program Design: A Case Study 463

 88 {

 89 cout << "Enter a number in the range of " << MIN_PRODNUM;

 90 cout <<" through " << MAX_PRODNUM << ".\n";

 91 cin >> prodNum;

 92 }

 93 return prodNum;

 94 }

 95

 96 //***

 97 // Definition of binarySearch function *

 98 // The binarySearch function performs a binary search on an *

 99 // integer array. array, which has a maximum of numElems *

 100 // elements, is searched for the number stored in value. If the *

 101 // number is found, its array subscript is returned. Otherwise, *

 102 // -1 is returned indicating the value was not in the array. *

 103 //***

 104

 105 int binarySearch(const int array[], int numElems, int value)

 106 {

 107 int first = 0, // First array element

 108 last = numElems - 1, // Last array element

 109 middle, // Midpoint of search

 110 position = -1; // Position of search value

 111 bool found = false; // Flag

 112

 113 while (!found && first <= last)

 114 {

 115 middle = (first + last) / 2; // Calculate midpoint

 116 if (array[middle] == value) // If value is found at mid

 117 {

 118 found = true;

 119 position = middle;

 120 }

 121 else if (array[middle] > value) // If value is in lower half

 122 last = middle - 1;

 123 else

 124 first = middle + 1; // If value is in upper half

 125 }

 126 return position;

 127 }

 128

 129 //**

 130 // The displayProd function accepts three arrays and an int. *

 131 // The arrays parameters are expected to hold the title, *

 132 // description, and prices arrays defined in main. The index *

 133 // parameter holds a subscript. This function displays the *

 134 // information in each array contained at the subscript. *

 135 //**

 136

(program continues)

M08_GADD6253_07_SE_C08 Page 463 Thursday, January 6, 2011 3:09 PM

464 Chapter 8 Searching and Sorting Arrays

Checkpoint

 www.myprogramminglab.com

8.1 Describe the difference between the linear search and the binary search.

8.2 On average, with an array of 20,000 elements, how many comparisons will the

linear search perform? (Assume the items being searched for are consistently

found in the array.)

8.3 With an array of 20,000 elements, what is the maximum number of comparisons

the binary search will perform?

8.4 If a linear search is performed on an array, and it is known that some items are

searched for more frequently than others, how can the contents of the array be

reordered to improve the average performance of the search?

8.3
Focus on Software Engineering:
Introduction to Sorting Algorithms

CONCEPT: Sorting algorithms are used to arrange data into some order.

Often the data in an array must be sorted in some order. Customer lists, for instance, are

commonly sorted in alphabetical order. Student grades might be sorted from highest to

lowest. Product codes could be sorted so all the products of the same color are stored

Program 8-3 (continued)

 137 void displayProd(const string title[], const string desc[],

 138 const double price[], int index)

 139 {

 140 cout << "Title: " << title[index] << endl;

 141 cout << "Description: " << desc[index] << endl;

 142 cout << "Price: $" << price[index] << endl;

 143 }

Program Output with Example Input Shown in Bold

Enter the item's product number: 916 [Enter]
Title: The Road to Excellence

Description: DVD

Price: $18.95

Would you like to look up another product? (y/n) y [Enter]
Enter the item's product number: 920 [Enter]
Title: Teams Are Made, Not Born

Description: Book

Price: $14.95

Would you like to look up another product? (y/n) n [Enter]

M08_GADD6253_07_SE_C08 Page 464 Thursday, January 6, 2011 3:09 PM

8.3 Focus on Software Engineering: Introduction to Sorting Algorithms 465

together. To sort the data in an array, the programmer must use an appropriate sorting

algorithm. A sorting algorithm is a technique for scanning through an array and rearrang-

ing its contents in some speci c order. This section will introduce two simple sorting algo-

rithms: the bubble sort and the selection sort.

The Bubble Sort

The bubble sort is an easy way to arrange data in ascending or descending order. If an

array is sorted in ascending order, it means the values in the array are stored from lowest

to highest. If the values are sorted in descending order, they are stored from highest to

lowest. Let s see how the bubble sort is used in arranging the following array s elements in

ascending order:

The bubble sort starts by comparing the rst two elements in the array. If element 0 is

greater than element 1, they are exchanged. After the exchange, the array shown above

would appear as:

This method is repeated with elements 1 and 2. If element 1 is greater than element 2, they

are exchanged. The array above would then appear as:

Next, elements 2 and 3 are compared. In this array, these two elements are already in the

proper order (element 2 is less than element 3), so no exchange takes place.

As the cycle continues, elements 3 and 4 are compared. Once again, no exchange is neces-

sary because they are already in the proper order.

When elements 4 and 5 are compared, however, an exchange must take place because

element 4 is greater than element 5. The array now appears as:

At this point, the entire array has been scanned, but its contents aren t quite in the right

order yet. So, the sort starts over again with elements 0 and 1. Because those two are in the

proper order, no exchange takes place. Elements 1 and 2 are compared next, but once again,

no exchange takes place. This continues until elements 3 and 4 are compared. Because

element 3 is greater than element 4, they are exchanged. The array now appears as

7 2 3 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

2 7 3 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

2 3 7 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

2 3 7 8 1 9

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

2 3 7 1 8 9

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

M08_GADD6253_07_SE_C08 Page 465 Thursday, January 6, 2011 3:09 PM

466 Chapter 8 Searching and Sorting Arrays

By now you should see how the sort will eventually cause the elements to appear in the

correct order. The sort repeatedly passes through the array until no exchanges are made.

Ultimately, the array will appear as

Here is the bubble sort in pseudocode:

Do

 Set swap flag to false.

 For count is set to each subscript in array from 0 through the

 next-to-last subscript

 If array[count] is greater than array[count + 1]

 Swap the contents of array[count] and array[count + 1].

 Set swap flag to true.

 End If.

 End For.

While any elements have been swapped.

The C++ code below implements the bubble sort as a function. The parameter array is an

integer array to be sorted. size contains the number of elements in array.

void sortArray(int array[], int size)

{

 bool swap;

 int temp;

 do

 {

 swap = false;

 for (int count = 0; count < (size - 1); count++)

 {

 if (array[count] > array[count + 1])

 {

 temp = array[count];

 array[count] = array[count + 1];

 array[count + 1] = temp;

 swap = true;

 }

 }

 } while (swap);

}

Inside the function is a for loop nested inside a do-while loop. The for loop sequences

through the entire array, comparing each element with its neighbor, and swapping them if

necessary. Anytime two elements are exchanged, the ag variable swap is set to true.

The for loop must be executed repeatedly until it can sequence through the entire array

without making any exchanges. This is why it is nested inside a do-while loop. The

do-while loop sets swap to false, and then executes the for loop. If swap is set to true

after the for loop has nished, the do-while loop repeats.

1 2 3 7 8 9

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

M08_GADD6253_07_SE_C08 Page 466 Thursday, January 6, 2011 3:09 PM

8.3 Focus on Software Engineering: Introduction to Sorting Algorithms 467

Here is the starting line of the for loop:

for (int count = 0; count < (size - 1); count++)

The variable count holds the array subscript values. It starts at zero and is incremented as

long as it is less than size - 1. The value of size is the number of elements in the array,

and count stops just short of reaching this value because the following line compares each

element with the one after it:

if (array[count] > array[count + 1])

When array[count] is the next-to-last element, it will be compared to the last element. If

the for loop were allowed to increment count past size - 1, the last element in the array

would be compared to a value outside the array.

Let s look at the if statement in its entirety:

if (array[count] > array[count + 1])

{

 temp = array[count];

 array[count] = array[count + 1];

 array[count + 1] = temp;

 swap = true;

}

If array[count] is greater than array[count + 1], the two elements must be exchanged.

First, the contents of array[count] are copied into the variable temp. Then the contents of

array[count + 1] is copied into array[count]. The exchange is made complete when the

contents of temp (the previous contents of array[count]) are copied to array[count + 1].

Last, the swap ag variable is set to true. This indicates that an exchange has been made.

Program 8-4 demonstrates the bubble sort function in a complete program.

Program 8-4

 1 // This program uses the bubble sort algorithm to sort an

 2 // array in ascending order.

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Function prototypes

 7 void sortArray(int [], int);

 8 void showArray(const int [], int);

 9

 10 int main()

 11 {

 12 // Array of unsorted values

 13 int values[6] = {7, 2, 3, 8, 9, 1};

 14

 15 // Display the values.

 16 cout << "The unsorted values are:\n";

 17 showArray(values, 6);

 18

 19 // Sort the values.

 20 sortArray(values, 6);

(program continues)

M08_GADD6253_07_SE_C08 Page 467 Thursday, January 6, 2011 3:09 PM

468 Chapter 8 Searching and Sorting Arrays

 21

 22 // Display them again.

 23 cout << "The sorted values are:\n";

 24 showArray(values, 6);

 25 return 0;

 26 }

 27

 28 //***

 29 // Definition of function sortArray *

 30 // This function performs an ascending order bubble sort on *

 31 // array. size is the number of elements in the array. *

 32 //***

 33

 34 void sortArray(int array[], int size)

 35 {

 36 bool swap;

 37 int temp;

 38

 39 do

 40 {

 41 swap = false;

 42 for (int count = 0; count < (size - 1); count++)

 43 {

 44 if (array[count] > array[count + 1])

 45 {

 46 temp = array[count];

 47 array[count] = array[count + 1];

 48 array[count + 1] = temp;

 49 swap = true;

 50 }

 51 }

 52 } while (swap);

 53 }

 54

 55 //***

 56 // Definition of function showArray. *

 57 // This function displays the contents of array. size is the *

 58 // number of elements. *

 59 //***

 60

 61 void showArray(const int array[], int size)

 62 {

 63 for (int count = 0; count < size; count++)

 64 cout << array[count] << " ";

 65 cout << endl;

 66 }

Program Output

The unsorted values are:

7 2 3 8 9 1

The sorted values are:

1 2 3 7 8 9

Program 8-4 (continued)

M08_GADD6253_07_SE_C08 Page 468 Thursday, January 6, 2011 3:09 PM

8.3 Focus on Software Engineering: Introduction to Sorting Algorithms 469

The Selection Sort

The bubble sort is inef cient for large arrays because items only move by one element at a

time. The selection sort, however, usually performs fewer exchanges because it moves

items immediately to their nal position in the array. It works like this: The smallest value

in the array is located and moved to element 0. Then the next smallest value is located and

moved to element 1. This process continues until all of the elements have been placed in

their proper order.

Let s see how the selection sort works when arranging the elements of the following array:

The selection sort scans the array, starting at element 0, and locates the element with the

smallest value. The contents of this element are then swapped with the contents of element

0. In this example, the 1 stored in element 5 is swapped with the 5 stored in element 0.

After the exchange, the array would appear as

The algorithm then repeats the process, but because element 0 already contains the small-

est value in the array, it can be left out of the procedure. This time, the algorithm begins

the scan at element 1. In this example, the contents of element 2 are exchanged with those

of element 1. The array would then appear as

Once again the process is repeated, but this time the scan begins at element 2. The algo-

rithm will nd that element 5 contains the next smallest value. This element s contents are

exchanged with those of element 2, causing the array to appear as

Next, the scanning begins at element 3. Its contents are exchanged with those of element 5,

causing the array to appear as

At this point there are only two elements left to sort. The algorithm nds that the value in

element 5 is smaller than that of element 4, so the two are swapped. This puts the array in

its nal arrangement:

5 7 2 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

1 7 2 8 9 5

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

1 2 7 8 9 5

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

1 2 5 8 9 7

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

1 2 5 7 9 8

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

1 2 5 7 8 9

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

VideoNote

The

Selection

Sort

M08_GADD6253_07_SE_C08 Page 469 Thursday, January 6, 2011 3:09 PM

470 Chapter 8 Searching and Sorting Arrays

Here is the selection sort algorithm in pseudocode:

For startScan is set to each subscript in array from 0 through the

 next-to-last subscript

 Set index variable to startScan.

 Set minIndex variable to startScan.

 Set minValue variable to array[startScan].

 For index is set to each subscript in array from (startScan + 1)

 through the last subscript

 If array[index] is less than minValue

 Set minValue to array[index].

 Set minIndex to index.

 End If.

 End For.

 Set array[minIndex] to array[startScan].

 Set array[startScan] to minValue.

End For.

The following C++ code implements the selection sort in a function. It accepts two argu-

ments: array and size. array is an integer array and size is the number of elements in

the array. The function uses the selection sort to arrange the values in the array in ascend-

ing order.

void selectionSort(int array[], int size)

{

 int startScan, minIndex, minValue;

 for (startScan = 0; startScan < (size - 1); startScan++)

 {

 minIndex = startScan;

 minValue = array[startScan];

 for(int index = startScan + 1; index < size; index++)

 {

 if (array[index] < minValue)

 {

 minValue = array[index];

 minIndex = index;

 }

 }

 array[minIndex] = array[startScan];

 array[startScan] = minValue;

 }

}

Inside the function are two for loops, one nested inside the other. The inner loop

sequences through the array, starting at array[startScan + 1], searching for the element

with the smallest value. When the element is found, its subscript is stored in the variable

minIndex and its value is stored in minValue. The outer loop then exchanges the contents

of this element with array[startScan] and increments startScan. This procedure

repeats until the contents of every element have been moved to their proper location.

Program 8-5 demonstrates the selection sort function in a complete program.

M08_GADD6253_07_SE_C08 Page 470 Thursday, January 6, 2011 3:09 PM

8.3 Focus on Software Engineering: Introduction to Sorting Algorithms 471

Program 8-5

 1 // This program uses the selection sort algorithm to sort an

 2 // array in ascending order.

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Function prototypes

 7 void selectionSort(int [], int);

 8 void showArray(const int [], int);

 9

 10 int main()

 11 {

 12 // Define an array with unsorted values

 13 const int SIZE = 6;

 14 int values[SIZE] = {5, 7, 2, 8, 9, 1};

 15

 16 // Display the values.

 17 cout << "The unsorted values are\n";

 18 showArray(values, SIZE);

 19

 20 // Sort the values.

 21 selectionSort(values, SIZE);

 22

 23 // Display the values again.

 24 cout << "The sorted values are\n";

 25 showArray(values, SIZE);

 26 return 0;

 27 }

 28

 29 //**

 30 // Definition of function selectionSort. *

 31 // This function performs an ascending order selection sort on *

 32 // array. size is the number of elements in the array. *

 33 //**

 34

 35 void selectionSort(int array[], int size)

 36 {

 37 int startScan, minIndex, minValue;

 38

 39 for (startScan = 0; startScan < (size - 1); startScan++)

 40 {

 41 minIndex = startScan;

 42 minValue = array[startScan];

 43 for(int index = startScan + 1; index < size; index++)

 44 {

 45 if (array[index] < minValue)

 46 {

 47 minValue = array[index];

 48 minIndex = index;

 49 }

 50 }

(program continues)

M08_GADD6253_07_SE_C08 Page 471 Thursday, January 6, 2011 3:09 PM

472 Chapter 8 Searching and Sorting Arrays

8.4
Focus on Problem Solving and Program Design:
A Case Study

Like the previous case study, this is a program developed for the Demetris Leadership

Center. Recall that DLC, Inc., publishes books, DVDs, and audio CDs. (See Table 8-1 for

a complete list of products, with title, description, product number, and price.) Table 8-4

shows the number of units of each product sold during the past six months.

 51 array[minIndex] = array[startScan];

 52 array[startScan] = minValue;

 53 }

 54 }

 55

 56 //**

 57 // Definition of function showArray. *

 58 // This function displays the contents of array. size is the *

 59 // number of elements. *

 60 //**

 61

 62 void showArray(const int array[], int size)

 63 {

 64 for (int count = 0; count < size; count++)

 65 cout << array[count] << " ";

 66 cout << endl;

 67 }

Program Output

The unsorted values are

5 7 2 8 9 1

The sorted values are

1 2 5 7 8 9

Table 8-4

Product Number Units Sold

914 842

915 416

916 127

917 514

918 437

919 269

920 97

921 492

922 212

Program 8-5 (continued)

M08_GADD6253_07_SE_C08 Page 472 Thursday, January 6, 2011 3:09 PM

8.4 Focus on Problem Solving and Program Design: A Case Study 473

The vice president of sales has asked you to write a sales reporting program that displays

the following information:

A list of the products in the order of their sales dollars (NOT units sold), from

highest to lowest

The total number of all units sold

The total sales for the six-month period

Variables

Table 8-5 lists the variables needed:

The elements of the four arrays, prodNum, units, prices, and sales will correspond

with each other. For example, the product whose number is stored in prodNum[2] will

have sold the number of units stored in units[2]. The sales amount for the product will

be stored in sales[2].

Modules

The program will consist of the functions listed in Table 8-6.

Table 8-5

Variable Description

NUM_PRODS A constant integer initialized with the number of products that DLC, Inc., sells. This

value will be used in the de nition of the program s array.

prodNum Array of ints. Holds each product s number.

units Array of ints. Holds each product s number of units sold.

prices Array of doubles. Holds each product s price.

sales Array of doubles. Holds the computed sales amounts (in dollars) of each product.

Table 8-6

Function Description

main The program s main function. It calls the program s other functions.

calcSales Calculates each product s sales.

dualSort Sorts the sales array so the elements are ordered from highest to lowest. The

prodNum array is ordered so the product numbers correspond with the correct sales

gures in the sorted sales array.

showOrder Displays a list of the product numbers and sales amounts from the sorted sales

and prodNum arrays.

showTotals Displays the total number of units sold and the total sales amount for the period.

M08_GADD6253_07_SE_C08 Page 473 Thursday, January 6, 2011 3:09 PM

474

Chapter 8 Searching and Sorting Arrays

Function

main

Function

main

 is very simple. It contains the variable de nitions and calls the other func-

tions. Here is the pseudocode for its executable statements:

Call calcSales.

Call dualSort.

Set display mode to fixed point output with two decimal places of

 precision.

Call showOrder.

Call showTotals.

Here is its actual C++ code:

// Calculate each product's sales.

calcSales(units, prices, sales, NUM_PRODS);

// Sort the elements in the sales array in descending

// order and shuffle the ID numbers in the id array to

// keep them in parallel.

dualSort(id, sales, NUM_PRODS);

// Set the numeric output formatting.

cout << setprecision(2) << fixed << showpoint;

// Display the products and sales amounts.

showOrder(sales, id, NUM_PRODS);

// Display total units sold and total sales.

showTotals(sales, units, NUM_PRODS);

The named constant

NUM_PRODS

 will be de ned globally and initialized to the value 9.

The arrays

id

,

units

, and

prices

 will already be initialized with data. (It will be left as

an exercise for you to modify this program so the user may enter these values.)

The

calcSales

 Function

The

calcSales

 function multiplies each product s units sold by its price. The resulting

amount is stored in the

sales

 array. Here is the function s pseudocode:

For index is set to each subscript in the arrays from 0 through the

 last subscript.

 Set sales[index] to units[index] times prices[index].

End For.

And here is the function s actual C++ code:

void calcSales(const int units[], const double prices[],

double sales[], int num)

{

 for (int index = 0; index < num; index++)

 sales[index] = units[index] * prices[index];

}

M08_GADD6253_07_SE_C08 Page 474 Monday, January 17, 2011 2:57 PM

8.4 Focus on Problem Solving and Program Design: A Case Study 475

The dualSort Function

The dualSort function is a modi ed version of the selection sort algorithm shown in Pro-

gram 8-5. The dualSort function accepts two arrays as arguments: the sales array and

the id array. The function actually performs the selection sort on the sales array. When

the function moves an element in the sales array, however, it also moves the correspond-

ing element in the id array. This is to ensure that the product numbers in the id array still

have subscripts that match their sales gures in the sales array.

The dualSort function is also different in another way: It sorts the array in descending

order.

Here is the pseudocode for the dualSort function:

For startScan variable is set to each subscript in array from 0 through

the next-to-last subscript

 Set index variable to startScan.

 Set maxIndex variable to startScan.

 Set tempId variable to id[startScan].

 Set maxValue variable to sales[startScan].

 For index variable is set to each subscript in array from

 (startScan + 1) through the last subscript

 If sales[index] is greater than maxValue

 Set maxValue to sales[index].

 Set tempId to tempId[index].

 Set maxIndex to index.

 End If.

 End For.

 Set sales[maxIndex] to sales[startScan].

 Set id[maxIndex] = id[startScan].

 Set sales[startScan] to maxValue.

 Set id[startScan] = tempId.

End For.

Here is the actual C++ code for the dualSort function:

void dualSort(int id[], double sales[], int size)

{

 int startScan, maxIndex, tempId;

 double maxValue;

 for (startScan = 0; startScan < (size - 1); startScan++)

 {

 maxIndex = startScan;

 maxValue = sales[startScan];

 tempId = id[startScan];

 for(int index = startScan + 1; index < size; index++)

 {

 if (sales[index] > maxValue)

 {

 maxValue = sales[index];

 tempId = id[index];

 maxIndex = index;

 }

 }

M08_GADD6253_07_SE_C08 Page 475 Thursday, January 6, 2011 3:09 PM

476 Chapter 8 Searching and Sorting Arrays

 sales[maxIndex] = sales[startScan];

 id[maxIndex] = id[startScan];

 sales[startScan] = maxValue;

 id[startScan] = tempId;

 }

}

The showOrder Function

The showOrder function displays a heading and the sorted list of product numbers and

their sales amounts. It accepts the id and sales arrays as arguments. Here is its

pseudocode:

Display heading.

For index variable is set to each subscript of the arrays from 0

through the last subscript

 Display id[index].

 Display sales[index].

End For.

Here is the function s actual C++ code:

void showOrder(const double sales[], const int id[], int num)

{

 cout << "Product Number\tSales\n";

 cout << "----------------------------------\n";

 for (int index = 0; index < num; index++)

 {

 cout << id[index] << "\t\t$";

 cout << setw(8) << sales[index] << endl;

 }

 cout << endl;

}

The showTotals Function

The showTotals function displays the total number of units of all products sold and the

total sales for the period. It accepts the units and sales arrays as arguments. Here is its

pseudocode:

Set totalUnits variable to 0.

Set totalSales variable to 0.0.

For index variable is set to each subscript in the arrays from 0

through the last subscript

 Add units[index] to totalUnits[index].

 Add sales[index] to totalSales.

NOTE: Once the dualSort function is called, the id and sales arrays are no longer

synchronized with the units and prices arrays. Because this program doesn t use units

and prices together with id and sales after this point, it will not be noticed in the nal

output. However, it is never a good programming practice to sort parallel arrays in such a

way that they are out of synchronization. It will be left as an exercise for you to modify

the program so all the arrays are synchronized and used in the nal output of the program.

M08_GADD6253_07_SE_C08 Page 476 Thursday, January 6, 2011 3:09 PM

8.4 Focus on Problem Solving and Program Design: A Case Study 477

End For.

Display totalUnits with appropriate heading.

Display totalSales with appropriate heading.

Here is the function s actual C++ code:

void showTotals(const double sales[], const int units[], int num)

{

 int totalUnits = 0;

 double totalSales = 0.0;

 for (int index = 0; index < num; index++)

 {

 totalUnits += units[index];

 totalSales += sales[index];

 }

 cout << "Total Units Sold: " << totalUnits << endl;

 cout << "Total Sales: $" << totalSales << endl;

}

The Entire Program

Program 8-6 shows the entire program s source code.

Program 8-6

 1 // This program produces a sales report for DLC, Inc.

 2 #include <iostream>

 3 #include <iomanip>

 4 using namespace std;

 5

 6 // Function prototypes

 7 void calcSales(const int [], const double [], double [], int);

 8 void showOrder(const double [], const int [], int);

 9 void dualSort(int [], double [], int);

 10 void showTotals(const double [], const int [], int);

 11

 12 // NUM_PRODS is the number of products produced.

 13 const int NUM_PRODS = 9;

 14

 15 int main()

 16 {

 17 // Array with product ID numbers

 18 int id[NUM_PRODS] = {914, 915, 916, 917, 918, 919, 920,

 19 921, 922};

 20

 21 // Array with number of units sold for each product

 22 int units[NUM_PRODS] = {842, 416, 127, 514, 437, 269, 97,

 23 492, 212};

 24

 25 // Array with product prices

 26 double prices[NUM_PRODS] = {12.95, 14.95, 18.95, 16.95, 21.95,

 27 31.95, 14.95, 14.95, 16.95};

 28

(program continues)

M08_GADD6253_07_SE_C08 Page 477 Thursday, January 6, 2011 3:09 PM

478 Chapter 8 Searching and Sorting Arrays

 29 // Array to hold the computed sales amounts

 30 double sales[NUM_PRODS];

 31

 32 // Calculate each product's sales.

 33 calcSales(units, prices, sales, NUM_PRODS);

 34

 35 // Sort the elements in the sales array in descending

 36 // order and shuffle the ID numbers in the id array to

 37 // keep them in parallel.

 38 dualSort(id, sales, NUM_PRODS);

 39

 40 // Set the numeric output formatting.

 41 cout << setprecision(2) << fixed << showpoint;

 42

 43 // Display the products and sales amounts.

 44 showOrder(sales, id, NUM_PRODS);

 45

 46 // Display total units sold and total sales.

 47 showTotals(sales, units, NUM_PRODS);

 48 return 0;

 49 }

 50

 51 //**

 52 // Definition of calcSales. Accepts units, prices, and sales *

 53 // arrays as arguments. The size of these arrays is passed *

 54 // into the num parameter. This function calculates each *

 55 // product's sales by multiplying its units sold by each unit's *

 56 // price. The result is stored in the sales array. *

 57 //**

 58

 59 void calcSales(const int units[], const double prices[], double sales[], int num)

 60 {

 61 for (int index = 0; index < num; index++)

 62 sales[index] = units[index] * prices[index];

 63 }

 64

 65 //***

 66 // Definition of function dualSort. Accepts id and sales arrays *

 67 // as arguments. The size of these arrays is passed into size. *

 68 // This function performs a descending order selection sort on *

 69 // the sales array. The elements of the id array are exchanged *

 70 // identically as those of the sales array. size is the number *

 71 // of elements in each array. *

 72 //***

 73

 74 void dualSort(int id[], double sales[], int size)

 75 {

 76 int startScan, maxIndex, tempid;

 77 double maxValue;

 78

Program 8-6 (continued)

M08_GADD6253_07_SE_C08 Page 478 Thursday, January 6, 2011 3:09 PM

8.4 Focus on Problem Solving and Program Design: A Case Study 479

 79 for (startScan = 0; startScan < (size - 1); startScan++)

 80 {

 81 maxIndex = startScan;

 82 maxValue = sales[startScan];

 83 tempid = id[startScan];

 84 for(int index = startScan + 1; index < size; index++)

 85 {

 86 if (sales[index] > maxValue)

 87 {

 88 maxValue = sales[index];

 89 tempid = id[index];

 90 maxIndex = index;

 91 }

 92 }

 93 sales[maxIndex] = sales[startScan];

 94 id[maxIndex] = id[startScan];

 95 sales[startScan] = maxValue;

 96 id[startScan] = tempid;

 97 }

 98 }

 99

 100 //**

 101 // Definition of showOrder function. Accepts sales and id arrays *

 102 // as arguments. The size of these arrays is passed into num. *

 103 // The function first displays a heading, then the sorted list *

 104 // of product numbers and sales. *

 105 //**

 106

 107 void showOrder(const double sales[], const int id[], int num)

 108 {

 109 cout << "Product Number\tSales\n";

 110 cout << "----------------------------------\n";

 111 for (int index = 0; index < num; index++)

 112 {

 113 cout << id[index] << "\t\t$";

 114 cout << setw(8) << sales[index] << endl;

 115 }

 116 cout << endl;

 117 }

 118

 119 //***

 120 // Definition of showTotals function. Accepts sales and id arrays *

 121 // as arguments. The size of these arrays is passed into num. *

 122 // The function first calculates the total units (of all *

 123 // products) sold and the total sales. It then displays these *

 124 // amounts. *

 125 //***

 126

(program continues)

M08_GADD6253_07_SE_C08 Page 479 Thursday, January 6, 2011 3:09 PM

480 Chapter 8 Searching and Sorting Arrays

8.5
If You Plan to Continue in Computer Science:
Sorting and Searching vectors
(Continued from Section 7.12)

CONCEPT: The sorting and searching algorithms you have studied in this chapter may be

applied to STL vectors as well as arrays.

Once you have properly de ned an STL vector and populated it with values, you may

sort and search the vector with the algorithms presented in this chapter. Simply substi-

tute the vector syntax for the array syntax when necessary. Program 8-7, which illus-

trates this, is a modi cation of the case study in Program 8-6.

Program 8-6 (continued)

 127 void showTotals(const double sales[], const int units[], int num)

 128 {

 129 int totalUnits = 0;

 130 double totalSales = 0.0;

 131

 132 for (int index = 0; index < num; index++)

 133 {

 134 totalUnits += units[index];

 135 totalSales += sales[index];

 136 }

 137 cout << "Total Units Sold: " << totalUnits << endl;

 138 cout << "Total Sales: $" << totalSales << endl;

 139 }

Program Output

Product Number Sales

914 $10903.90

918 $ 9592.15

917 $ 8712.30

919 $ 8594.55

921 $ 7355.40

915 $ 6219.20

922 $ 3593.40

916 $ 2406.65

920 $ 1450.15

Total Units Sold: 3406

Total Sales: $58827.70

M08_GADD6253_07_SE_C08 Page 480 Thursday, January 6, 2011 3:09 PM

8.5 If You Plan to Continue in Computer Science: Sorting and Searching vectors 481

Program 8-7

 1 // This program produces a sales report for DLC, Inc.

 2 // This version of the program uses STL vectors instead of arrays.

 3 #include <iostream>

 4 #include <iomanip>

 5 #include <vector>

 6 using namespace std;

 7

 8 // Function prototypes

 9 void initVectors(vector<int> &, vector<int> &, vector<double> &);

 10 void calcSales(vector<int>, vector<double>, vector<double> &);

 11 void showOrder(vector<double>, vector<int>);

 12 void dualSort(vector<int> &, vector<double> &);

 13 void showTotals(vector<double>, vector<int>);

 14

 15 int main()

 16 {

 17 vector<int> id; // Product ID numbers

 18 vector<int> units; // Units sold

 19 vector<double> prices; // Product prices

 20 vector<double> sales; // To hold product sales

 21

 22 // Must provide an initialization routine.

 23 initVectors(id, units, prices);

 24

 25 // Calculate each product's sales.

 26 calcSales(units, prices, sales);

 27

 28 // Sort the elements in the sales array in descending

 29 // order and shuffle the ID numbers in the id array to

 30 // keep them in parallel.

 31 dualSort(id, sales);

 32

 33 // Set the numeric output formatting.

 34 cout << fixed << showpoint << setprecision(2);

 35

 36 // Display the products and sales amounts.

 37 showOrder(sales, id);

 38

 39 // Display total units sold and total sales.

 40 showTotals(sales, units);

 41 return 0;

 42 }

 43

 44 //**

 45 // Definition of initVectors. Accepts id, units, and prices *

 46 // vectors as reference arguments. This function initializes each *

 47 // vector to a set of starting values. *

 48 //**

 49

(program continues)

M08_GADD6253_07_SE_C08 Page 481 Thursday, January 6, 2011 3:09 PM

482 Chapter 8 Searching and Sorting Arrays

 50 void initVectors(vector<int> &id, vector<int> &units,

 51 vector<double> &prices)

 52 {

 53 // Initialize the id vector with the ID numbers

 54 // 914 through 922.

 55 for (int value = 914; value <= 922; value++)

 56 id.push_back(value);

 57

 58 // Initialize the units vector with data.

 59 units.push_back(842);

 60 units.push_back(416);

 61 units.push_back(127);

 62 units.push_back(514);

 63 units.push_back(437);

 64 units.push_back(269);

 65 units.push_back(97);

 66 units.push_back(492);

 67 units.push_back(212);

 68

 69 // Initialize the prices vector.

 70 prices.push_back(12.95);

 71 prices.push_back(14.95);

 72 prices.push_back(18.95);

 73 prices.push_back(16.95);

 74 prices.push_back(21.95);

 75 prices.push_back(31.95);

 76 prices.push_back(14.95);

 77 prices.push_back(14.95);

 78 prices.push_back(16.95);

 79 }

 80

 81

 82 //**

 83 // Definition of calcSales. Accepts units, prices, and sales *

 84 // vectors as arguments. The sales vector is passed into a *

 85 // reference parameter. This function calculates each product's *

 86 // sales by multiplying its units sold by each unit's price. The *

 87 // result is stored in the sales vector. *

 88 //**

 89

 90 void calcSales(vector<int> units, vector<double> prices,

 91 vector<double> &sales)

 92 {

 93 for (int index = 0; index < units.size(); index++)

 94 sales.push_back(units[index] * prices[index]);

 95 }

 96

Program 8-7 (continued)

M08_GADD6253_07_SE_C08 Page 482 Thursday, January 6, 2011 3:09 PM

8.5 If You Plan to Continue in Computer Science: Sorting and Searching vectors 483

 97 //**

 98 // Definition of function dualSort. Accepts id and sales vectors *

 99 // as reference arguments. This function performs a descending *

 100 // order selection sort on the sales vector. The elements of the *

 101 // id vector are exchanged identically as those of the sales *

 102 // vector. *

 103 //**

 104

 105 void dualSort(vector<int> &id, vector<double> &sales)

 106 {

 107 int startScan, maxIndex, tempid, size;

 108 double maxValue;

 109

 110 size = id.size();

 111 for (startScan = 0; startScan < (size - 1); startScan++)

 112 {

 113 maxIndex = startScan;

 114 maxValue = sales[startScan];

 115 tempid = id[startScan];

 116 for(int index = startScan + 1; index < size; index++)

 117 {

 118 if (sales[index] > maxValue)

 119 {

 120 maxValue = sales[index];

 121 tempid = id[index];

 122 maxIndex = index;

 123 }

 124 }

 125 sales[maxIndex] = sales[startScan];

 126 id[maxIndex] = id[startScan];

 127 sales[startScan] = maxValue;

 128 id[startScan] = tempid;

 129 }

 130 }

 131

 132 //***

 133 // Definition of showOrder function. Accepts sales and id vectors *

 134 // as arguments. The function first displays a heading, then the *

 135 // sorted list of product numbers and sales. *

 136 //***

 137

 138 void showOrder(vector<double> sales, vector<int> id)

 139 {

 140 cout << "Product Number\tSales\n";

 141 cout << "----------------------------------\n";

 142 for (int index = 0; index < id.size(); index++)

 143 {

 144 cout << id[index] << "\t\t$";

 145 cout << setw(8) << sales[index] << endl;

 146 }

 147 cout << endl;

 148 }

(program continues)

M08_GADD6253_07_SE_C08 Page 483 Thursday, January 6, 2011 3:09 PM

484 Chapter 8 Searching and Sorting Arrays

There are some differences between this program and Program 8-6. First, the initVectors

function was added. In Program 8-6, this was not necessary because the id, units, and

prices arrays had initialization lists. vectors do not accept initialization lists, so this func-

tion stores the necessary initial values in the id, units, and prices vectors.

Now, look at the function header for initVectors:

void initVectors(vector<int> &id, vector<int> &units,

vector<double> &prices)

Notice that the vector parameters are references (as indicated by the & that precedes the

parameter name). This brings up an important difference between vectors and arrays: By

Program 8-7 (continued)

 149

 150 //***

 151 // Definition of showTotals function. Accepts sales and id vectors *

 152 // as arguments. The function first calculates the total units (of *

 153 // all products) sold and the total sales. It then displays these *

 154 // amounts. *

 155 //***

 156

 157 void showTotals(vector<double> sales, vector<int> units)

 158 {

 159 int totalUnits = 0;

 160 double totalSales = 0.0;

 161

 162 for (int index = 0; index < units.size(); index++)

 163 {

 164 totalUnits += units[index];

 165 totalSales += sales[index];

 166 }

 167 cout << "Total Units Sold: " << totalUnits << endl;

 168 cout << "Total Sales: $" << totalSales << endl;

 169 }

Program Output

Product Number Sales

914 $10903.90

918 $ 9592.15

917 $ 8712.30

919 $ 8594.55

921 $ 7355.40

915 $ 6219.20

922 $ 3593.40

916 $ 2406.65

920 $ 1450.15

Total Units Sold: 3406

Total Sales: $58827.70

M08_GADD6253_07_SE_C08 Page 484 Thursday, January 6, 2011 3:09 PM

8.5 If You Plan to Continue in Computer Science: Sorting and Searching vectors 485

default, vectors are passed by value, whereas arrays are only passed by reference. If you

want to change a value in a vector argument, it must be passed into a reference parameter.

Reference vector parameters are also used in the calcSales and dualSort functions.

Also, notice that each time a value is added to a vector, the push_back member function

is called. This is because the [] operator cannot be used to store a new element in a

vector. It can only be used to store a value in an existing element or read a value from an

existing element.

The code in this function appears cumbersome because it calls each vector s push_back

member function once for each value that is to be stored in the vector. This code can be

simpli ed by storing the vector initialization values in arrays, and then using loops to call

the push_back member function, storing the values in the arrays in the vectors. The fol-

lowing code shows an alternative initVectors function that takes this approach.

void initVectors(vector<int> &id, vector<int> &units,

 vector<double> &prices)

{

 const int NUM_PRODS = 9;

 int count;

 int unitsSold[NUM_PRODS] = {842, 416, 127, 514, 437, 269, 97,

 492, 212};

 double productPrices[NUM_PRODS] = {12.95, 14.95, 18.95, 16.95,

 21.95, 31.95, 14.95, 14.95,

 16.95};

 // Initialize the id vector

 for (int value = 914; value <= 922; value++)

 id.push_back(value);

 // Initialize the units vector

 for (count = 0; count < NUM_PRODS; count++)

 units.push_back(unitsSold[count]);

 // Initialize the prices vector

 for (count = 0; count < NUM_PRODS; count++)

 prices.push_back(productPrices[count]);

}

Next, notice that the calcSales, showOrder, dualSort, and showTotals functions do

not accept an argument indicating the number of elements in the vectors. This is not nec-

essary because vectors have the size member function, which returns the number of ele-

ments in the vector. The following code segment, which is taken from the calcSales

function, shows the units.size() member function being used to control the number of

loop iterations.

for (int index = 0; index < units.size(); index++)

sales.push_back(units[index] * prices[index]);

M08_GADD6253_07_SE_C08 Page 485 Thursday, January 6, 2011 3:09 PM

486 Chapter 8 Searching and Sorting Arrays

Review Questions and Exercises

Short Answer

1. Why is the linear search also called sequential search ?

2. If a linear search function is searching for a value that is stored in the last element of a
10,000-element array, how many elements will the search code have to read to locate
the value?

3. In an average case involving an array of N elements, how many times will a linear
search function have to read the array to locate a specific value?

4. A binary search function is searching for a value that is stored in the middle element
of an array. How many times will the function read an element in the array before
finding the value?

5. What is the maximum number of comparisons that a binary search function will
make when searching for a value in a 1,000-element array?

6. Why is the bubble sort inefficient for large arrays?

7. Why is the selection sort more efficient than the bubble sort on large arrays?

Fill-in-the-Blank

8. The _________ search algorithm steps sequentially through an array, comparing each
item with the search value.

9. The _________ search algorithm repeatedly divides the portion of an array being
searched in half.

10. The _________ search algorithm is adequate for small arrays but not large arrays.

11. The _________ search algorithm requires that the array s contents be sorted.

12. If an array is sorted in _________ order, the values are stored from lowest to highest.

13. If an array is sorted in _________ order, the values are stored from highest to lowest.

True or False

14. T F If data are sorted in ascending order, it means they are ordered from lowest

value to highest value.

15. T F If data are sorted in descending order, it means they are ordered from lowest

value to highest value.

16. T F The average number of comparisons performed by the linear search on an

array of N elements is N/2 (assuming the search values are consistently found).

17. T F The maximum number of comparisons performed by the linear search on an

array of N elements is N/2 (assuming the search values are consistently found).

18. Complete the following table calculating the average and maximum number of com-
parisons the linear search will perform, and the maximum number of comparisons the
binary search will perform.

M08_GADD6253_07_SE_C08 Page 486 Thursday, January 6, 2011 3:09 PM

Review Questions and Exercises 487

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. Charge Account Validation

Write a program that lets the user enter a charge account number. The program

should determine if the number is valid by checking for it in the following list:

5658845 4520125 7895122 8777541 8451277 1302850

8080152 4562555 5552012 5050552 7825877 1250255

1005231 6545231 3852085 7576651 7881200 4581002

The list of numbers above should be initialized in a single-dimensional array. A simple

linear search should be used to locate the number entered by the user. If the user

enters a number that is in the array, the program should display a message saying that

the number is valid. If the user enters a number that is not in the array, the program

should display a message indicating that the number is invalid.

2. Lottery Winners

A lottery ticket buyer purchases 10 tickets a week, always playing the same 10 5-digit

lucky combinations. Write a program that initializes an array or a vector with

these numbers and then lets the player enter this week s winning 5-digit number. The

program should perform a linear search through the list of the player s numbers and

report whether or not one of the tickets is a winner this week. Here are the numbers:

13579 26791 26792 33445 55555

62483 77777 79422 85647 93121

3. Lottery Winners Modi cation

Modify the program you wrote for Programming Challenge 2 (Lottery Winners) so it

performs a binary search instead of a linear search.

4. Charge Account Validation Modi cation

Modify the program you wrote for Problem 1 (Charge Account Validation) so it per-

forms a binary search to locate valid account numbers. Use the selection sort algo-

rithm to sort the array before the binary search is performed.

Array Size *
50
Elements

500
Elements

10,000
Elements

100,000
Elements

10,000,000
Elements

Linear Search
(Average
Comparisons)

Linear Search
(Maximum
Comparisons)

Binary Search
(Maximum
Comparisons)

VideoNote

Solving the
Charge
Account
Validation
Modi cation
Problem

Programming Challenges

M08_GADD6253_07_SE_C08 Page 487 Thursday, January 6, 2011 3:09 PM

488 Chapter 8 Searching and Sorting Arrays

5. Rainfall Statistics Modi cation

Modify the Rainfall Statistics program you wrote for Programming Challenge 2 of

Chapter 7. The program should display a list of months, sorted in order of rainfall,

from highest to lowest.

6. String Selection Sort

Modify the selectionSort function presented in this chapter so it sorts an array of

strings instead of an array of ints. Test the function with a driver program. Use Pro-

gram 8-8 as a skeleton to complete.

7. Binary String Search

Modify the binarySearch function presented in this chapter so it searches an array

of strings instead of an array of ints. Test the function with a driver program. Use

Program 8-8 as a skeleton to complete. (The array must be sorted before the binary

search will work.)

8. Search Benchmarks

Write a program that has an array of at least 20 integers. It should call a function that

uses the linear search algorithm to locate one of the values. The function should keep

a count of the number of comparisons it makes until it nds the value. The program

then should call a function that uses the binary search algorithm to locate the same

value. It should also keep count of the number of comparisons it makes. Display these

values on the screen.

9. Sorting Benchmarks

Write a program that uses two identical arrays of at least 20 integers. It should call a

function that uses the bubble sort algorithm to sort one of the arrays in ascending

order. The function should keep a count of the number of exchanges it makes. The

Program 8-8

 #include <iostream>

 #include <string>

 using namespace std;

 int main()

 {

 const int NUM_NAMES = 20;

 string names[NUM_NAMES] = {"Collins, Bill", "Smith, Bart", "Allen, Jim",

 "Griffin, Jim", "Stamey, Marty", "Rose, Geri",

 "Taylor, Terri", "Johnson, Jill",

 "Allison, Jeff", "Looney, Joe", "Wolfe, Bill",

 "James, Jean", "Weaver, Jim", "Pore, Bob",

 "Rutherford, Greg", "Javens, Renee",

 "Harrison, Rose", "Setzer, Cathy",

 "Pike, Gordon", "Holland, Beth" };

 // Insert your code to complete this program

 return 0;

 }

M08_GADD6253_07_SE_C08 Page 488 Thursday, January 6, 2011 3:09 PM

Review Questions and Exercises 489

program then should call a function that uses the selection sort algorithm to sort the

other array. It should also keep count of the number of exchanges it makes. Display

these values on the screen.

10. Sorting Orders

Write a program that uses two identical arrays of just eight integers. It should display

the contents of the rst array, then call a function to sort the array using an ascending

order bubble sort modi ed to print out the array contents after each pass of the sort.

Next, the program should display the contents of the second array, then call a func-

tion to sort the array using an ascending order selection sort modi ed to print out the

array contents after each pass of the sort.

11. Using Files String Selection Sort Modi cation

Modify the program you wrote for Programming Challenge 6 so it reads in 20 strings

from a le. The data can be found in the names.dat le.

Programming Challenges

M08_GADD6253_07_SE_C08 Page 489 Thursday, January 6, 2011 3:09 PM

M08_GADD6253_07_SE_C08 Page 490 Thursday, January 6, 2011 3:09 PM

491

C
H

A
P

T
E

R

9

Pointers

9.1

Getting the Address of a Variable

CONCEPT:

The address operator (&) returns the memory address of a variable.

Every variable is allocated a section of memory large enough to hold a value of the vari-

able s data type. On a PC, for instance, it s common for one byte to be allocated for

char

s,

two bytes for

short

s, four bytes for

int

s,

long

s, and

float

s, and eight bytes for

double

s.

Each byte of memory has a unique

address

. A variable s address is the address of the rst

byte allocated to that variable. Suppose the following variables are de ned in a program:

char letter;

short number;

float amount;

Figure 9-1 illustrates how they might be arranged in memory and shows their addresses.

TOPICS

9.1 Getting the Address of a Variable

9.2 Pointer Variables

9.3 The Relationship Between Arrays

and Pointers

9.4 Pointer Arithmetic

9.5 Initializing Pointers

9.6 Comparing Pointers

9.7 Pointers as Function Parameters

9.8 Focus on Software Engineering:

Dynamic Memory Allocation

9.9 Focus on Software Engineering:

Returning Pointers from Functions

9.10 Focus on Problem Solving and

Program Design: A Case Study

M09_GADD6253_07_SE_C09 Page 491 Friday, January 7, 2011 7:14 PM

492

Chapter 9 Pointers

In Figure 9-1, the variable

letter

 is shown at address 1200,

number

 is at address 1201,

and

amount

 is at address 1203.

Getting the address of a variable is accomplished with an operator in C++. When the

address operator (

&

) is placed in front of a variable name, it returns the address of that

variable. Here is an expression that returns the address of the variable

amount

:

&amount

And here is a statement that displays the variable s address on the screen:

cout << &amount;

Program 9-1 demonstrates the use of the address operator to display the address, size, and

contents of a variable.

Figure 9-1

NOTE:

The addresses of the variables shown in Figure 9-1 are arbitrary values used

only for illustration purposes.

NOTE:

Do not confuse the address operator with the

&

 symbol used when de ning a

reference variable.

Program 9-1

 1 // This program uses the & operator to determine a variable's

 2 // address and the sizeof operator to determine its size.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 int x = 25;

 9

 10 cout << "The address of x is " << &x << endl;

 11 cout << "The size of x is " << sizeof(x) << " bytes\n";

 12 cout << "The value in x is " << x << endl;

 13 return 0;

 14 }

letter

1200

number

1201

amount

1203

M09_GADD6253_07_SE_C09 Page 492 Friday, January 7, 2011 7:14 PM

9.2 Pointer Variables

493

9.2

Pointer Variables

CONCEPT:

Pointer variables

, which are often just called

pointers

, are designed to

hold memory addresses. With pointer variables you can indirectly

manipulate data stored in other variables.

A

pointer variable

, which often is just called a

pointer

, is a special variable that holds a

memory address. Just as

int

 variables are designed to hold integers, and

double

 variables

are designed to hold oating-point numbers, pointer variables are designed to hold mem-

ory addresses.

Memory addresses identify speci c locations in the computer s memory. Because a pointer

variable holds a memory address, it can be used to hold the location of some other piece

of data. This should give you a clue as to why it is called a pointer: It points to some

piece of data that is stored in the computer s memory. Pointer variables also allow you to

work with the data that they point to.

We ve already used memory addresses in this book to work with data. Recall from Chap-

ter 6 that when we pass an array as an argument to a function, we are actually passing the

array s beginning address. For example, suppose we have an array named

numbers

 and

we call the

showValues

 function as shown here.

const int SIZE = 5;

int numbers[SIZE] = { 1, 2, 3, 4, 5 };

showValues(numbers, SIZE);

In this code we are passing the name of the array,

numbers

, and its size as arguments to

the

showValues

 function. Here is the de nition for the

showValues

 function:

void showValues(int values[], int size)

{

 for (int count = 0; count < size; count++)

 cout << values[count] << endl;

}

In the function, the

values

 parameter receives the address of the

numbers

 array. It works

like a pointer because it points to the

numbers

 array, as shown in Figure 9-2.

Program Output

The address of x is 0x8f05

The size of x is 4 bytes

The value in x is 25

NOTE:

The address of the variable

x

 is displayed in hexadecimal. This is the way

addresses are normally shown in C++.

M09_GADD6253_07_SE_C09 Page 493 Friday, January 7, 2011 7:14 PM

494

Chapter 9 Pointers

Inside the

showValues

 function, anything that is done to the

values

 parameter is actu-

ally done to the

numbers

 array. We can say that the

values

 parameter references the

numbers

 array.

Also recall from Chapter 6 that we discussed reference variables. A reference variable acts

as an alias for another variable. It is called a reference variable because it references

another variable in the program. Anything that you do to the reference variable is actually

done to the variable it references. For example, suppose we have the variable

jellyDonuts

 and we pass the variable to the

getOrder

 function, as shown here:

int jellyDonuts;

getOrder(jellyDonuts);

Here is the de nition for the

getOrder

 function:

void getOrder(int &donuts)

{

 cout << "How many doughnuts do you want? ";

 cin >> donuts;

}

In the function, the

donuts

 parameter is a reference variable, and it receives the address of

the

jellyDonuts

 variable. It works like a pointer because it points to the

jellyDonuts

variable as shown in Figure 9-3.

Inside the

getOrder

 function, the

donuts

 parameter references the

jellyDonuts

 vari-

able. Anything that is done to the

donuts

 parameter is actually done to the

jellyDonuts

variable. When the user enters a value, the

cin

 statement uses the

donuts

 reference vari-

able to indirectly store the value in the

jellyDonuts

 variable.

Notice that the connection between the

donuts

 reference variable and the

jellyDonuts

argument is automatically established by C++ when the function is called. When you are

writing this code, you don t have go to the trouble of nding the memory address of the

Figure 9-2

showValues(numbers, SIZE);

 void showValues(int values[], int size)

 {

 for (int count = 0; count < size; count++)

 cout << values[count] << endl;

 }

numbers array

1 2 3 4 5

address 5

M09_GADD6253_07_SE_C09 Page 494 Friday, January 7, 2011 7:14 PM

9.2 Pointer Variables

495

jellyDonuts

 variable and then properly storing that address in the

donuts

 reference

variable. When you are storing a value in the

donuts

 variable, you don t have to specify

that the value should actually be stored in the

jellyDonuts

 variable. C++ handles all of

that automatically.

In C++, pointer variables are yet another mechanism for using memory addresses to work

with pieces of data. Pointer variables are similar to reference variables, but pointer vari-

ables operate at a lower level. By this, I mean that C++ does not automatically do as much

work for you with pointer variables as it does with reference variables. In order to make a

pointer variable reference another item in memory, you have to write code that fetches the

memory address of that item and assigns the address to the pointer variable. Also, when

you use a pointer variable to store a value in the memory location that the pointer refer-

ences, your code has to specify that the value should be stored in the location referenced

by the pointer variable, and not in the pointer variable itself.

Because reference variables are easier to work with, you might be wondering why you

would ever use pointers at all. In C++, pointers are useful, and even necessary, for many

operations. One such operation is dynamic memory allocation. When you are writing a

program that will need to work with an unknown amount of data, dynamic memory allo-

cation allows you to create variables, arrays, and more complex data structures in mem-

ory while the program is running. We will discuss dynamic memory allocation in greater

detail in this chapter. Pointers are also very useful in algorithms that manipulate arrays

and work with certain types of strings. In object-oriented programming, which you will

learn about in Chapters 13, 14, and 15, pointers are very useful for creating and working

with objects and for sharing access to those objects.

Figure 9-3

getOrder(jellyDonuts);

void getOrder(int &donuts)

{

 cout << "How many doughnuts do you want? ";

 cin >> donuts;

}

jellyDonuts variable

address

M09_GADD6253_07_SE_C09 Page 495 Friday, January 7, 2011 7:14 PM

496

Chapter 9 Pointers

Creating and Using Pointer Variables

The de nition of a pointer variable looks pretty much like any other de nition. Here is an

example:

int *ptr;

The asterisk in front of the variable name indicates that

ptr

 is a pointer variable. The int

data type indicates that ptr can be used to hold the address of an integer variable. The

de nition statement above would read ptr is a pointer to an int.

Some programmers prefer to de ne pointers with the asterisk next to the type name,

rather than the variable name. For example, the previous de nition shown above could be

written as:

int* ptr;

This style of de nition might visually reinforce the fact that ptr s data type is not int, but

pointer-to-int. Both de nition styles are correct.

Program 9-2 demonstrates a very simple usage of a pointer: storing and printing the

address of another variable.

In Program 9-2, two variables are de ned: x and ptr. The variable x is an int and the

variable ptr is a pointer to an int. The variable x is initialized with the value 25. The

variable ptr is assigned the address of x with the following statement in line 10:

ptr = &x;

NOTE: In this de nition, the word int does not mean that ptr is an integer variable. It

means that ptr can hold the address of an integer variable. Remember, pointers only hold

one kind of value: an address.

Program 9-2

 1 // This program stores the address of a variable in a pointer.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 int x = 25; // int variable

 8 int *ptr; // Pointer variable, can point to an int

 9

 10 ptr = &x; // Store the address of x in ptr

 11 cout << "The value in x is " << x << endl;

 12 cout << "The address of x is " << ptr << endl;

 13 return 0;

 14 }

Program Output

The value in x is 25

The address of x is 0x7e00

M09_GADD6253_07_SE_C09 Page 496 Friday, January 7, 2011 7:14 PM

9.2 Pointer Variables 497

Figure 9-4 illustrates the relationship between ptr and x.

As shown in Figure 9-4, x, which is located at memory address 0x7e00, contains the num-

ber 25. ptr contains the address 0x7e00. In essence, it points to the variable x.

The real bene t of pointers is that they allow you to indirectly access and modify the vari-

able being pointed to. In Program 9-2, for instance, ptr could be used to change the con-

tents of the variable x. This is done with the indirection operator, which is an asterisk (*).

When the indirection operator is placed in front of a pointer variable name, it dereferences

the pointer. When you are working with a dereferenced pointer, you are actually working

with the value the pointer is pointing to. This is demonstrated in Program 9-3.

Figure 9-4

Program 9-3

 1 // This program demonstrates the use of the indirection operator.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 int x = 25; // int variable

 8 int *ptr; // Pointer variable, can point to an int

 9

 10 ptr = &x; // Store the address of x in ptr

 11

 12 // Use both x and ptr to display the value in x.

 13 cout << "Here is the value in x, printed twice:\n";

 14 cout << x << endl; // Displays the contents of x

 15 cout << *ptr << endl; // Displays the contents of x

 16

 17 // Assign 100 to the location pointed to by ptr. This

 18 // will actually assign 100 to x.

 19 *ptr = 100;

 20

 21 // Use both x and ptr to display the value in x.

 22 cout << "Once again, here is the value in x:\n";

 23 cout << x << endl; // Displays the contents of x

 24 cout << *ptr << endl; // Displays the contents of x

 25 return 0;

 26 }

(program output continues)

x

25

ptr

0x7e00 Address of x: 0x7e00

M09_GADD6253_07_SE_C09 Page 497 Friday, January 7, 2011 7:14 PM

498 Chapter 9 Pointers

Take a closer look at the statement in line 10:

ptr = &x;

This statement assigns the address of the x variable to the ptr variable. Now look at line 15:

cout << *ptr << endl; // Displays the contents of x

When you apply the indirection operator (*) to a pointer variable, you are working, not

with the pointer variable itself, but with the item it points to. Because this statement sends the

expression *ptr to the cout object, it does not display the value in ptr, but the value that

ptr points to. Since ptr points to the x variable, this statement displays the contents of

the x variable.

Suppose the statement did not use the indirection operator. Suppose that statement had

been written as:

cout << ptr << endl; // Displays an address

Because the indirection operator is not applied to ptr in this statement, it works directly

with the ptr variable. This statement would display the address that is stored in ptr.

Now take a look at the following statement, which appears in line 19:

*ptr = 100;

Notice the indirection operator being used with ptr. That means the statement is not

affecting ptr, but the item that ptr points to. This statement assigns 100 to the item ptr

points to, which is the x variable. After this statement executes, 100 will be stored in the x

variable.

Program 9-4 demonstrates that pointers can point to different variables.

Program Output

Here is the value in x, printed twice:

25

25

Once again, here is the value in x:

100

100

Program 9-4

 1 // This program demonstrates a pointer variable referencing

 2 // different variables.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 int x = 25, y = 50, z = 75; // Three int variables

 9 int *ptr; // Pointer variable

 10

Program 9-3 (continued)

M09_GADD6253_07_SE_C09 Page 498 Friday, January 7, 2011 7:14 PM

9.2 Pointer Variables 499

Take a closer look at the statement in line 17:

ptr = &x;

This statement assigns the address of the x variable to the ptr variable. Now look at line 18:

*ptr += 100;

In this statement notice that the indirection operator (*) is used with the ptr variable. When

we apply the indirection operator to ptr, we are working, not with ptr, but with the item

that ptr points to. When this statement executes, ptr is pointing at x, so the statement in

line 18 adds 100 to the contents of x. Then the following statement, in line 20, executes:

ptr = &y;

This statement assigns the address of the y variable to the ptr variable. After this state-

ment executes, ptr is no longer pointing at x. Rather, it will be pointing at y. The state-

ment in line 21, shown here, adds 100 to the y variable.

*ptr += 100;

These steps are repeated with the z variable in lines 23 and 24.

 11 // Display the contents of x, y, and z.

 12 cout << "Here are the values of x, y, and z:\n";

 13 cout << x << " " << y << " " << z << endl;

 14

 15 // Use the pointer to manipulate x, y, and z.

 16

 17 ptr = &x; // Store the address of x in ptr.

 18 *ptr += 100; // Add 100 to the value in x.

 19

 20 ptr = &y; // Store the address of y in ptr.

 21 *ptr += 100; // Add 100 to the value in y.

 22

 23 ptr = &z; // Store the address of z in ptr.

 24 *ptr += 100; // Add 100 to the value in z.

 25

 26 // Display the contents of x, y, and z.

 27 cout << "Once again, here are the values of x, y, and z:\n";

 28 cout << x << " " << y << " " << z << endl;

 29 return 0;

 30 }

Program Output

Here are the values of x, y, and z:

25 50 75

Once again, here are the values of x, y, and z:

125 150 175

M09_GADD6253_07_SE_C09 Page 499 Friday, January 7, 2011 7:14 PM

500 Chapter 9 Pointers

9.3 The Relationship Between Arrays and Pointers

CONCEPT: Array names can be used as constant pointers, and pointers can be used

as array names.

You learned in Chapter 7 that an array name, without brackets and a subscript, actually

represents the starting address of the array. This means that an array name is really a

pointer. Program 9-5 illustrates this by showing an array name being used with the indi-

rection operator.

Because numbers works like a pointer to the starting address of the array, the rst element

is retrieved when numbers is dereferenced. So how could the entire contents of an array be

retrieved using the indirection operator? Remember, array elements are stored together in

memory, as illustrated in Figure 9-5.

It makes sense that if numbers is the address of numbers[0], values could be added to

numbers to get the addresses of the other elements in the array. It s important to know,

however, that pointers do not work like regular variables when used in mathematical

statements. In C++, when you add a value to a pointer, you are actually adding that value

times the size of the data type being referenced by the pointer. In other words, if you add

NOTE: So far you ve seen three different uses of the asterisk in C++:

As the multiplication operator, in statements such as
 distance = speed * time;

In the de nition of a pointer variable, such as
 int *ptr;

As the indirection operator, in statements such as
 *ptr = 100;

Program 9-5

 1 // This program shows an array name being dereferenced with the *

 2 // operator.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 short numbers[] = {10, 20, 30, 40, 50};

 9

 10 cout << "The first element of the array is ";

 11 cout << *numbers << endl;

 12 return 0;

 13 }

Program Output

The first element of the array is 10

M09_GADD6253_07_SE_C09 Page 500 Friday, January 7, 2011 7:14 PM

9.3 The Relationship Between Arrays and Pointers 501

one to numbers, you are actually adding 1 * sizeof(short) to numbers. If you add two

to numbers, the result is numbers + 2 * sizeof(short), and so forth. On a PC, this

means the following are true, because short integers typically use two bytes:

*(numbers + 1) is actually *(numbers + 1 * 2)

*(numbers + 2) is actually *(numbers + 2 * 2)

*(numbers + 3) is actually *(numbers + 3 * 2)

and so forth.

This automatic conversion means that an element in an array can be retrieved by using

its subscript or by adding its subscript to a pointer to the array. If the expression

*numbers, which is the same as *(numbers + 0), retrieves the rst element in the array,

then *(numbers + 1) retrieves the second element. Likewise, *(numbers + 2) retrieves

the third element, and so forth. Figure 9-6 shows the equivalence of subscript notation

and pointer notation.

Program 9-6 shows the entire contents of the array being accessed, using pointer notation.

Figure 9-5

Figure 9-6

NOTE: The parentheses are critical when adding values to pointers. The * operator has

precedence over the + operator, so the expression *number + 1 is not equivalent to

*(number + 1). *number + 1 adds one to the contents of the rst element of the array,

while *(number + 1) adds one to the address in number, then dereferences it.

Program 9-6

 1 // This program processes an array using pointer notation.

 2 #include <iostream>

 3 using namespace std;

 4

(program continues)

numbers[0] numbers[1] numbers[2] numbers[3] numbers[4]

numbers

numbers[0] numbers[1] numbers[2] numbers[3] numbers[4]

*numbers *(numbers+1) *(numbers+2) *(numbers+3) *(numbers+4)

M09_GADD6253_07_SE_C09 Page 501 Friday, January 7, 2011 7:14 PM

502 Chapter 9 Pointers

When working with arrays, remember the following rule:

array[index] is equivalent to *(array + index)

To demonstrate just how close the relationship is between array names and pointers, look

at Program 9-7. It de nes an array of doubles and a double pointer, which is assigned the

starting address of the array. Not only is pointer notation then used with the array name,

but subscript notation is used with the pointer!

 5 int main()

 6 {

 7 const int SIZE = 5; // Size of the array

 8 int numbers[SIZE]; // Array of integers

 9 int count; // Counter variable

 10

 11 // Get values to store in the array.

 12 // Use pointer notation instead of subscripts.

 13 cout << "Enter " << SIZE << " numbers: ";

 14 for (count = 0; count < SIZE; count++)

 15 cin >> *(numbers + count);

 16

 17 // Display the values in the array.

 18 // Use pointer notation instead of subscripts.

 19 cout << "Here are the numbers you entered:\n";

 20 for (count = 0; count < SIZE; count++)

 21 cout << *(numbers + count)<< " ";

 22 cout << endl;

 23 return 0;

 24 }

Program Output with Example Input Shown in Bold

Enter 5 numbers: 5 10 15 20 25 [Enter]
Here are the numbers you entered:

5 10 15 20 25

WARNING! Remember that C++ performs no bounds checking with arrays. When

stepping through an array with a pointer, it s possible to give the pointer an address

outside of the array.

Program 9-7

 1 // This program uses subscript notation with a pointer variable and

 2 // pointer notation with an array name.

 3 #include <iostream>

 4 #include <iomanip>

 5 using namespace std;

 6

Program 9-6 (continued)

M09_GADD6253_07_SE_C09 Page 502 Friday, January 7, 2011 7:14 PM

9.3 The Relationship Between Arrays and Pointers 503

Notice that the address operator is not needed when an array s address is assigned to a

pointer. Because the name of an array is already an address, use of the & operator would

be incorrect. You can, however, use the address operator to get the address of an individ-

ual element in an array. For instance, &numbers[1] gets the address of numbers[1]. This

technique is used in Program 9-8.

 7 int main()

 8 {

 9 const int NUM_COINS = 5;

 10 double coins[NUM_COINS] = {0.05, 0.1, 0.25, 0.5, 1.0};

 11 double *doublePtr; // Pointer to a double

 12 int count; // Array index

 13

 14 // Assign the address of the coins array to doublePtr.

 15 doublePtr = coins;

 16

 17 // Display the contents of the coins array. Use subscripts

 18 // with the pointer!

 19 cout << "Here are the values in the coins array:\n";

 20 for (count = 0; count < NUM_COINS; count++)

 21 cout << doublePtr[count] << " ";

 22

 23 // Display the contents of the array again, but this time

 24 // use pointer notation with the array name!

 25 cout << "\nAnd here they are again:\n";

 26 for (count = 0; count < NUM_COINS; count++)

 27 cout << *(coins + count) << " ";

 28 cout << endl;

 29 return 0;

 30 }

Program Output

Here are the values in the coins array:

0.05 0.1 0.25 0.5 1

And here they are again:

0.05 0.1 0.25 0.5 1

Program 9-8

 1 // This program uses the address of each element in the array.

 2 #include <iostream>

 3 #include <iomanip>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int NUM_COINS = 5;

 9 double coins[NUM_COINS] = {0.05, 0.1, 0.25, 0.5, 1.0};

 10 double *doublePtr; // Pointer to a double

 11 int count; // Array index

 12

(program continues)

M09_GADD6253_07_SE_C09 Page 503 Friday, January 7, 2011 7:14 PM

504 Chapter 9 Pointers

The only difference between array names and pointer variables is that you cannot change

the address an array name points to. For example, consider the following de nitions:

double readings[20], totals[20];

double *dptr;

These statements are legal:

dptr = readings; // Make dptr point to readings.

dptr = totals; // Make dptr point to totals.

But these are illegal:

readings = totals; // ILLEGAL! Cannot change readings.

totals = dptr; // ILLEGAL! Cannot change totals.

Array names are pointer constants. You can t make them point to anything but the array

they represent.

9.4 Pointer Arithmetic

CONCEPT: Some mathematical operations may be performed on pointers.

The contents of pointer variables may be changed with mathematical statements that per-

form addition or subtraction. This is demonstrated in Program 9-9. The rst loop incre-

ments the pointer variable, stepping it through each element of the array. The second loop

decrements the pointer, stepping it through the array backward.

 13 // Use the pointer to display the values in the array.

 14 cout << "Here are the values in the coins array:\n";

 15 for (count = 0; count < NUM_COINS; count++)

 16 {

 17 // Get the address of an array element.

 18 doublePtr = &coins[count];

 19

 20 // Display the contents of the element.

 21 cout << *doublePtr << " ";

 22 }

 23 cout << endl;

 24 return 0;

 25 }

Program Output

Here are the values in the coins array:

0.05 0.1 0.25 0.5 1

Program 9-8 (continued)

M09_GADD6253_07_SE_C09 Page 504 Friday, January 7, 2011 7:14 PM

9.4 Pointer Arithmetic 505

Not all arithmetic operations may be performed on pointers. For example, you cannot

multiply or divide a pointer. The following operations are allowable:

The ++ and -- operators may be used to increment or decrement a pointer variable.

An integer may be added to or subtracted from a pointer variable. This may be

performed with the + and - operators, or the += and -= operators.

A pointer may be subtracted from another pointer.

Program 9-9

 1 // This program uses a pointer to display the contents of an array.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 const int SIZE = 8;

 8 int set[SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};

 9 int *numPtr; // Pointer

 10 int count; // Counter variable for loops

 11

 12 // Make numPtr point to the set array.

 13 numPtr = set;

 14

 15 // Use the pointer to display the array contents.

 16 cout << "The numbers in set are:\n";

 17 for (count = 0; count < SIZE; count++)

 18 {

 19 cout << *numPtr << " ";

 20 numPtr++;

 21 }

 22

 23 // Display the array contents in reverse order.

 24 cout << "\nThe numbers in set backward are:\n";

 25 for (count = 0; count < SIZE; count++)

 26 {

 27 numPtr--;

 28 cout << *numPtr << " ";

 29 }

 30 return 0;

 31 }

Program Output

The numbers in set are:

5 10 15 20 25 30 35 40

The numbers in set backward are:

40 35 30 25 20 15 10 5

NOTE: Because numPtr is a pointer to an integer, the increment operator adds the size

of one integer to numPtr, so it points to the next element in the array. Likewise, the

decrement operator subtracts the size of one integer from the pointer.

M09_GADD6253_07_SE_C09 Page 505 Friday, January 7, 2011 7:14 PM

506 Chapter 9 Pointers

9.5 Initializing Pointers

CONCEPT: Pointers may be initialized with the address of an existing object.

Remember that a pointer is designed to point to an object of a speci c data type. When a

pointer is initialized with an address, it must be the address of an object the pointer can point

to. For instance, the following de nition of pint is legal because myValue is an integer:

int myValue;

int *pint = &myValue;

The following is also legal because ages is an array of integers:

int ages[20];

int *pint = ages;

But the following de nition of pint is illegal because myFloat is not an int:

float myFloat;

int *pint = &myFloat; // Illegal!

Pointers may be de ned in the same statement as other variables of the same type. The fol-

lowing statement de nes an integer variable, myValue, and then de nes a pointer, pint,

which is initialized with the address of myValue:

int myValue, *pint = &myValue;

And the following statement de nes an array, readings, and a pointer, marker, which is

initialized with the address of the rst element in the array:

double readings[50], *marker = readings;

Of course, a pointer can only be initialized with the address of an object that has already

been de ned. The following is illegal because pint is being initialized with the address of

an object that does not exist yet:

int *pint = &myValue; // Illegal!

int myValue;

Checkpoint

 www.myprogramminglab.com

9.1 Write a statement that displays the address of the variable count.

9.2 Write the de nition statement for a variable fltPtr. The variable should be a

pointer to a float.

9.3 List three uses of the * symbol in C++.

9.4 What is the output of the following code?

int x = 50, y = 60, z = 70;

int *ptr;

cout << x << " " << y << " " << z << endl;

ptr = &x;

M09_GADD6253_07_SE_C09 Page 506 Friday, January 7, 2011 7:14 PM

9.6 Comparing Pointers 507

*ptr *= 10;

ptr = &y;

*ptr *= 5;

ptr = &z;

*ptr *= 2;

cout << x << " " << y << " " << z << endl;

9.5 Rewrite the following loop so it uses pointer notation (with the indirection operator)

instead of subscript notation.

for (int x = 0; x < 100; x++)

 cout << arr[x] << endl;

9.6 Assume ptr is a pointer to an int, and holds the address 12000. On a system

with 4-byte integers, what address will be in ptr after the following statement?

ptr += 10;

9.7 Assume pint is a pointer variable. Is each of the following statements valid or

invalid? If any is invalid, why?

A) pint++;

B) --pint;

C) pint /= 2;

D) pint *= 4;

E) pint += x; // Assume x is an int.

9.8 Is each of the following de nitions valid or invalid? If any is invalid, why?

A) int ivar;

int *iptr = &ivar;

B) int ivar, *iptr = &ivar;

C) float fvar;

int *iptr = &fvar;

D) int nums[50], *iptr = nums;

E) int *iptr = &ivar;

int ivar;

9.6 Comparing Pointers

CONCEPT: If one address comes before another address in memory, the rst address

is considered less than the second. C++ s relational operators may be

used to compare pointer values.

Pointers may be compared by using any of C++ s relational operators:

> < == != >= <=

In an array, all the elements are stored in consecutive memory locations, so the address of

element 1 is greater than the address of element 0. This is illustrated in Figure 9-7.

M09_GADD6253_07_SE_C09 Page 507 Friday, January 7, 2011 7:14 PM

508 Chapter 9 Pointers

Because the addresses grow larger for each subsequent element in the array, the following

if statements are all true:

if (&arr[1] > &arr[0])

if (arr < &arr[4])

if (arr == &arr[0])

if (&arr[2] != &arr[3])

The capability of comparing addresses gives you another way to be sure a pointer does not

go beyond the boundaries of an array. Program 9-10 initializes the pointer nums with the

starting address of the array set. The nums pointer is then stepped through the array set

until the address it contains is equal to the address of the last element of the array. Then

the pointer is stepped backward through the array until it points to the rst element.

Figure 9-7

NOTE: Comparing two pointers is not the same as comparing the values the two

pointers point to. For example, the following if statement compares the addresses stored

in the pointer variables ptr1 and ptr2:

if (ptr1 < ptr2)

The following statement, however, compares the values that ptr1 and ptr2 point to:

if (*ptr1 < *ptr2)

Program 9-10

 1 // This program uses a pointer to display the contents

 2 // of an integer array.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 int set[8] = {5, 10, 15, 20, 25, 30, 35, 40};

 9 int *nums = set; // Make nums point to set

 10

 11 // Display the numbers in the array.

 12 cout << "The numbers in set are:\n";

 13 cout << *nums << " "; // Display first element

arr[0] arr[1] arr[2] arr[3] arr[4]

0x5A00

(Addresses)

0x5A04 0x5A08 0x5A0C 0x5A10

An array of five integers

M09_GADD6253_07_SE_C09 Page 508 Friday, January 7, 2011 7:14 PM

9.7 Pointers as Function Parameters 509

9.7 Pointers as Function Parameters

CONCEPT: A pointer can be used as a function parameter. It gives the function access

to the original argument, much like a reference parameter does.

In Chapter 6 you were introduced to the concept of reference variables being used as func-

tion parameters. A reference variable acts as an alias to the original variable used as an

argument. This gives the function access to the original argument variable, allowing it to

change the variable s contents. When a variable is passed into a reference parameter, the

argument is said to be passed by reference.

Another way to pass an argument by reference is to use a pointer variable as the parame-

ter. Admittedly, reference variables are much easier to work with than pointers. Reference

variables hide all the mechanics of dereferencing and indirection. You should still learn

to use pointers as function arguments, however, because some tasks, especially when you

are dealing with strings, are best done with pointers.* Also, the C++ library has many

functions that use pointers as parameters.

 14 while (nums < &set[7])

 15 {

 16 // Advance nums to point to the next element.

 17 nums++;

 18 // Display the value pointed to by nums.

 19 cout << *nums << " ";

 20 }

 21

 22 // Display the numbers in reverse order.

 23 cout << "\nThe numbers in set backward are:\n";

 24 cout << *nums << " "; // Display first element

 25 while (nums > set)

 26 {

 27 // Move backward to the previous element.

 28 nums--;

 29 // Display the value pointed to by nums.

 30 cout << *nums << " ";

 31 }

 32 return 0;

 33 }

Program Output

The numbers in set are:

5 10 15 20 25 30 35 40

The numbers in set backward are:

40 35 30 25 20 15 10 5

* It is also important to learn this technique in case you ever need to write a C program. In C, the
only way to pass a variable by reference is to use a pointer.

M09_GADD6253_07_SE_C09 Page 509 Friday, January 7, 2011 7:14 PM

510 Chapter 9 Pointers

Here is the de nition of a function that uses a pointer parameter:

void doubleValue(int *val)

{

*val *= 2;

}

The purpose of this function is to double the variable pointed to by val with the following

statement:

*val *= 2;

When val is dereferenced, the *= operator works on the variable pointed to by val. This

statement multiplies the original variable, whose address is stored in val, by two. Of

course, when the function is called, the address of the variable that is to be doubled must

be used as the argument, not the variable itself. Here is an example of a call to the

doubleValue function:

doubleValue(&number);

This statement uses the address operator (&) to pass the address of number into the val

parameter. After the function executes, the contents of number will have been multiplied

by two. The use of this function is illustrated in Program 9-11.

Program 9-11

 1 // This program uses two functions that accept addresses of

 2 // variables as arguments.

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Function prototypes

 7 void getNumber(int *);

 8 void doubleValue(int *);

 9

 10 int main()

 11 {

 12 int number;

 13

 14 // Call getNumber and pass the address of number.

 15 getNumber(&number);

 16

 17 // Call doubleValue and pass the address of number.

 18 doubleValue(&number);

 19

 20 // Display the value in number.

 21 cout << "That value doubled is " << number << endl;

 22 return 0;

 23 }

 24

M09_GADD6253_07_SE_C09 Page 510 Friday, January 7, 2011 7:14 PM

9.7 Pointers as Function Parameters 511

Program 9-11 has two functions that use pointers as parameters. Notice the function

prototypes:

void getNumber(int *);

void doubleValue(int *);

Each one uses the notation int * to indicate the parameter is a pointer to an int. As with

all other types of parameters, it isn t necessary to specify the name of the variable in the

prototype. The * is required, though.

The getNumber function asks the user to enter an integer value. The following cin statement,

in line 34, stores the value entered by the user in memory:

cin >> *input;

The indirection operator causes the value entered by the user to be stored, not in input,

but in the variable pointed to by input.

 25 //***

 26 // Definition of getNumber. The parameter, input, is a pointer. *

 27 // This function asks the user for a number. The value entered *

 28 // is stored in the variable pointed to by input. *

 29 //***

 30

 31 void getNumber(int *input)

 32 {

 33 cout << "Enter an integer number: ";

 34 cin >> *input;

 35 }

 36

 37 //***

 38 // Definition of doubleValue. The parameter, val, is a pointer. *

 39 // This function multiplies the variable pointed to by val by *

 40 // two. *

 41 //***

 42

 43 void doubleValue(int *val)

 44 {

 45 *val *= 2;

 46 }

Program Output with Example Input Shown in Bold

Enter an integer number: 10 [Enter]
That value doubled is 20

WARNING! It s critical that the indirection operator be used in the statement above.

Without it, cin would store the value entered by the user in input, as if the value were

an address. If this happens, input will no longer point to the number variable in function

main. Subsequent use of the pointer will result in erroneous, if not disastrous, results.

M09_GADD6253_07_SE_C09 Page 511 Friday, January 7, 2011 7:14 PM

512 Chapter 9 Pointers

When the getNumber function is called in line 15, the address of the number variable in

function main is passed as the argument. After the function executes, the value entered by

the user is stored in number. Next, the doubleValue function is called in line 18, with the

address of number passed as the argument. This causes number to be multiplied by two.

Pointer variables can also be used to accept array addresses as arguments. Either subscript

or pointer notation may then be used to work with the contents of the array. This is dem-

onstrated in Program 9-12.

Program 9-12

 1 // This program demonstrates that a pointer may be used as a

 2 // parameter to accept the address of an array.

 3 #include <iostream>

 4 #include <iomanip>

 5 using namespace std;

 6

 7 // Function prototypes

 8 void getSales(double *, int);

 9 double totalSales(double *, int);

 10

 11 int main()

 12 {

 13 const int QTRS = 4;

 14 double sales[QTRS];

 15

 16 // Get the sales data for all quarters.

 17 getSales(sales, QTRS);

 18

 19 // Set the numeric output formatting.

 20 cout << fixed << showpoint << setprecision(2);

 21

 22 // Display the total sales for the year.

 23 cout << "The total sales for the year are $";

 24 cout << totalSales(sales, QTRS) << endl;

 25 return 0;

 26 }

 27

 28 //***

 29 // Definition of getSales. This function uses a pointer to accept *

 30 // the address of an array of doubles. The function asks the user *

 31 // to enter sales figures and stores them in the array. *

 32 //***

 33 void getSales(double *arr, int size)

 34 {

 35 for (int count = 0; count < size; count++)

 36 {

 37 cout << "Enter the sales figure for quarter ";

 38 cout << (count + 1) << ": ";

 39 cin >> arr[count];

 40 }

 41 }

 42

M09_GADD6253_07_SE_C09 Page 512 Friday, January 7, 2011 7:14 PM

9.7 Pointers as Function Parameters 513

Notice that in the getSales function in Program 9-12, even though the parameter arr is

de ned as a pointer, subscript notation is used in the cin statement in line 39:

cin >> arr[count];

In the totalSales function, arr is used with the indirection operator in line 54:

sum += *arr;

And in line 55, the address in arr is incremented to point to the next element:

arr++;

Pointers to Constants

You have seen how an item s address can be passed into a pointer parameter, and how the

pointer can be used to modify the item that was passed as an argument. Sometimes it is

necessary to pass the address of a const item into a pointer. When this is the case, the

pointer must be de ned as a pointer to a const item. For example, consider the following

array de nition:

 43 //***

 44 // Definition of totalSales. This function uses a pointer to *

 45 // accept the address of an array. The function returns the total *

 46 // of the elements in the array. *

 47 //***

 48 double totalSales(double *arr, int size)

 49 {

 50 double sum = 0.0;

 51

 52 for (int count = 0; count < size; count++)

 53 {

 54 sum += *arr;

 55 arr++;

 56 }

 57 return sum;

 58 }

Program Output with Example Input Shown in Bold

Enter the sales figure for quarter 1: 10263.98 [Enter]
Enter the sales figure for quarter 2: 12369.69 [Enter]
Enter the sales figure for quarter 3: 11542.13 [Enter]
Enter the sales figure for quarter 4: 14792.06 [Enter]
The total sales for the year are $48967.86

NOTE: The two previous statements could be combined into the following statement:

sum += *arr++;

The * operator will rst dereference arr, then the ++ operator will increment the address

in arr.

M09_GADD6253_07_SE_C09 Page 513 Friday, January 7, 2011 7:14 PM

514 Chapter 9 Pointers

const int SIZE = 6;

const double payRates[SIZE] = { 18.55, 17.45,

 12.85, 14.97,

 10.35, 18.89 };

In this code, payRates is an array of const doubles. This means that each element in the

array is a const double, and the compiler will not allow us to write code that changes

the array s contents. If we want to pass the payRates array into a pointer parameter, the

parameter must be declared as a pointer to const double. The following function shows

such an example:

void displayPayRates(const double *rates, int size)

{

 // Set numeric output formatting.

 cout << setprecision(2) << fixed << showpoint;

 // Display all the pay rates.

 for (int count = 0; count < size; count++)

 {

 cout << "Pay rate for employee " << (count + 1)

 << " is $" << *(rates + count) << endl;

 }

}

In the function header, notice that the rates parameter is de ned as a pointer to const

double. It should be noted that the word const is applied to the thing that rates points

to, not rates itself. This is illustrated in Figure 9-8.

Because rates is a pointer to a const, the compiler will not allow us to write code that

changes the thing that rates points to.

In passing the address of a constant into a pointer variable, the variable must be de ned as

a pointer to a constant. If the word const had been left out of the de nition of the rates

parameter, a compiler error would have resulted.

Passing a Nonconstant Argument into a Pointer to a Constant

Although a constant s address can be passed only to a pointer to const, a pointer to const

can also receive the address of a nonconstant item. For example, look at Program 9-13.

Figure 9-8

const double *rates

The asterisk indicates that

rates is a pointer.

This is what rates points to.

M09_GADD6253_07_SE_C09 Page 514 Friday, January 7, 2011 7:14 PM

9.7 Pointers as Function Parameters 515

Program 9-13

 1 // This program demonstrates a pointer to const parameter

 2 #include <iostream>

 3 using namespace std;

 4

 5 void displayValues(const int *, int);

 6

 7 int main()

 8 {

 9 // Array sizes

 10 const int SIZE = 6;

 11

 12 // Define an array of const ints.

 13 const int array1[SIZE] = { 1, 2, 3, 4, 5, 6 };

 14

 15 // Define an array of nonconst ints.

 16 int array2[SIZE] = { 2, 4, 6, 8, 10, 12 };

 17

 18 // Display the contents of the const array.

 19 displayValues(array1, SIZE);

 20

 21 // Display the contents of the nonconst array.

 22 displayValues(array2, SIZE);

 23 return 0;

 24 }

 25

 26 //***

 27 // The displayValues function uses a pointer to *

 28 // parameter to display the contents of an array. *

 29 //***

 30

 31 void displayValues(const int *numbers, int size)

 32 {

 33 // Display all the values.

 34 for (int count = 0; count < size; count++)

 35 {

 36 cout << *(numbers + count) << " ";

 37 }

 38 cout << endl;

 39 }

Program Output

1 2 3 4 5 6

2 4 6 8 10 12

NOTE: When you are writing a function that uses a pointer parameter, and the function

is not intended to change the data the parameter points to, it is always a good idea to

make the parameter a pointer to const. Not only will this protect you from writing code

in the function that accidentally changes the argument, but the function will be able to

accept the addresses of both constant and nonconstant arguments.

M09_GADD6253_07_SE_C09 Page 515 Friday, January 7, 2011 7:14 PM

516 Chapter 9 Pointers

Constant Pointers

In the previous section we discussed pointers to const. That is, pointers that point to

const data. You can also use the const key word to de ne a constant pointer. Here is the

difference between a pointer to const and a const pointer:

A pointer to const points to a constant item. The data that the pointer points to

cannot change, but the pointer itself can change.

With a const pointer, it is the pointer itself that is constant. Once the pointer is

initialized with an address, it cannot point to anything else.

The following code shows an example of a const pointer.

int value = 22;

int * const ptr = &value;

Notice in the de nition of ptr the word const appears after the asterisk. This means that

ptr is a const pointer. This is illustrated in Figure 9-9. In the code, ptr is initialized with

the address of the value variable. Because ptr is a constant pointer, a compiler error will

result if we write code that makes ptr point to anything else. An error will not result,

however, if we use ptr to change the contents of value. This is because value is not con-

stant, and ptr is not a pointer to const.

Constant pointers must be initialized with a starting value, as shown in the previous

example code. If a constant pointer is used as a function parameter, the parameter will be

initialized with the address that is passed as an argument into it, and cannot be changed to

point to anything else while the function is executing. Here is an example that attempts to

violate this rule:

void setToZero(int * const ptr)

{

 ptr = 0; // ERROR!! Cannot change the contents of ptr.

}

This function s parameter, ptr, is a const pointer. It will not compile because we cannot

have code in the function that changes the contents of ptr. However, ptr does not point

to a const, so we can have code that changes the data that ptr points to. Here is an

example of the function that will compile:

void setToZero(int * const ptr)

{

 *ptr = 0;

}

Figure 9-9

int * const ptr

* const indicates that

ptr is a constant pointer.

This is what ptr points to.

M09_GADD6253_07_SE_C09 Page 516 Friday, January 7, 2011 7:14 PM

9.7 Pointers as Function Parameters 517

Although the parameter is const pointer, we can call the function multiple times with dif-

ferent arguments. The following code will successfully pass the addresses of x, y, and z to

the setToZero function:

int x, y, z;

// Set x, y, and z to 0.

setToZero(&x);

setToZero(&y);

setToZero(&z);

Constant Pointers to Constants

So far, when using const with pointers we ve seen pointers to constants and we ve seen

constant pointers. You can also have constant pointers to constants. For example, look at

the following code:

int value = 22;

const int * const ptr = &value;

In this code ptr is a const pointer to a const int. Notice the word const appears before

int, indicating that ptr points to a const int, and it appears after the asterisk, indicat-

ing that ptr is a constant pointer. This is illustrated in Figure 9-10.

In the code, ptr is initialized with the address of value. Because ptr is a const pointer, we

cannot write code that makes ptr point to anything else. Because ptr is a pointer to const,

we cannot use it to change the contents of value. The following code shows one more

example of a const pointer to a const. This is another version of the displayValues

function in Program 9-13.

void displayValues(const int * const numbers, int size)

{

 // Display all the values.

 for (int count = 0; count < size; count++)

 {

 cout << *(numbers + count) << " ";

 }

 cout << endl;

}

In this code, the parameter numbers is a const pointer to a const int. Although we can

call the function with different arguments, the function itself cannot change what

numbers points to, and it cannot use numbers to change the contents of an argument.

Figure 9-10

const int * const ptr

* const indicates that

ptr is a constant pointer.

This is what ptr points to.

M09_GADD6253_07_SE_C09 Page 517 Friday, January 7, 2011 7:14 PM

518 Chapter 9 Pointers

9.8
Focus on Software Engineering:
Dynamic Memory Allocation

CONCEPT: Variables may be created and destroyed while a program is running.

As long as you know how many variables you will need during the execution of a pro-

gram, you can de ne those variables up front. For example, a program to calculate the

area of a rectangle will need three variables: one for the rectangle s length, one for the rect-

angle s width, and one to hold the area. If you are writing a program to compute the pay-

roll for 30 employees, you ll probably create an array of 30 elements to hold the amount

of pay for each person.

But what about those times when you don t know how many variables you need? For

instance, suppose you want to write a test-averaging program that will average any num-

ber of tests. Obviously the program would be very versatile, but how do you store the

individual test scores in memory if you don t know how many variables to de ne? Quite

simply, you allow the program to create its own variables on the y. This is called

dynamic memory allocation, and is only possible through the use of pointers.

To dynamically allocate memory means that a program, while running, asks the computer

to set aside a chunk of unused memory large enough to hold a variable of a speci c data

type. Let s say a program needs to create an integer variable. It will make a request to the

computer that it allocate enough bytes to store an int. When the computer lls this

request, it nds and sets aside a chunk of unused memory large enough for the variable. It

then gives the program the starting address of the chunk of memory. The program can

only access the newly allocated memory through its address, so a pointer is required to use

those bytes.

The way a C++ program requests dynamically allocated memory is through the new operator.

Assume a program has a pointer to an int de ned as

int *iptr;

Here is an example of how this pointer may be used with the new operator:

iptr = new int;

This statement is requesting that the computer allocate enough memory for a new int

variable. The operand of the new operator is the data type of the variable being created.

Once the statement executes, iptr will contain the address of the newly allocated mem-

ory. This is illustrated in Figure 9-11. A value may be stored in this new variable by deref-

erencing the pointer:

*iptr = 25;

Any other operation may be performed on the new variable by simply using the derefer-

enced pointer. Here are some example statements:

cout << *iptr; // Display the contents of the new variable.

cin >> *iptr; // Let the user input a value.

total += *iptr; // Use the new variable in a computation.

M09_GADD6253_07_SE_C09 Page 518 Friday, January 7, 2011 7:14 PM

9.8 Focus on Software Engineering: Dynamic Memory Allocation 519

Although the statements above illustrate the use of the new operator, there s little purpose

in dynamically allocating a single variable. A more practical use of the new operator is to

dynamically create an array. Here is an example of how a 100-element array of integers

may be allocated:

iptr = new int[100];

Once the array is created, the pointer may be used with subscript notation to access it. For

instance, the following loop could be used to store the value 1 in each element:

for (int count = 0; count < 100; count++)

 iptr[count] = 1;

But what if there isn t enough free memory to accommodate the request? What if the

program asks for a chunk large enough to hold a 100,000-element array of floats,

and that much memory isn t available? When memory cannot be dynamically allo-

cated, C++ throws an exception and terminates the program. Throwing an exception

means the program signals that an error has occurred. You will learn more about

exceptions in Chapter 16.

Programs created with older C++ compilers behave differently when memory cannot be

dynamically allocated. Under older compilers, the new operator returns the address 0, or

NULL when it fails to allocate the requested amount of memory. (NULL is a named con-

stant, de ned in the iostream le, that stands for address 0.) A program created with an

older compiler should always check to see if the new operator returns NULL, as shown in

the following code:

iptr = new int[100];

if (iptr == NULL)

{

 cout << "Error allocating memory!\n";

 return;

}

Figure 9-11

Pool of unused memory

This chunk of memory

starts at address 0xA652

iptr variable

VideoNote

Dynamically

Allocating

an Array

M09_GADD6253_07_SE_C09 Page 519 Friday, January 7, 2011 7:14 PM

520 Chapter 9 Pointers

The if statement determines whether iptr points to address 0. If it does, then the new

operator was unable to allocate enough memory for the array. In this case, an error mes-

sage is displayed and the return statement terminates the function.

When a program is nished using a dynamically allocated chunk of memory, it should

release it for future use. The delete operator is used to free memory that was allocated

with new. Here is an example of how delete is used to free a single variable, pointed to

by iptr:

delete iptr;

If iptr points to a dynamically allocated array, the [] symbol must be placed between

delete and iptr:

delete [] iptr;

Program 9-14 demonstrates the use of new and delete. It asks for sales gures for any

number of days. The gures are stored in a dynamically allocated array, and then totaled

and averaged.

Appendix G discusses garbage collection in .NET. You can download Appendix G from

the book s companion Web site at www.pearsonhighered.com/gaddis.

NOTE: A pointer that contains the address 0 is called a null pointer.

WARNING! The address 0 is considered an unusable address. Most computers store

special operating system data structures in the lower areas of memory. Anytime you use

the new operator with an older compiler, you should always test the pointer for the NULL

address before you use it.

WARNING! Only use pointers with delete that were previously used with new. If you

use a pointer with delete that does not reference dynamically allocated memory,

unexpected problems could result!

Program 9-14

 1 // This program totals and averages the sales figures for any

 2 // number of days. The figures are stored in a dynamically

 3 // allocated array.

 4 #include <iostream>

 5 #include <iomanip>

 6 using namespace std;

 7

 8 int main()

 9 {

 10 double *sales, // To dynamically allocate an array

 11 total = 0.0, // Accumulator

 12 average; // To hold average sales

M09_GADD6253_07_SE_C09 Page 520 Friday, January 7, 2011 7:14 PM

9.8 Focus on Software Engineering: Dynamic Memory Allocation 521

 13 int numDays, // To hold the number of days of sales

 14 count; // Counter variable

 15

 16 // Get the number of days of sales.

 17 cout << "How many days of sales figures do you wish ";

 18 cout << "to process? ";

 19 cin >> numDays;

 20

 21 // Dynamically allocate an array large enough to hold

 22 // that many days of sales amounts.

 23 sales = new double[numDays];

 24

 25 // Get the sales figures for each day.

 26 cout << "Enter the sales figures below.\n";

 27 for (count = 0; count < numDays; count++)

 28 {

 29 cout << "Day " << (count + 1) << ": ";

 30 cin >> sales[count];

 31 }

 32

 33 // Calculate the total sales

 34 for (count = 0; count < numDays; count++)

 35 {

 36 total += sales[count];

 37 }

 38

 39 // Calculate the average sales per day

 40 average = total / numDays;

 41

 42 // Display the results

 43 cout << fixed << showpoint << setprecision(2);

 44 cout << "\n\nTotal Sales: $" << total << endl;

 45 cout << "Average Sales: $" << average << endl;

 46

 47 // Free dynamically allocated memory

 48 delete [] sales;

 49 sales = 0; // Make sales point to null.

 50

 51 return 0;

 52 }

Program Output with Example Input Shown in Bold

How many days of sales figures do you wish to process? 5 [Enter]
Enter the sales figures below.

Day 1: 898.63 [Enter]
Day 2: 652.32 [Enter]
Day 3: 741.85 [Enter]
Day 4: 852.96 [Enter]
Day 5: 921.37 [Enter]

Total Sales: $4067.13

Average Sales: $813.43

M09_GADD6253_07_SE_C09 Page 521 Friday, January 7, 2011 7:14 PM

522

Chapter 9 Pointers

The statement in line 23 dynamically allocates memory for an array of

double

s, using the

value in

numDays

 as the number of elements. The

new

 operator returns the starting

address of the chunk of memory, which is assigned to the

sales

 pointer variable. The

sales

 variable is then used throughout the program to store the sales amounts in the

array and perform the necessary calculations. In line 48 the

delete

 operator is used to

free the allocated memory.

Notice that in line 49 the value 0 is assigned to the

sales

 pointer. It is a good practice to

store 0 in a pointer variable after using

delete

 on it. First, it prevents code from inadvert-

ently using the pointer to access the area of memory that was freed. Second, it prevents

errors from occurring if

delete

 is accidentally called on the pointer again. The

delete

operator is designed to have no effect when used on a null pointer.

9.9

Focus on Software Engineering:
Returning Pointers from Functions

CONCEPT:

Functions can return pointers, but you must be sure the item the pointer

references still exists.

Like any other data type, functions may return pointers. For example, the following function

locates the null terminator that appears at the end of a string (such as a string literal) and

returns a pointer to it.

char *findNull(char *str)

{

 char *ptr = str;

 while (*ptr != '\0')

 ptr++;

 return ptr;

}

The

char *

 return type in the function header indicates the function returns a pointer to a

char

:

char *findNull(char *str)

When writing functions that return pointers, you should take care not to create elusive bugs.

For instance, see if you can determine what s wrong with the following function.

string *getFullName()

{

string fullName[3];

cout << "Enter your first name: ";

getline(cin, fullName[0]);

cout << "Enter your middle name: ";

getline(cin, fullName[1]);

cout << "Enter your last name: ";

getline(cin, fullName[2]);

return fullName;

}

The problem, of course, is that the function returns a pointer to an array that no longer

exists. Because the

fullName

 array is de ned locally, it is destroyed when the function ter-

minates. Attempting to use the pointer will result in erroneous and unpredictable results.

M09_GADD6253_07_SE_C09 Page 522 Monday, January 17, 2011 3:01 PM

9.9 Focus on Software Engineering: Returning Pointers from Functions 523

You should return a pointer from a function only if it is

A pointer to an item that was passed into the function as an argument

A pointer to a dynamically allocated chunk of memory

For instance, the following function is acceptable:

string *getFullName(string fullName[])

{

cout << "Enter your first name: ";

getline(cin, fullName[0]);

cout << "Enter your middle name: ";

getline(cin, fullName[1]);

cout << "Enter your last name: ";

getline(cin, fullName[2]);

return fullName;

}

This function accepts a pointer to the memory location where the user s input is to be

stored. Because the pointer references a memory location that was valid prior to the func-

tion being called, it is safe to return a pointer to the same location. Here is another accept-

able function:

string *getFullName()

{

string *fullName;

fullName = new string[3];

cout << "Enter your first name: ";

getline(cin, fullName[0]);

cout << "Enter your middle name: ";

getline(cin, fullName[1]);

cout << "Enter your last name: ";

getline(cin, fullName[2]);

return fullName;

}

This function uses the new operator to allocate a section of memory. This memory will

remain allocated until the delete operator is used or the program ends, so it s safe to

return a pointer to it.

Program 9-15 shows another example. This program uses a function, getRandomNumbers,

to get a pointer to an array of random numbers. The function accepts an integer argument

that is the number of random numbers in the array. The function dynamically allocates an

array, uses the system clock to seed the random number generator, populates the array

with random values, and then returns a pointer to the array.

Program 9-15

 1 // This program demonstrates a function that returns

 2 // a pointer.

 3 #include <iostream>

 4 #include <cstdlib> // For rand and srand

 5 #include <ctime> // For the time function

 6 using namespace std;

 7

(program continues)

M09_GADD6253_07_SE_C09 Page 523 Friday, January 7, 2011 7:14 PM

524 Chapter 9 Pointers

 8 // Function prototype

 9 int *getRandomNumbers(int);

 10

 11 int main()

 12 {

 13 int *numbers; // To point to the numbers

 14

 15 // Get an array of five random numbers.

 16 numbers = getRandomNumbers(5);

 17

 18 // Display the numbers.

 19 for (int count = 0; count < 5; count++)

 20 cout << numbers[count] << endl;

 21

 22 // Free the memory.

 23 delete [] numbers;

 24 numbers = 0;

 25 return 0;

 26 }

 27

 28 //**

 29 // The getRandomNumbers function returns a pointer *

 30 // to an array of random integers. The parameter *

 31 // indicates the number of numbers requested. *

 32 //**

 33

 34 int *getRandomNumbers(int num)

 35 {

 36 int *arr; // Array to hold the numbers

 37

 38 // Return null if num is zero or negative.

 39 if (num <= 0)

 40 return NULL;

 41

 42 // Dynamically allocate the array.

 43 arr = new int[num];

 44

 45 // Seed the random number generator by passing

 46 // the return value of time(0) to srand.

 47 srand(time(0));

 48

 49 // Populate the array with random numbers.

 50 for (int count = 0; count < num; count++)

 51 arr[count] = rand();

 52

 53 // Return a pointer to the array.

 54 return arr;

 55 }

Program Output

2712

9656

24493

12483

7633

Program 9-15 (continued)

M09_GADD6253_07_SE_C09 Page 524 Friday, January 7, 2011 7:14 PM

9.9 Focus on Software Engineering: Returning Pointers from Functions 525

In the Spotlight

Suppose you are developing a program that works with arrays of integers, and you nd

that you frequently need to duplicate the arrays. Rather than rewriting the array-duplicating

code each time you need it, you decide to write a function that accepts an array and its

size as arguments, creates a new array that is a copy of the argument array, and returns a

pointer to the new array. The function will work as follows:

Accept an array and its size as arguments.

Dynamically allocate a new array that is the same size as the argument array.

Copy the elements of the argument array to the new array.

Return a pointer to the new array.

Program 9-16 demonstrates the function, which is named duplicateArray.

Program 9-16

 1 // This program uses a function to duplicate

 2 // an int array of any size.

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Function prototype

 7 int *duplicateArray(const int *, int);

 8 void displayArray(const int[], int);

 9

 10 int main()

 11 {

 12 // Define constants for the array sizes.

 13 const int SIZE1 = 5, SIZE2 = 7, SIZE3 = 10;

 14

 15 // Define three arrays of different sizes.

 16 int array1[SIZE1] = { 100, 200, 300, 400, 500 };

 17 int array2[SIZE2] = { 10, 20, 30, 40, 50, 60, 70 };

 18 int array3[SIZE3] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 19

 20 // Define three pointers for the duplicate arrays.

 21 int *dup1, *dup2, *dup3;

 22

 23 // Duplicate the arrays.

 24 dup1 = duplicateArray(array1, SIZE1);

 25 dup2 = duplicateArray(array2, SIZE2);

 26 dup3 = duplicateArray(array3, SIZE3);

 27

 28 // Display the original arrays.

 29 cout << "Here are the original array contents:\n";

 30 displayArray(array1, SIZE1);

 31 displayArray(array2, SIZE2);

 32 displayArray(array3, SIZE3);

 33

 34 // Display the new arrays.

(program continues)

M09_GADD6253_07_SE_C09 Page 525 Friday, January 7, 2011 7:14 PM

526 Chapter 9 Pointers

 35 cout << "\nHere are the duplicate arrays:\n";

 36 displayArray(dup1, SIZE1);

 37 displayArray(dup2, SIZE2);

 38 displayArray(dup3, SIZE3);

 39

 40 // Free the dynamically allocated memory and

 41 // set the pointers to 0.

 42 delete [] dup1;

 43 delete [] dup2;

 44 delete [] dup3;

 45 dup1 = 0;

 46 dup2 = 0;

 47 dup3 = 0;

 48 return 0;

 49 }

 50 //***

 51 // The duplicateArray function accepts an int array *

 52 // and an int that indicates the array's size. The *

 53 // function creates a new array that is a duplicate *

 54 // of the argument array and returns a pointer to the *

 55 // new array. If an invalid size is passed the *

 56 // function returns null. *

 57 //***

 58

 59 int *duplicateArray(const int *arr, int size)

 60 {

 61 int *newArray;

 62

 63 // Validate the size. If 0 or a negative

 64 // number was passed, return null.

 65 if (size <= 0)

 66 return NULL;

 67

 68 // Allocate a new array.

 69 newArray = new int[size];

 70

 71 // Copy the array's contents to the

 72 // new array.

 73 for (int index = 0; index < size; index++)

 74 newArray[index] = arr[index];

 75

 76 // Return a pointer to the new array.

 77 return newArray;

 78 }

 79

 80 //**

 81 // The displayArray function accepts an int array *

 82 // and its size as arguments and displays the *

 83 // contents of the array. *

 84 //**

 85

 86 void displayArray(const int arr[], int size)

Program 9-16 (continued)

M09_GADD6253_07_SE_C09 Page 526 Friday, January 7, 2011 7:14 PM

9.9 Focus on Software Engineering: Returning Pointers from Functions

527

The

duplicateArray

 function appears in lines 59 through 78. The

if

 statement in lines

65 through 66 validates that

size

 contains a valid array size. If

size

 is 0 or less, the func-

tion immediately returns

NULL

 to indicate that an invalid size was passed.

Line 69 allocates a new array and assigns its address to the

newArray

 pointer. Then the

loop in lines 73 through 74 copies the elements of the

arr

 parameter to the new array.

Then the

return

 statement in line 77 returns a pointer to the new array.

Checkpoint

www.myprogramminglab.com

9.9 Assuming

arr

 is an array of

int

s, will each of the following program segments

display True or False ?

A)

if (arr < &arr[1])

 cout << "True";

else

 cout << "False";

B)

if (&arr[4] < &arr[1])

 cout << "True";

else

 cout << "False";

C)

if (arr != &arr[2])

 cout << "True";

else

 cout << "False";

D)

if (arr != &arr[0])

 cout << "True";

else

 cout << "False";

9.10 Give an example of the proper way to call the following function:

void makeNegative(int *val)

{

 if (*val > 0)

 87 {

 88 for (int index = 0; index < size; index++)

 89 cout << arr[index] << " ";

 90 cout << endl;

 91 }

Program Output

Here are the original array contents:

100 200 300 400 500

10 20 30 40 50 60 70

1 2 3 4 5 6 7 8 9 10

Here are the duplicate arrays:

100 200 300 400 500

10 20 30 40 50 60 70

1 2 3 4 5 6 7 8 9 10

M09_GADD6253_07_SE_C09 Page 527 Saturday, January 22, 2011 7:32 PM

528 Chapter 9 Pointers

 *val = -(*val);

}

9.11 Complete the following program skeleton. When nished, the program will ask

the user for a length (in inches), convert that value to centimeters, and display the

result. You are to write the function convert. (Note: 1 inch = 2.54 cm. Do not

modify function main.)

#include <iostream>

#include <iomanip>

using namespace std;

// Write your function prototype here.

int main()

{

 double measurement;

 cout << "Enter a length in inches, and I will convert\n";

 cout << "it to centimeters: ";

 cin >> measurement;

 convert(&measurement);

 cout << fixed << setprecision(4);

 cout << "Value in centimeters: " << measurement << endl;

 return 0;

}

//

// Write the function convert here.

//

9.12 Look at the following array de nition:

const int numbers[SIZE] = { 18, 17, 12, 14 };

Suppose we want to pass the array to the function processArray in the follow-

ing manner:

processArray(numbers, SIZE);

Which of the following function headers is the correct one for the processArray

function?

A) void processArray(const int *arr, int size)

B) void processArray(int * const arr, int size)

9.13 Assume ip is a pointer to an int. Write a statement that will dynamically allocate

an integer variable and store its address in ip. Write a statement that will free the

memory allocated in the statement you wrote above.

9.14 Assume ip is a pointer to an int. Then, write a statement that will dynamically

allocate an array of 500 integers and store its address in ip. Write a statement

that will free the memory allocated in the statement you just wrote.

9.15 What is a null pointer?

9.16 Give an example of a function that correctly returns a pointer.

9.17 Give an example of a function that incorrectly returns a pointer.

M09_GADD6253_07_SE_C09 Page 528 Friday, January 7, 2011 7:14 PM

9.10 Focus on Problem Solving and Program Design: A Case Study 529

9.10
Focus on Problem Solving and Program Design:
A Case Study

CONCEPT: This case study demonstrates how an array of pointers can be used to

display the contents of a second array in sorted order, without sorting the

second array.

The United Cause, a charitable relief agency, solicits donations from businesses. The local

United Cause of ce received the following donations from the employees of CK Graphics, Inc.:

$5, $100, $5, $25, $10, $5, $25, $5, $5, $100, $10, $15, $10, $5, $10

The donations were received in the order they appear. The United Cause manager has

asked you to write a program that displays the donations in ascending order, as well as in

their original order.

Variables

Table 9-1 shows the major variables needed.

Programming Strategy

In this program the donations array will contain the donations in the order they were

received. The elements of the arrPtr array are pointers to integers. They will point to the

elements of the donations array, as illustrated in Figure 9-12.

Table 9-1

Variable Description

NUM_DONATIONS A constant integer initialized with the number of donations received from CK

Graphics, Inc. This value will be used in the de nition of the program s arrays.

donations An array of integers containing the donation amounts.

arrPtr An array of pointers to integers. This array has the same number of elements as

the donations array. Each element of arrPtr will be initialized to point to an

element of the donations array.

Figure 9-12

[0]

[1]

[2]

[3]

[4]

[5]

[6]

arrPtr Array

[0]

[1]

[2]

[3]

[4]

[5]

[6]

donations Array

M09_GADD6253_07_SE_C09 Page 529 Friday, January 7, 2011 7:14 PM

530 Chapter 9 Pointers

The arrPtr array will initially be set up to point to the elements of the donations array

in their natural order. In other words, arrPtr[0] will point to donations[0],

arrPtr[1] will point to donations[1], and so forth. In that arrangement, the following

statement would cause the contents of donations[5] to be displayed:

cout << *(arrPtr[5]) << endl;

After the arrPtr array is sorted, however, arrPtr[0] will point to the smallest element of

donations, arrPtr[1] will point to the next-to-smallest element of donations, and so

forth. This is illustrated in Figure 9-13.

This technique gives us access to the elements of the donations array in a sorted order

without actually disturbing the contents of the donations array itself.

Modules

The program will consist of the functions listed in Table 9-2.

Function main

In addition to containing the variable de nitions, function main sets up the arrPtr array

to point to the elements of the donations array. Then the function arrSelectSort is

Figure 9-13

Table 9-2

Function Description

main The program s main function. It calls the program s other functions.

arrSelectSort Performs an ascending order selection sort on its parameter, arr, which is an

array of pointers. Each element of arr points to an element of a second array.

After the sort, arr will point to the elements of the second array in ascending

order.

showArray Displays the contents of its parameter, arr, which is an array of integers. This

function is used to display the donations in their original order.

showArrPtr Accepts an array of pointers to integers as an argument. Displays the contents

of what each element of the array points to. This function is used to display the

contents of the donations array in sorted order.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

arrPtr Array

[0]

[1]

[2]

[3]

[4]

[5]

[6]

donations Array

M09_GADD6253_07_SE_C09 Page 530 Friday, January 7, 2011 7:14 PM

9.10 Focus on Problem Solving and Program Design: A Case Study 531

called to sort the elements of arrPtr. Last, the functions showArrPtr and showArray are

called to display the donations. Here is the pseudocode for main s executable statements:

For count is set to the values 0 through the number of donations

 Set arrPtr[count] to the address of donations[count].

End For

Call arrSelectSort.

Call showArrPtr.

Call showArray.

The arrSelectSort Function

The arrSelectSort function is a modi ed version of the selection sort algorithm shown

in Chapter 8. The only difference is that arr is now an array of pointers. Instead of sort-

ing on the contents of arr s elements, arr is sorted on the contents of what its elements

point to. Here is the pseudocode:

For startScan is set to the values 0 up to (but not including) the

 next-to-last subscript in arr

 Set index variable to startScan.

 Set minIndex variable to startScan.

 Set minElem pointer to arr[startScan].

 For index variable is set to the values from (startScan + 1) through

 the last subscript in arr

 If *(arr[index]) is less than *minElem

 Set minElem to arr[index].

 Set minIndex to index.

 End If.

 End For.

 Set arr[minIndex] to arr[startScan].

 Set arr[startScan] to minElem.

End For.

The showArrPtr Function

The showArrPtr function accepts an array of pointers as its argument. It displays the

values pointed to by the elements of the array. Here is its pseudocode:

For every element in the arr

 Dereference the element and display what it points to.

End For.

The showArray Function

The showArray function simply displays the contents of arr sequentially. Here is its

pseudocode:

For every element in arr

 Display the element s contents

End For.

M09_GADD6253_07_SE_C09 Page 531 Friday, January 7, 2011 7:14 PM

532 Chapter 9 Pointers

The Entire Program

Program 9-17 shows the entire program s source code.

Program 9-17

 1 // This program shows the donations made to the United Cause

 2 // by the employees of CK Graphics, Inc. It displays

 3 // the donations in order from lowest to highest

 4 // and in the original order they were received.

 5 #include <iostream>

 6 using namespace std;

 7

 8 // Function prototypes

 9 void arrSelectSort(int *[], int);

 10 void showArray(const int [], int);

 11 void showArrPtr(int *[], int);

 12

 13 int main()

 14 {

 15 const int NUM_DONATIONS = 15; // Number of donations

 16

 17 // An array containing the donation amounts.

 18 int donations[NUM_DONATIONS] = {5, 100, 5, 25, 10,

 19 5, 25, 5, 5, 100,

 20 10, 15, 10, 5, 10 };

 21

 22 // An array of pointers to int.

 23 int *arrPtr[NUM_DONATIONS];

 24

 25 // Each element of arrPtr is a pointer to int. Make each

 26 // element point to an element in the donations array.

 27 for (int count = 0; count < NUM_DONATIONS; count++)

 28 arrPtr[count] = &donations[count];

 29

 30 // Sort the elements of the array of pointers.

 31 arrSelectSort(arrPtr, NUM_DONATIONS);

 32

 33 // Display the donations using the array of pointers. This

 34 // will display them in sorted order.

 35 cout << "The donations, sorted in ascending order, are: \n";

 36 showArrPtr(arrPtr, NUM_DONATIONS);

 37

 38 // Display the donations in their original order.

 39 cout << "The donations, in their original order, are: \n";

 40 showArray(donations, NUM_DONATIONS);

 41 return 0;

 42 }

 43

M09_GADD6253_07_SE_C09 Page 532 Friday, January 7, 2011 7:14 PM

9.10 Focus on Problem Solving and Program Design: A Case Study 533

 44 //**

 45 // Definition of function arrSelectSort. *

 46 // This function performs an ascending order selection sort on *

 47 // arr, which is an array of pointers. Each element of arr *

 48 // points to an element of a second array. After the sort, *

 49 // arr will point to the elements of the second array in *

 50 // ascending order. *

 51 //**

 52

 53 void arrSelectSort(int *arr[], int size)

 54 {

 55 int startScan, minIndex;

 56 int *minElem;

 57

 58 for (startScan = 0; startScan < (size - 1); startScan++)

 59 {

 60 minIndex = startScan;

 61 minElem = arr[startScan];

 62 for(int index = startScan + 1; index < size; index++)

 63 {

 64 if (*(arr[index]) < *minElem)

 65 {

 66 minElem = arr[index];

 67 minIndex = index;

 68 }

 69 }

 70 arr[minIndex] = arr[startScan];

 71 arr[startScan] = minElem;

 72 }

 73 }

 74

 75 //***

 76 // Definition of function showArray. *

 77 // This function displays the contents of arr. size is the *

 78 // number of elements. *

 79 //***

 80

 81 void showArray(const int arr[], int size)

 82 {

 83 for (int count = 0; count < size; count++)

 84 cout << arr[count] << " ";

 85 cout << endl;

 86 }

 87

 88 //**

 89 // Definition of function showArrPtr. *

 90 // This function displays the contents of the array pointed to *

 91 // by arr. size is the number of elements. *

 92 //**

 93

 94 void showArrPtr(int *arr[], int size)

 95 {

 96 for (int count = 0; count < size; count++)

(program continues)

M09_GADD6253_07_SE_C09 Page 533 Friday, January 7, 2011 7:14 PM

534 Chapter 9 Pointers

Review Questions and Exercises

Short Answer

1. What does the indirection operator do?

2. Look at the following code.

int x = 7;

int *iptr = &x;

What will be displayed if you send the expression *iptr to cout? What happens if

you send the expression ptr to cout?

3. So far you have learned three different uses for the * operator. What are they?

4. What math operations are allowed on pointers?

5. Assuming that ptr is a pointer to an int, what happens when you add 4 to ptr?

6. Look at the following array definition.

int numbers[] = { 2, 4, 6, 8, 10 };

What will the following statement display?

cout << *(numbers + 3) << endl;

7. What is the purpose of the new operator?

8. What happens when a program uses the new operator to allocate a block of memory,
but the amount of requested memory isn t available? How do programs written with
older compilers handle this?

9. What is the purpose of the delete operator?

10. Under what circumstances can you successfully return a pointer from a function?

11. What is the difference between a pointer to a constant and a constant pointer?

12. What are two advantages of declaring a pointer parameter as a constant pointer?

Fill-in-the-Blank

13. Each byte in memory is assigned a unique __________.

14. The __________ operator can be used to determine a variable s address.

Program 9-17 (continued)

 97 cout << *(arr[count]) << " ";

 98 cout << endl;

 99 }

Program Output

The donations, sorted in ascending order, are:

5 5 5 5 5 5 10 10 10 10 15 25 25 100 100

The donations, in their original order, are:

5 100 5 25 10 5 25 5 5 100 10 15 10 5 10

M09_GADD6253_07_SE_C09 Page 534 Friday, January 7, 2011 7:14 PM

Review Questions and Exercises 535

15. __________ variables are designed to hold addresses.

16. The __________ operator can be used to work with the variable a pointer points to.

17. Array names can be used as __________, and vice versa.

18. Creating variables while a program is running is called __________.

19. The __________ operator is used to dynamically allocate memory.

20. Under older compilers, if the new operator cannot allocate the amount of memory
requested, it returns __________.

21. A pointer that contains the address 0 is called a(n) __________ pointer.

22. When a program is finished with a chunk of dynamically allocated memory, it should
free it with the __________ operator.

23. You should only use pointers with delete that were previously used with
__________.

Algorithm Workbench

24. Look at the following code.

double value = 29.7;

double *ptr = &value;

Write a cout statement that uses the ptr variable to display the contents of the value

variable.

25. Look at the following array definition.

int set[10];

Write a statement using pointer notation that stores the value 99 in set[7];

26. Write code that dynamically allocates an array of 20 integers, then uses a loop to
allow the user to enter values for each element of the array.

27. Assume that tempNumbers is a pointer that points to a dynamically allocated array.
Write code that releases the memory used by the array.

28. Look at the following function definition.

void getNumber(int &n)

{

 cout << "Enter a number: ";

 cin >> n;

}

In this function, the parameter n is a reference variable. Rewrite the function so that n

is a pointer.

29. Write the definition of ptr, a pointer to a constant int.

30. Write the definition of ptr, a constant pointer to an int.

True or False

31. T F Each byte of memory is assigned a unique address.

32. T F The * operator is used to get the address of a variable.

33. T F Pointer variables are designed to hold addresses.

M09_GADD6253_07_SE_C09 Page 535 Friday, January 7, 2011 7:14 PM

536 Chapter 9 Pointers

34. T F The & symbol is called the indirection operator.

35. T F The & operator dereferences a pointer.

36. T F When the indirection operator is used with a pointer variable, you are actually

working with the value the pointer is pointing to.

37. T F Array names cannot be dereferenced with the indirection operator.

38. T F When you add a value to a pointer, you are actually adding that number times

the size of the data type referenced by the pointer.

39. T F The address operator is not needed to assign an array s address to a pointer.

40. T F You can change the address that an array name points to.

41. T F Any mathematical operation, including multiplication and division, may be

performed on a pointer.

42. T F Pointers may be compared using the relational operators.

43. T F When used as function parameters, reference variables are much easier to work

with than pointers.

44. T F The new operator dynamically allocates memory.

45. T F A pointer variable that has not been initialized is called a null pointer.

46. T F The address 0 is generally considered unusable.

47. T F In using a pointer with the delete operator, it is not necessary for the pointer

to have been previously used with the new operator.

Find the Error

Each of the following de nitions and program segments has errors. Locate as many as you can.

48. int ptr*;

49. int x, *ptr;

&x = ptr;

50. int x, *ptr;

*ptr = &x;

51. int x, *ptr;

ptr = &x;

ptr = 100; // Store 100 in x

cout << x << endl;

52. int numbers[] = {10, 20, 30, 40, 50};

cout << "The third element in the array is ";

cout << *numbers + 3 << endl;

53. int values[20], *iptr;

iptr = values;

iptr *= 2;

54. float level;

int fptr = &level;

55. int *iptr = &ivalue;

int ivalue;

56. void doubleVal(int val)

{

 *val *= 2;

}

M09_GADD6253_07_SE_C09 Page 536 Friday, January 7, 2011 7:14 PM

Review Questions and Exercises 537

57. int *pint;

new pint;

58. int *pint;

pint = new int;

if (pint == NULL)

 *pint = 100;

else

 cout << "Memory allocation error\n";

59. int *pint;

pint = new int[100]; // Allocate memory

.

.

 Code that processes the array.
 .

 .

delete pint; // Free memory

60. int *getNum()

{

 int wholeNum;

 cout << "Enter a number: ";

 cin >> wholeNum;

 return &wholeNum;

}

61. const int arr[] = { 1, 2, 3 };

int *ptr = arr;

62. void doSomething(int * const ptr)

{

 int localArray[] = { 1, 2, 3 };

 ptr = localArray;

}

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. Array Allocator

Write a function that dynamically allocates an array of integers. The function should

accept an integer argument indicating the number of elements to allocate. The func-

tion should return a pointer to the array.

2. Test Scores #1

Write a program that dynamically allocates an array large enough to hold a user-

de ned number of test scores. Once all the scores are entered, the array should be

passed to a function that sorts them in ascending order. Another function should be

called that calculates the average score. The program should display the sorted list of

scores and averages with appropriate headings. Use pointer notation rather than array

notation whenever possible.

Input Validation: Do not accept negative numbers for test scores.

Programming Challenges

M09_GADD6253_07_SE_C09 Page 537 Friday, January 7, 2011 7:14 PM

538 Chapter 9 Pointers

3. Drop Lowest Score

Modify Problem 2 above so the lowest test score is dropped. This score should not be

included in the calculation of the average.

4. Test Scores #2

Modify the program of Programming Challenge 2 to allow the user to enter name-score

pairs. For each student taking a test, the user types the student s name followed by the

student s integer test score. Modify the sorting function so it takes an array holding the

student names and an array holding the student test scores. When the sorted list of

scores is displayed, each student s name should be displayed along with his or her score.

In stepping through the arrays, use pointers rather than array subscripts.

5. Pointer Rewrite

The following function uses reference variables as parameters. Rewrite the function so

it uses pointers instead of reference variables, and then demonstrate the function in a

complete program.

int doSomething(int &x, int &y)

{

 int temp = x;

 x = y * 10;

 y = temp * 10;

 return x + y;

}

6. Case Study Modi cation #1

Modify Program 9-17 (the United Cause case study program) so it can be used with

any set of donations. The program should dynamically allocate the donations array

and ask the user to input its values.

7. Case Study Modi cation #2

Modify Program 9-17 (the United Cause case study program) so the arrptr array is

sorted in descending order instead of ascending order.

8. Mode Function

In statistics, the mode of a set of values is the value that occurs most often or with the

greatest frequency. Write a function that accepts as arguments the following:

A) An array of integers

B) An integer that indicates the number of elements in the array

The function should determine the mode of the array. That is, it should determine

which value in the array occurs most often. The mode is the value the function should

return. If the array has no mode (none of the values occur more than once), the

function should return -1. (Assume the array will always contain nonnegative values.)

Demonstrate your pointer prowess by using pointer notation instead of array notation

in this function.

9. Median Function

In statistics, when a set of values is sorted in ascending or descending order, its median

is the middle value. If the set contains an even number of values, the median is the

VideoNote

Solving the

Pointer

Rewrite

Problem

M09_GADD6253_07_SE_C09 Page 538 Friday, January 7, 2011 7:14 PM

Review Questions and Exercises 539

mean, or average, of the two middle values. Write a function that accepts as arguments

the following:

A) An array of integers

B) An integer that indicates the number of elements in the array

The function should determine the median of the array. This value should be returned

as a double. (Assume the values in the array are already sorted.)

Demonstrate your pointer prowess by using pointer notation instead of array nota-

tion in this function.

10. Reverse Array

Write a function that accepts an int array and the array s size as arguments. The

function should create a copy of the array, except that the element values should be

reversed in the copy. The function should return a pointer to the new array. Demon-

strate the function in a complete program.

11. Array Expander

Write a function that accepts an int array and the array s size as arguments. The

function should create a new array that is twice the size of the argument array. The

function should copy the contents of the argument array to the new array, and initial-

ize the unused elements of the second array with 0. The function should return a

pointer to the new array.

12. Element Shifter

Write a function that accepts an int array and the array s size as arguments. The

function should create a new array that is one element larger than the argument array.

The rst element of the new array should be set to 0. Element 0 of the argument array

should be copied to element 1 of the new array, element 1 of the argument array

should be copied to element 2 of the new array, and so forth. The function should

return a pointer to the new array.

13. Movie Statistics

Write a program that can be used to gather statistical data about the number of movies

college students see in a month. The program should perform the following steps:

A) Ask the user how many students were surveyed. An array of integers with this

many elements should then be dynamically allocated.

B) Allow the user to enter the number of movies each student saw into the array.

C) Calculate and display the average, median, and mode of the values entered. (Use

the functions you wrote in Problems 8 and 9 to calculate the median and mode.)

Input Validation: Do not accept negative numbers for input.

Programming Challenges

M09_GADD6253_07_SE_C09 Page 539 Friday, January 7, 2011 7:14 PM

M09_GADD6253_07_SE_C09 Page 540 Friday, January 7, 2011 7:14 PM

541

C
H

A
P

T
E

R

10

Characters, C-Strings, and

More About the

string

 Class

10.1

Character Testing

CONCEPT:

The C++ library provides several functions for testing characters. To use

these functions you must include the

cctype

 header le.

The C++ library provides several functions that allow you to test the value of a character.

These functions test a single

char

 argument and return either

true

 or

false

.* For exam-

ple, the following program segment uses the

isupper

 function to determine whether the

character passed as an argument is an uppercase letter. If it is, the function returns

true

.

Otherwise, it returns

false

.

char letter = 'a';

if (isupper(letter))

cout << "Letter is uppercase.\n";

else

cout << "Letter is lowercase.\n";

TOPICS

10.1 Character Testing

10.2 Character Case Conversion

10.3 C-Strings

10.4 Library Functions for Working

with C-Strings

10.5 C-String/Numeric Conversion

Functions

10.6 Focus on Software Engineering:

Writing Your Own C-String-

Handling Functions

10.7 Move About the C++

string

 Class

10.8 Focus on Problem Solving

and Program Design: A Case Study

* These functions actually return an

int

 value. The return value is nonzero to indicate

true

, or
zero to indicate

false

.

M10_GADD6253_07_SE_C10 Page 541 Friday, January 7, 2011 7:34 PM

542

Chapter 10 Characters, C-Strings, and More About the

string

 Class

Because the variable

letter

, in this example, contains a lowercase character,

isupper

returns

false

. The

if

 statement will cause the message

Letter

is

lowercase

 to be

displayed.

Table 10-1 lists several character-testing functions. Each of these is prototyped in the

cctype

 header le, so be sure to include that le when using the functions.

Program 10-1 uses several of the functions shown in Table 10-1. It asks the user to

input a character and then displays various messages, depending upon the return value

of each function.

Table 10-1

Character

Function Description

isalpha

Returns true (a nonzero number) if the argument is a letter of the alphabet. Returns

0 if the argument is not a letter.

isalnum

Returns true (a nonzero number) if the argument is a letter of the alphabet or a

digit. Otherwise it returns 0.

isdigit

Returns true (a nonzero number) if the argument is a digit from 0 through 9.

Otherwise it returns 0.

islower

Returns true (a nonzero number) if the argument is a lowercase letter. Otherwise, it

returns 0.

isprint

Returns true (a nonzero number) if the argument is a printable character (including

a space). Returns 0 otherwise.

ispunct

Returns true (a nonzero number) if the argument is a printable character other than

a digit, letter, or space. Returns 0 otherwise.

isupper

Returns true (a nonzero number) if the argument is an uppercase letter. Otherwise,

it returns 0.

isspace

Returns true (a nonzero number) if the argument is a whitespace character.

Whitespace characters are any of the following:

space

''

vertical tab

'

\v

'

newline

'

\n

'

tab

'

\t

'

Otherwise, it returns 0.

Program 10-1

 1 // This program demonstrates some character-testing functions.

 2 #include <iostream>

 3 #include <cctype>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 char input;

 9

M10_GADD6253_07_SE_C10 Page 542 Friday, January 7, 2011 7:34 PM

10.1 Character Testing

543

Program 10-2 shows a more practical application of the character testing functions. It

tests a seven-character customer number to determine whether it is in the proper format.

 10 cout << "Enter any character: ";

 11 cin.get(input);

 12 cout << "The character you entered is: " << input << endl;

 13 if (isalpha(input))

 14 cout << "That's an alphabetic character.\n";

 15 if (isdigit(input))

 16 cout << "That's a numeric digit.\n";

 17 if (islower(input))

 18 cout << "The letter you entered is lowercase.\n";

 19 if (isupper(input))

 20 cout << "The letter you entered is uppercase.\n";

 21 if (isspace(input))

 22 cout << "That's a whitespace character.\n";

 23 return 0;

 24 }

Program Output with Example Input Shown in Bold

Enter any character:

A [Enter]

The character you entered is: A

That's an alphabetic character.

The letter you entered is uppercase.

Program Output with Different Example Input Shown in Bold

Enter any character:

7 [Enter]

The character you entered is: 7

That's a numeric digit.

Program 10-2

 1 // This program tests a customer number to determine whether

 2 // it is in the proper format.

 3 #include <iostream>

 4 #include <cctype>

 5 using namespace std;

 6

 7 // Function prototype

 8 bool testNum(char [], int);

 9

 10 int main()

 11 {

 12 const int SIZE = 8; // Array size

 13 char customer[SIZE]; // To hold a customer number

 14

 15 // Get the customer number.

 16 cout << "Enter a customer number in the form ";

 17 cout << "LLLNNNN\n";

 18 cout << "(LLL = letters and NNNN = numbers): ";

 19 cin.getline(customer, SIZE);

(program continues)

M10_GADD6253_07_SE_C10 Page 543 Friday, January 7, 2011 7:34 PM

544

Chapter 10 Characters, C-Strings, and More About the

string

 Class

 20

 21 // Determine whether it is valid.

 22 if (testNum(customer, SIZE))

 23 cout << "That's a valid customer number.\n";

 24 else

 25 {

 26 cout << "That is not the proper format of the ";

 27 cout << "customer number.\nHere is an example:\n";

 28 cout << " ABC1234\n";

 29 }

 30 return 0;

 31 }

 32

 33 //**

 34 // Definition of function testNum. *

 35 // This function determines whether the custNum parameter *

 36 // holds a valid customer number. The size parameter is *

 37 // the size of the custNum array. *

 38 //**

 39

 40 bool testNum(char custNum[], int size)

 41 {

 42 int count; // Loop counter

 43

 44 // Test the first three characters for alphabetic letters.

 45 for (count = 0; count < 3; count++)

 46 {

 47 if (!isalpha(custNum[count]))

 48 return false;

 49 }

 50

 51 // Test the remaining characters for numeric digits.

 52 for (count = 3; count < size - 1; count++)

 53 {

 54 if (!isdigit(custNum[count]))

 55 return false;

 56 }

 57 return true;

 58 }

Program Output with Example Input Shown in Bold

Enter a customer number in the form LLLNNNN

(LLL = letters and NNNN = numbers):

 RQS4567 [Enter]

That's a valid customer number.

Program Output with Different Example Input Shown in Bold

Enter a customer number in the form LLLNNNN

(LLL = letters and NNNN = numbers):

AX467T9 [Enter]

That is not the proper format of the customer number.

Here is an example:

 ABC1234

Program 10-2

(continued)

M10_GADD6253_07_SE_C10 Page 544 Friday, January 7, 2011 7:34 PM

10.2 Character Case Conversion

545

In this program, the customer number is expected to consist of three alphabetic letters fol-

lowed by four numeric digits. The

testNum

 function accepts an array argument and tests

the rst three characters with the following loop in lines 45 through 49:

for (count = 0; count < 3; count++)

{

 if (!isalpha(custNum[count]))

 return false;

}

The

isalpha

 function returns

true

 if its argument is an alphabetic character. The

!

 oper-

ator is used in the

if

 statement to determine whether the tested character is NOT alpha-

betic. If this is so for any of the rst three characters, the function

testNum

 returns

false

.

Likewise, the next four characters are tested to determine whether they are numeric digits

with the following loop in lines 52 through 56:

for (count = 3; count < size - 1; count++)

{

 if (!isdigit(custNum[count]))

 return false;

}

The

isdigit

 function returns

true

 if its argument is the character representation of any of

the digits 0 through 9. Once again, the

!

 operator is used to determine whether the tested

character is

not

 a digit. If this is so for any of the last four characters, the function

testNum

returns

false

. If the customer number is in the proper format, the function will cycle

through both the loops without returning

false. In that case, the last line in the function is

the return true statement, which indicates the customer number is valid.

10.2 Character Case Conversion

CONCEPT: The C++ library offers functions for converting a character to upper- or

lowercase.

The C++ library provides two functions, toupper and tolower, for converting the case of

a character. The functions are described in Table 10-2. (These functions are prototyped in

the header le cctype, so be sure to include it.)

Each of the functions in Table 10-2 accepts a single character argument. If the argument is

a lowercase letter, the toupper function returns its uppercase equivalent. For example, the

following statement will display the character A on the screen:

cout << toupper('a');

Table 10-2

Function Description

toupper Returns the uppercase equivalent of its argument.

tolower Returns the lowercase equivalent of its argument.

M10_GADD6253_07_SE_C10 Page 545 Friday, January 7, 2011 7:34 PM

546 Chapter 10 Characters, C-Strings, and More About the string Class

If the argument is already an uppercase letter, toupper returns it unchanged. The follow-

ing statement causes the character Z to be displayed:

cout << toupper('Z');

Any nonletter argument passed to toupper is returned as it is. Each of the following state-

ments display toupper s argument without any change:

cout << toupper('*'); // Displays *

cout << toupper ('&'); // Displays &

cout << toupper('%'); // Displays %

toupper and tolower don t actually cause the character argument to change, they simply

return the upper- or lowercase equivalent of the argument. For example, in the following

program segment, the variable letter is set to the value A . The tolower function

returns the character a , but letter still contains A .

char letter = 'A';

cout << tolower(letter) << endl;

cout << letter << endl;

These statements will cause the following to be displayed:

a

A

Program 10-3 demonstrates the toupper function in an input validation loop.

Program 10-3

 1 // This program calculates the area of a circle. It asks the user

 2 // if he or she wishes to continue. A loop that demonstrates the

 3 // toupper function repeats until the user enters 'y', 'Y',

 4 // 'n', or 'N'.

 5 #include <iostream>

 6 #include <cctype>

 7 #include <iomanip>

 8 using namespace std;

 9

 10 int main()

 11 {

 12 const double PI = 3.14159; // Constant for pi

 13 double radius; // The circle's radius

 14 char goAgain; // To hold Y or N

 15

 16 cout << "This program calculates the area of a circle.\n";

 17 cout << fixed << setprecision(2);

 18

 19 do

 20 {

 21 // Get the radius and display the area.

 22 cout << "Enter the circle's radius: ";

 23 cin >> radius;

 24 cout << "The area is " << (PI * radius * radius);

 25 cout << endl;

M10_GADD6253_07_SE_C10 Page 546 Friday, January 7, 2011 7:34 PM

10.2 Character Case Conversion 547

In lines 28 and 29 the user is prompted to enter either Y or N to indicate whether he or

she wants to calculate another area. We don t want the program to be so picky that it

accepts only uppercase Y or uppercase N. Lowercase y or lowercase n are also acceptable.

The input validation loop must be written so to reject anything except 'Y', 'y', 'N', or

'n'. One way to do this would be to test the goAgain variable in four relational expres-

sions, as shown here:

while (goAgain != 'Y' && goAgain != 'y' &&

 goAgain != 'N' && goAgain != 'N')

Although there is nothing wrong with this code, we could use the toupper function to get

the uppercase equivalent of goAgain, and make only two comparisons. This is the

approach taken in line 32:

while (toupper(goAgain) != 'Y' && toupper(goAgain) != 'N')

Another approach would have been to use the tolower function to get the lowercase

equivalent of goAgain. Here is an example:

while (tolower(goAgain) != 'y' && tolower(goAgain) != 'n')

Either approach will yield the same results.

 26

 27 // Does the user want to do this again?

 28 cout << "Calculate another? (Y or N) ";

 29 cin >> goAgain;

 30

 31 // Validate the input.

 32 while (toupper(goAgain) != 'Y' && toupper(goAgain) != 'N')

 33 {

 34 cout << "Please enter Y or N: ";

 35 cin >> goAgain;

 36 }

 37

 38 } while (toupper(goAgain) == 'Y');

 39 return 0;

 40 }

Program Output with Example Input Shown in Bold

This program calculates the area of a circle.

Enter the circle's radius: 10 [Enter]
The area is 314.16

Calculate another? (Y or N) b Enter]
Please enter Y or N: y [Enter]
Enter the circle's radius: 1 [Enter]
The area is 3.14

Calculate another? (Y or N) n [Enter]

M10_GADD6253_07_SE_C10 Page 547 Friday, January 7, 2011 7:34 PM

548 Chapter 10 Characters, C-Strings, and More About the string Class

Checkpoint

 www.myprogramminglab.com

10.1 Write a short description of each of the following functions:

isalpha

isalnum

isdigit

islower

isprint

ispunct

isupper

isspace

toupper

tolower

10.2 Write a statement that will convert the contents of the char variable big to

lowercase. The converted value should be assigned to the variable little.

10.3 Write an if statement that will display the word digit if the variable ch

contains a numeric digit. Otherwise, it should display Not a digit.

10.4 What is the output of the following statement?

cout << toupper(tolower('A'));

10.5 Write a loop that asks the user "Do you want to repeat the program or quit?

(R/Q)". The loop should repeat until the user has entered an R or Q (either

uppercase or lowercase).

10.3 C-Strings

CONCEPT: In C++, a C-string is a sequence of characters stored in consecutive

memory locations, terminated by a null character.

String is a generic term that describes any consecutive sequence of characters. A word, a

sentence, a person s name, and the title of a song are all strings. In the C++ language, there

are two primary ways that strings are stored in memory: as string objects, or as C-

strings. You have already been introduced to the string class, and by now, you have written

several programs that use string objects. In this section, we will use C-strings, which are

an alternative method for storing and working with strings.

A C-string is a string whose characters are stored in consecutive memory locations, and are

followed by a null character, or null terminator. Recall from Chapter 2 that a null character

or null terminator is a byte holding the ASCII code 0. Strings that are stored this way are

called C-strings because this is the way strings are handled in the C programming language.

In C++, all string literals are stored in memory as C-strings. Recall that a string literal (or

string constant) is the literal representation of a string in a program. In C++, string literals

are enclosed in double quotation marks, such as:

"Bailey"

M10_GADD6253_07_SE_C10 Page 548 Friday, January 7, 2011 7:34 PM

10.3 C-Strings 549

Figure 10-1 illustrates how the string literal "Bailey" is stored in memory, as a C-string.

The purpose of the null terminator is to mark the end of the C-string. Without it, there

would be no way for a program to know the length of a C-string.

More About String Literals

A string literal or string constant is enclosed in a set of double quotation marks (" "). For

example, here are ve string literals:

"Have a nice day."

"What is your name?"

"John Smith"

"Please enter your age:"

"Part Number 45Q1789"

All of a program s string literals are stored in memory as C-strings, with the null termina-

tor automatically appended. For example, look at Program 10-4.

This program contains two string literals:

"C++ programming is great fun!"

"Do you want to see the message again? "

The rst string occupies 30 bytes of memory (including the null terminator), and the

second string occupies 39 bytes. They appear in memory in the following forms:

Figure 10-1

NOTE: Remember that \0 (slash zero) is the escape sequence representing the null

terminator. It stands for the ASCII code 0.

Program 10-4

 1 // This program contains string literals.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 char again;

 8

 9 do

 10 {

 11 cout << "C++ programming is great fun!" << endl;

 12 cout << "Do you want to see the message again? ";

 13 cin >> again;

 14 } while (again == 'Y' || again == 'y');

 15 return 0;

 16 }

B a i l e y \0

M10_GADD6253_07_SE_C10 Page 549 Friday, January 7, 2011 7:34 PM

550 Chapter 10 Characters, C-Strings, and More About the string Class

It s important to realize that a string literal has its own storage location, just like a variable

or an array. When a string literal appears in a statement, it s actually its memory address

that C++ uses. Look at the following example:

cout << "Do you want to see the message again? ";

In this statement, the memory address of the string literal Do you want to see the mes-

sage again? is passed to the cout object. cout displays the consecutive characters found

at this address. It stops displaying the characters when a null terminator is encountered.

C-Strings Stored in Arrays

The C programming language does not provide a string class like the one that C++ pro-

vides. In the C language, all strings are treated as C-strings. When a C programmer wants

to store a string in memory, he or she has to create a char array that is large enough to

hold the string, plus one extra element for the null character.

You might be wondering why this should matter to anyone learning C++. You need to

know about C-strings for the following reasons:

The string class has not always existed in the C++ language. Several years ago,

C++ stored strings as C-strings. As a professional programmer, you might

encounter older C++ code (known as legacy code) that uses C-strings.

Some of the C++ library functions work only with C-strings. For example, when

you use a file stream object to open a file, the open member function accepts a

C-string argument for the filename.

In the workplace, it is not unusual for C++ programmers to work with specialized

libraries that are written in C. Any strings that C libraries work with will be C-strings.

As previously mentioned, if you want to store a C-string in memory, you have to de ne a

char array that is large enough to hold the string, plus one extra element for the null charac-

ter. Here is an example:

const int SIZE = 21;

char name[SIZE];

This code de nes a char array that has 21 elements, so it is big enough to hold a C-string

that is no more that 20 characters long.

You can initialize a char array with a string literal, as shown here:

const int SIZE = 21;

char name[SIZE] = "Jasmine";

After this code executes, the name array will be created with 21 elements. The rst 8 ele-

ments will be initialized with the characters 'J', 'a', 's', 'm', 'i', 'n', 'e', and '\0'.

The null character is automatically added as the last character. You can implicitly size a

char array by initializing it with a string literal, as shown here:

char name[] = "Jasmine";

C + + p r o g r a m m i n g i s g r e a t f u n ! \0

D o y o u w a n t t o s e e t h e m e s s a g

e a g a i n ? \0

M10_GADD6253_07_SE_C10 Page 550 Friday, January 7, 2011 7:34 PM

10.3 C-Strings 551

After this code executes, the name array will be created with 8 elements, initialized with

the characters 'J', 'a', 's', 'm', 'i', 'n', 'e', and '\0'.

C-string input can be performed by the cin object. For example, the following code

allows the user to enter a string (with no whitespace characters) into the name array:

const int SIZE = 21;

char name[SIZE];

cin >> name;

Recall from Chapter 7 that an array name with no brackets and no subscript is converted

into the beginning address of the array. In the previous statement, name indicates the

address in memory where the string is to be stored. Of course, cin has no way of knowing

that name has 21 elements. If the user enters a string of 30 characters, cin will write past

the end of the array. This can be prevented by using cin s getline member function.

Assume the following array has been de ned in a program:

const int SIZE = 80;

char line[SIZE];

The following statement uses cin s getline member function to get a line of input

(including whitespace characters) and store it in the line array:

cin.getline(line, SIZE);

The rst argument tells getline where to store the string input. This statement indicates

the starting address of the line array as the storage location for the string. The second

argument indicates the maximum length of the string, including the null terminator. In this

example, the SIZE constant is equal to 80, so cin will read 79 characters, or until the user

presses the [Enter] key, whichever comes rst. cin will automatically append the null ter-

minator to the end of the string.

Once a string is stored in an array, it can be processed using standard subscript notation.

For example, Program 10-5 displays a string stored in an array. It uses a loop to display

each character in the array until the null terminator is encountered.

Program 10-5

 1 // This program displays a string stored in a char array.

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main()

 6 {

 7 const int SIZE = 80; // Array size

 8 char line[SIZE]; // To hold a line of input

 9 int count = 0; // Loop counter variable

 10

 11 // Get a line of input.

 12 cout << "Enter a sentence of no more than "

 13 << (SIZE - 1) << " characters:\n";

 14 cin.getline(line, SIZE);

 15

(program continues)

M10_GADD6253_07_SE_C10 Page 551 Friday, January 7, 2011 7:34 PM

552 Chapter 10 Characters, C-Strings, and More About the string Class

10.4 Library Functions for Working with C-Strings

CONCEPT: The C++ library has numerous functions for handling C-strings. These

functions perform various tests and manipulations, and require that the

cstring header le be included.

The strlen Function

Because C-strings are stored in arrays, working with them is quite different than working

with string objects. Fortunately, the C++ library provides many functions for manipulat-

ing and testing C-strings. These functions all require the cstring header le to be

included, as shown here:

#include <cstring>

For instance, the following code segment uses the strlen function to determine the length

of the string stored in the name array:

char name[] = "Thomas Edison";

int length;

length = strlen(name);

The strlen function accepts a pointer to a C-string as its argument. It returns the

length of the string, which is the number of characters up to, but not including, the null

terminator. As a result, the variable length will have the number 13 stored in it. The

length of a string isn t to be confused with the size of the array holding it. Remember,

the only information being passed to strlen is the beginning address of a C-string. It

doesn t know where the array ends, so it looks for the null terminator to indicate the

end of the string.

 16 // Display the input one character at a time.

 17 cout << "The sentence you entered is:\n";

 18 while (line[count] != '\0')

 19 {

 20 cout << line[count];

 21 count++;

 22 }

 23 return 0;

 24 }

Program Output with Example Input Shown in Bold

Enter a sentence of no more than 79 characters:

C++ is challenging but fun! [Enter]
The sentence you entered is:

C++ is challenging but fun!

Program 10-5 (continued)

M10_GADD6253_07_SE_C10 Page 552 Friday, January 7, 2011 7:34 PM

10.4 Library Functions for Working with C-Strings 553

When using a C-string handling function, you must pass one or more C-strings as argu-

ments. This means passing the address of the C-string, which may be accomplished by

using any of the following as arguments:

The name of the array holding the C-string

A pointer variable that holds the address of the C-string

A literal string

Anytime a literal string is used as an argument to a function, the address of the literal string

is passed. Here is an example of the strlen function being used with such an argument:

length = strlen("Thomas Edison");

The strcat Function

The strcat function accepts two pointers to C-strings as its arguments. The function con-

catenates, or appends one string to another. The following code shows an example of its use:

const int SIZE = 13;

char string1[SIZE] = "Hello ";

char string2[] = "World!";

cout << string1 << endl;

cout << string2 << endl;

strcat(string1, string2);

cout << string1 << endl;

These statements will cause the following output:

Hello

World!

Hello World!

The strcat function copies the contents of string2 to the end of string1. In this exam-

ple, string1 contains the string Hello before the call to strcat. After the call, it con-

tains the string Hello World! . Figure 10-2 shows the contents of both arrays before and

after the function call.

Figure 10-2

H e l l o \0

W o r l d ! \0

H e l l o o r l d ! \0 W

W o r l d ! \0

string1

string2

string1

string2

Before the call to strcat (string1, string2):

After the call to strcat (string1, string2):

M10_GADD6253_07_SE_C10 Page 553 Friday, January 7, 2011 7:34 PM

554 Chapter 10 Characters, C-Strings, and More About the string Class

Notice the last character in string1 (before the null terminator) is a space. The strcat

function doesn t insert a space, so it s the programmer s responsibility to make sure one is

already there, if needed. It s also the programmer s responsibility to make sure the array

holding string1 is large enough to hold string1 plus string2 plus a null terminator.

Here is a program segment that uses the sizeof operator to test an array s size before

strcat is called:

if (sizeof(string1) >= (strlen(string1) + strlen(string2) + 1))

 strcat(string1, string2);

else

 cout << "String1 is not large enough for both strings.\n";

The strcpy Function

Recall from Chapter 7 that one array cannot be assigned to another with the = operator.

Each individual element must be assigned, usually inside a loop. The strcpy function can

be used to copy one string to another. Here is an example of its use:

const int SIZE = 13;

char name[SIZE];

strcpy(name, "Albert Einstein");

The strcpy function s two arguments are C-string addresses. The contents of the second

argument are copied to the memory location speci ed by the rst argument, including the

null terminator. (The rst argument usually references an array.) In this example, the

strcpy function will copy the string Albert Einstein to the name array.

If anything is already stored in the location referenced by the rst argument, it is overwrit-

ten, as shown in the following program segment:

const int SIZE = 10;

char string1[SIZE] = "Hello", string2[SIZE] = "World!";

cout << string1 << endl;

cout << string2 << endl;

strcpy(string1, string2);

cout << string1 << endl;

cout << string2 << endl;

Here is the output:

Hello

World!

World!

World!

WARNING! If the array holding the rst string isn t large enough to hold both strings,

strcat will over ow the boundaries of the array.

WARNING! Being true to C++ s nature, strcpy performs no bounds checking. The

array speci ed by the rst argument will be over owed if it isn t large enough to hold the

string speci ed by the second argument.

M10_GADD6253_07_SE_C10 Page 554 Friday, January 7, 2011 7:34 PM

10.4 Library Functions for Working with C-Strings 555

The strncat and strncpy Functions

Because the the strcat and strcpy functions can potentially overwrite the bounds of an

array, they make it possible to write unsafe code. As an alternative, you should use

strncat and strncpy whenever possible.

The strncat functions works like strcat, except it takes a third argument specifying the

maximum number of characters from the second string to append to the rst. Here is an

example call to strncat:

strncat(string1, string2, 10);

When this statement executes, strncat will append no more than 10 characters from

string2 to string1. The following code shows an example of calculating the maximum

number of characters that can be appended to an array.

 1 int maxChars;

 2 const int SIZE_1 = 17;

 3 const int SIZE_2 = 18;

 4

 5 char string1[SIZE_1] = "Welcome ";

 6 char string2[SIZE_2] = "to North Carolina";

 7

 8 cout << string1 << endl;

 9 cout << string2 << endl;

10 maxChars = sizeof(string1) - (strlen(string1) + 1);

11 strncat(string1, string2, maxChars);

12 cout << string1 << endl;

The statement in line 10 calculates the number of empty elements in string1. It does this

by subtracting the length of the string stored in the array plus 1 for the null terminator.

This code will cause the following output:

Welcome

to North Carolina

Welcome to North

The strncpy function allows you to copy a speci ed number of characters from a string

to a destination. Calling strncpy is similar to calling strcpy, except you pass a third

argument specifying the maximum number of characters from the second string to copy to

the rst. Here is an example call to strncpy:

strncpy(string1, string2, 5);

When this statement executes, strncpy will copy no more than ve characters from

string2 to string1. However, if the speci ed number of characters is less than or equal

to the length of string2, a null terminator is not appended to string1. If the speci ed

number of characters is greater than the length of string2, then string1 is padded with

null terminators, up to the speci ed number of characters. The following code shows an

example using the strncpy function.

 1 int maxChars;

 2 const int SIZE = 11;

 3

 4 char string1[SIZE];

 5 char string2[] = "I love C++ programming!";

 6

M10_GADD6253_07_SE_C10 Page 555 Friday, January 7, 2011 7:34 PM

556 Chapter 10 Characters, C-Strings, and More About the string Class

 7 maxChars = sizeof(string1) - 1;

 8 strncpy(string1, string2, maxChars);

 9 // Put the null terminator at the end.

10 string1[maxChars] = '\0';

11 cout << string1 << endl;

Notice that a statement was written in line 10 to put the null terminator at the end of

string1. This is because maxChars was less than the length of string2, and strncpy did

not automatically place a null terminator there.

The strstr Function

The strstr function searches for a string inside of a string. For instance, it could be used

to search for the string seven inside the larger string Four score and seven years ago.

The function s rst argument is the string to be searched, and the second argument is the

string to look for. If the function nds the second string inside the rst, it returns the

address of the occurrence of the second string within the rst string. Otherwise it returns

the address 0, or the NULL address. Here is an example:

char arr[] = "Four score and seven years ago";

char *strPtr;

cout << arr << endl;

strPtr = strstr(arr, "seven"); // search for "seven"

cout << strPtr << endl;

In this code, strstr will locate the string seven inside the string Four score and seven

years ago. It will return the address of the rst character in seven which will be stored

in the pointer variable strPtr. If run as part of a complete program, this segment will dis-

play the following:

Four score and seven years ago

seven years ago

The strstr function can be useful in any program that must locate data inside one or

more strings. Program 10-6, for example, stores a list of product numbers and descrip-

tions in an array of C-strings. It allows the user to look up a product description by enter-

ing all or part of its product number.

Program 10-6

 1 // This program uses the strstr function to search an array.

 2 #include <iostream>

 3 #include <cstring> // For strstr

 4 using namespace std;

 5

 6 int main()

 7 {

 8 // Constants for array lengths

 9 const int NUM_PRODS = 5; // Number of products

 10 const int LENGTH = 27; // String length

 11

M10_GADD6253_07_SE_C10 Page 556 Friday, January 7, 2011 7:34 PM

10.4 Library Functions for Working with C-Strings 557

Table 10-3 summarizes the string-handling functions discussed here, as well as the strcmp

function that was discussed in Chapter 4. (All the functions listed require the cstring

header le.)

In Program 10-6, the for loop in lines 30 through 35 cycles through each C-string in the

array calling the following statement:

strPtr = strstr(prods[index], lookUp);

 12 // Array of products

 13 char products[NUM_PRODS][LENGTH] =

 14 { "TV327 31-inch Television",

 15 "CD257 CD Player",

 16 "TA677 Answering Machine",

 17 "CS109 Car Stereo",

 18 "PC955 Personal Computer" };

 19

 20 char lookUp[LENGTH]; // To hold user's input

 21 char *strPtr = NULL; // To point to the found product

 22 int index; // Loop counter

 23

 24 // Prompt the user for a product number.

 25 cout << "\tProduct Database\n\n";

 26 cout << "Enter a product number to search for: ";

 27 cin.getline(lookUp, LENGTH);

 28

 29 // Search the array for a matching substring

 30 for (index = 0; index < NUM_PRODS; index++)

 31 {

 32 strPtr = strstr(products[index], lookUp);

 33 if (strPtr != NULL)

 34 break;

 35 }

 36

 37 // If a matching substring was found, display the product info.

 38 if (strPtr != NULL)

 39 cout << products[index] << endl;

 40 else

 41 cout << "No matching product was found.\n";

 42

 43 return 0;

 44 }

Program Output with Example Input Shown in Bold

Product Database

Enter a product to search for: CS [Enter]
CS109 Car Stereo

Program Output with Different Example Input Shown in Bold

Product Database

Enter a product to search for: AB [Enter]
No matching product was found.

M10_GADD6253_07_SE_C10 Page 557 Friday, January 7, 2011 7:34 PM

558 Chapter 10 Characters, C-Strings, and More About the string Class

The strstr function searches the string referenced by prods[index] for the name

entered by the user, which is stored in lookUp. If lookUp is found inside prods[index],

the function returns its address. In that case, the following if statement causes the for

loop to terminate:

if (strPtr != NULL)

break;

Outside the loop, the following if else statement in lines 38 through 41 determines

whether the string entered by the user was found in the array. If not, it informs the user

that no matching product was found. Otherwise, the product number and description are

displayed:

if (strPtr == NULL)

cout << "No matching product was found.\n";

else

cout << prods[index] << endl;

The strcmp Function

Because C-strings are stored in char arrays, you cannot use the relational operators to

compare two C-strings. To compare C-strings, you should use the library function

strcmp. This function takes two C-strings as arguments and returns an integer that indi-

cates how the two strings compare to each other. Here is the function s prototype:

int strcmp(char *string1, char *string2);

The function takes two C-strings as parameters (actually, pointers to C-strings) and returns

an integer result. The value of the result is set accordingly:

The result is zero if the two strings are equal on a character-by-character basis

The result is negative if string1 comes before string2 in alphabetical order

The result is positive if string1 comes after string2 in alphabetical order

Here is an example of the use of strcmp to determine if two strings are equal:

if (strcmp(string1, string2) == 0)

 cout << "The strings are equal.\n";

else

 cout << "The strings are not equal.\n";

Program 10-7 shows a complete example.

Program 10-7

 1 // This program tests two C-strings for equality

 2 // using the strcmp function.

 3 #include <iostream>

 4 #include <string>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 // Two arrays for two strings.

 10 const int LENGTH = 40;

 11 char firstString[LENGTH], secondString[LENGTH];

 12

M10_GADD6253_07_SE_C10 Page 558 Friday, January 7, 2011 7:34 PM

10.4 Library Functions for Working with C-Strings 559

The strcmp function is case sensitive when it compares strings. If the user enters Dog

and dog in Program 10-7, it will report they are not the same. Most compilers provide

nonstandard versions of strcmp that perform case-insensitive comparisons. For instance,

some compilers provide a function named stricmp that works identically to strcmp

except the case of the characters is ignored.

Program 10-8 is a more practical example of how strcmp can be used. It asks the user to

enter the part number of the stereo they wish to purchase. The part number contains dig-

its, letters, and a hyphen, so it must be stored as a string. Once the user enters the part

number, the program displays the price of the stereo.

 13 // Read two strings.

 14 cout << "Enter a string: ";

 15 cin.getline(firstString, LENGTH);

 16 cout << "Enter another string: ";

 17 cin.getline(secondString, LENGTH);

 18

 19 // Compare the strings for equality with strcmp.

 20 if (strcmp(firstString, secondString) == 0)

 21 cout << "You entered the same string twice.\n";

 22 else

 23 cout << "The strings are not the same.\n";

 24

 25 return 0;

 26 }

Program Output with Example Input Shown in Bold

Enter a string: Alfonso [Enter]
Enter another string: Alfonso [Enter]
You entered the same string twice.

Program 10-8

 1 // This program uses strcmp to compare the string entered

 2 // by the user with the valid stereo part numbers.

 3 #include <iostream>

 4 #include <cstring>

 5 #include <iomanip>

 6 using namespace std;

 7

 8 int main()

 9 {

 10 // Price of parts.

 11 const double A_PRICE = 249.0,

 12 B_PRICE = 299.0;

 13

 14 // Character array for part number.

 15 const int PART_LENGTH = 8;

 16 char partNum[PART_LENGTH];

 17

(program continues)

M10_GADD6253_07_SE_C10 Page 559 Friday, January 7, 2011 7:34 PM

560 Chapter 10 Characters, C-Strings, and More About the string Class

Using ! with strcmp

Some programmers prefer to use the logical NOT operator with strcmp when testing

strings for equality. Because 0 is considered logically false, the ! operator converts that

value to true. The expression !strcmp(string1, string2) returns true when both strings

are the same, and false when they are different. The two following statements perform the

same operation:

if (strcmp(firstString, secondString) == 0)

if (!strcmp(firstString, secondString))

Sorting Strings

Programs are frequently written to print alphabetically sorted lists of items. For example,

consider a department store computer system that keeps customers names and addresses

in a le. The names do not appear in the le alphabetically but in the order the operator

entered them. If a list were to be printed in this order, it would be very dif cult to locate

any speci c name. The list would have to be sorted before it was printed.

Because the value returned by strcmp is based on the relative alphabetic order of the two

strings being compared, it can be used in programs that sort strings. Program 10-9 asks

the user to enter two names, which are then printed in alphabetic order.

 18 // Instruct the user to enter a part number.

 19 cout << "The stereo part numbers are:\n"

 20 << "\tBoom Box, part number S147-29A\n"

 21 << "\tShelf Model, part number S147-29B\n"

 22 << "Enter the part number of the stereo you\n"

 23 << "wish to purchase: ";

 24

 25 // Read a part number of at most 8 characters.

 26 cin >> partNum;

 27

 28 // Determine what user entered using strcmp

 29 // and print its price.

 30 cout << showpoint << fixed << setprecision(2);

 31 if (strcmp(partNum, "S147-29A") == 0)

 32 cout << "The price is $" << A_PRICE << endl;

 33 else if (strcmp(partNum, "S147-29B") == 0)

 34 cout << "The price is $" << B_PRICE << endl;

 35 else

 36 cout << partNum << " is not a valid part number.\n";

 37 return 0;

 38 }

Program Output with Example Input Shown in Bold

The stereo part numbers are:

 Boom Box, part number S147-29A

 Shelf Model, part number S147-29B

Enter the part number of the stereo you

wish to purchase: S147-29B [Enter]
The price is $299.00

Program 10-8 (continued)

M10_GADD6253_07_SE_C10 Page 560 Friday, January 7, 2011 7:34 PM

10.4 Library Functions for Working with C-Strings 561

Table 10-3 provides a summary of the C-string handling functions that we have discussed.

All of the functions listed require the cstring header le.

Program 10-9

 1 // This program uses the return value of strcmp to

 2 // alphabetically sort two strings entered by the user.

 3 #include <iostream>

 4 #include <string>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 // Two arrays to hold two strings.

 10 const int NAME_LENGTH = 30;

 11 char name1[NAME_LENGTH], name2[NAME_LENGTH];

 12

 13 // Read two strings.

 14 cout << "Enter a name (last name first): ";

 15 cin.getline(name1, NAME_LENGTH);

 16 cout << "Enter another name: ";

 17 cin.getline(name2, NAME_LENGTH);

 18

 19 // Print the two strings in alphabetical order.

 20 cout << "Here are the names sorted alphabetically:\n";

 21 if (strcmp(name1, name2) < 0)

 22 cout << name1 << endl << name2 << endl;

 23 else if (strcmp(name1, name2) > 0)

 24 cout << name2 << endl << name1 << endl;

 25 else

 26 cout << "You entered the same name twice!\n";

 27

 28 return 0;

 29 }

Program Output with Example Input Shown in Bold

Enter a name (last name first): Smith, Richard [Enter]
Enter another name: Jones, John [Enter]
Here are the names sorted alphabetically:

Jones, John

Smith, Richard

Table 10-3

Function Description

strlen Accepts a C-string or a pointer to a C-string as an argument. Returns the length of the

C-string (not including the null terminator.)

Example Usage: len = strlen(name);

strcat Accepts two C-strings or pointers to two C-strings as arguments. The function appends

the contents of the second string to the rst C-string. (The rst string is altered, the

second string is left unchanged.)

Example Usage: strcat(string1, string2);

(table continues)

M10_GADD6253_07_SE_C10 Page 561 Friday, January 7, 2011 7:34 PM

562 Chapter 10 Characters, C-Strings, and More About the string Class

Checkpoint

 www.myprogramminglab.com

10.6 Write a short description of each of the following functions:

strlen

strcat

strcpy

strncat

strncpy

strcmp

strstr

10.7 What will the following program segment display?

char dog[] = "Fido";

cout << strlen(dog) << endl;

10.8 What will the following program segment display?

char string1[16] = "Have a ";

char string2[9] = "nice day";

strcat(string1, string2);

cout << string1 << endl;

cout << string2 << endl;

strcpy Accepts two C-strings or pointers to two C-strings as arguments. The function copies the

second C-string to the rst C-string. The second C-string is left unchanged.

Example Usage: strcpy(string1, string2);

strncat Accepts two C-strings or pointers to two C-strings, and an integer argument. The third

argument, an integer, indicates the maximum number of characters to copy from the

second C-string to the rst C-string.

Example Usage: strncat(string1, string2, n);

strncpy Accepts two C-strings or pointers to two C-strings, and an integer argument. The third

argument, an integer, indicates the maximum number of characters to copy from the

second C-string to the rst C-string. If n is less than the length of string2, the null

terminator is not automatically appended to string1. If n is greater than the length of

string2, string1 is padded with \0 characters.

Example Usage: strncpy(string1, string2, n);

strcmp Accepts two C-strings or pointers to two C-strings arguments. If string1 and string2

are the same, this function returns 0. If string2 is alphabetically greater than string1,

it returns a negative number. If string2 is alphabetically less than string1, it returns a

positive number.

Example Usage: if (strcmp(string1, string2))

strstr Accepts two C-strings or pointers to two C-strings as arguments. Searches for the rst

occurrence of string2 in string1. If an occurrence of string2 is found, the function

returns a pointer to it. Otherwise, it returns a NULL pointer (address 0).

Example Usage: cout << strstr(string1, string2);

Table 10-3 (continued)

Function Description

M10_GADD6253_07_SE_C10 Page 562 Friday, January 7, 2011 7:34 PM

10.5 C-String/Numeric Conversion Functions 563

10.9 Write a statement that will copy the string Beethoven to the array composer.

10.10 When complete, the following program skeleton will search for the string

Windy in the array place. If place contains Windy the program will display

the message Windy found. Otherwise it will display Windy not found.

#include <iostream>

// include any other necessary header files

using namespace std;

int main()

{

char place[] = "The Windy City";

// Complete the program. It should search the array place

// for the string "Windy" and display the message "Windy

// found" if it finds the string. Otherwise, it should

// display the message "Windy not found."

return 0;

}

10.5 C-String/Numeric Conversion Functions

CONCEPT: The C++ library provides functions for converting a C-string

representation of a number to a numeric data type and vice versa. These

functions require the cstdlib header le to be included.

There is a great difference between a number that is stored as a string and one stored as a

numeric value. The string 26792 isn t actually a number, but a series of ASCII codes

representing the individual digits of the number. It uses six bytes of memory (including the

null terminator). Because it isn t an actual number, it s not possible to perform mathemat-

ical operations with it, unless it is rst converted to a numeric value.

Several functions exist in the C++ library for converting C-string representations of num-

bers into numeric values, and vice versa. Table 10-4 shows some of these. Note that all of

these functions require the cstdlib header le.

Table 10-4

Function Description

atoi Accepts a C-string as an argument. The function converts the C-string to an integer and returns that
value.
Example Usage: num = atoi("4569");

atol Accepts a C-string as an argument. The function converts the C-string to a long integer and returns
that value.
Example Usage: lnum = atol("500000");

atof Accepts a C-string as an argument. The function converts the C-string to a double and returns that
value.
Example Usage: fnum = atof("3.14159");

itoa Converts an integer to a C-string.* The rst argument, value, is the integer. The result will be
stored at the location pointed to by the second argument, string. The third argument, base, is an
integer. It speci es the numbering system that the converted integer should be expressed in (8 =
octal, 10 = decimal, 16 = hexadecimal, etc.).
Example Usage: itoa(value, string, base);

*The itoa function is not supported by all compilers.

M10_GADD6253_07_SE_C10 Page 563 Friday, January 7, 2011 7:34 PM

564 Chapter 10 Characters, C-Strings, and More About the string Class

The atoi Function

The atoi function converts a string to an integer. It accepts a C-string argument and

returns the converted integer value. Here is an example of how to use it:

int num;

num = atoi("1000");

In these statements, atoi converts the string 1000 into the integer 1000. Once the vari-

able num is assigned this value, it can be used in mathematical operations or any task

requiring a numeric value.

The atol Function

The atol function works just like atoi, except the return value is a long integer. Here is

an example:

long bigNum;

bigNum = atol("500000");

The atof Function

The atof function accepts a C-string argument and converts it to a double. The numeric

double value is returned, as shown here:

double num;

num = atof("12.67");

Although the atof function returns a double, you can still use it to convert a C-string to

a float. For example, look at the following code.

float x;

x = atof("3.4");

The atof function converts the string 3.4 to the double value 3.4. Because 3.4 is

within the range of a float, it can be stored in a float variable without the loss of data.

The itoa Function

The itoa function is similar to atoi, but it works in reverse. It converts a numeric integer

into a string representation of the integer. The itoa function accepts three arguments: the

integer value to be converted, a pointer to the location in memory where the string is to be

stored, and a number that represents the base of the converted value. Here is an example:

const int SIZE = 10;

char numArray[SIZE];

itoa(1200, numArray, SIZE);

cout << numArray << endl;

NOTE: If a string that cannot be converted to a numeric value is passed to any of these

functions, the function s behavior is unde ned by C++. Many compilers, however, will

perform the conversion process until an invalid character is encountered. For example,

atoi("123x5") might return the integer 123. It is possible that these functions will

return 0 if they cannot successfully convert their argument.

M10_GADD6253_07_SE_C10 Page 564 Friday, January 7, 2011 7:34 PM

10.5 C-String/Numeric Conversion Functions 565

This program segment converts the integer value 1200 to a string. The string is stored in

the array numArray. The third argument, 10, means the number should be written in deci-

mal, or base 10 notation. The output of the cout statement is

1200

Now let s look at Program 10-10, which uses a string-to-number conversion function,

atoi. It allows the user to enter a series of values, or the letters Q or q to quit. The average

of the numbers is then calculated and displayed.

WARNING! As always, C++ performs no array bounds checking. Make sure the array

whose address is passed to itoa is large enough to hold the converted number, including

the null terminator.

Program 10-10

 1 // This program demonstrates the strcmp and atoi functions.

 2 #include <iostream>

 3 #include <cctype> // For tolower

 4 #include <cstring> // For strcmp

 5 #include <cstdlib> // For atoi

 6 using namespace std;

 7

 8 int main()

 9 {

 10 const int SIZE = 20; // Array size

 11 char input[SIZE]; // To hold user input

 12 int total = 0; // Accumulator

 13 int count = 0; // Loop counter

 14 double average; // To hold the average of numbers

 15

 16 // Get the first number.

 17 cout << "This program will average a series of numbers.\n";

 18 cout << "Enter the first number or Q to quit: ";

 19 cin.getline(input, SIZE);

 20

 21 // Process the number and subsequent numbers.

 22 while (tolower(input[0]) != 'q')

 23 {

 24 total += atoi(input); // Keep a running total

 25 count++; // Count the numbers entered

 26 // Get the next number.

 27 cout << "Enter the next number or Q to quit: ";

 28 cin.getline(input, SIZE);

 29 }

 30

 31 // If any numbers were entered, display their average.

 32 if (count != 0)

 33 {

 34 average = static_cast<double>(total) / count;

 35 cout << "Average: " << average << endl;

 36 }

 37 return 0;

 38 }

(program output continues)

M10_GADD6253_07_SE_C10 Page 565 Friday, January 7, 2011 7:34 PM

566 Chapter 10 Characters, C-Strings, and More About the string Class

In line 22, the following while statement uses the tolower function to determine whether

the rst character entered by the user is q or Q .

while (tolower(input[0]) != 'q')

If the user hasn t entered Q or q the loop performs an iteration. The following state-

ment, in line 24, uses atoi to convert the string in input to an integer and adds its value to

total:

total += atoi(input); // Keep a running total

The counter is updated in line 25 and then the user is asked for the next number. When all

the numbers are entered, the user terminates the loop by entering Q or q . If one or more

numbers are entered, their average is displayed.

The string-to numeric conversion functions can also help with a common input problem.

Recall from Chapter 3 that using cin >> and then calling cin.get causes problems

because the >> operator leaves the newline character in the keyboard buffer. When the

cin.get function executes, the rst character it sees in the keyboard buffer is the newline

character, so it reads no further.

The same problem exists when a program uses cin >> and then calls cin.getline to

read a line of input. For example, look at the following code. (Assume idNumber is an int

and name is a char array.)

1 // Get the user's ID number.

2 cout << "What is your ID number? ";

3 cin >> idNumber;

4

5 // Get the user's name.

6 cout << "What is your name? ";

7 cin.getline(name, NAME_SIZE);

Let s say the user enters 25 and presses Enter when the cin >> statement in line 3 exe-

cutes. The value 25 will be stored in idNumber, and the newline character will be left in the

keyboard buffer. When the cin.getline function is called in line 7, the rst character it

sees in the keyboard buffer is the newline character, so it reads no further. It will appear

that the statement in line 7 was skipped.

One work-around that we have used in this book is to call cin.ignore to skip over the

newline character just before calling cin.getline. Another approach is to use

Program Output with Example Input Shown in Bold

This program will average a series of numbers.

Enter the first number or Q to quit: 74 [Enter]
Enter the next number or Q to quit: 98 [Enter]
Enter the next number or Q to quit: 23 [Enter]
Enter the next number or Q to quit: 54 [Enter]
Enter the next number or Q to quit: Q [Enter]
Average: 62.25

Program 10-10 (continued)

M10_GADD6253_07_SE_C10 Page 566 Friday, January 7, 2011 7:34 PM

10.5 C-String/Numeric Conversion Functions 567

cin.getline to read all of a program s input, including numbers. When numeric input

is needed, it is read into a char array as a string, and then converted to the appropriate

numeric data type. Because you aren t mixing cin >> with cin.getline, the problem

of the remaining newline character doesn t exist. Program 10-11 shows an example.

Program 10-11

 1 // This program demonstrates how the getline function can

 2 // be used for all of a program's input.

 3 #include <iostream>

 4 #include <cstdlib>

 5 #include <iomanip>

 6 using namespace std;

 7

 8 int main()

 9 {

 10 const int INPUT_SIZE = 81; // Size of input array

 11 const int NAME_SIZE = 30; // Size of name array

 12 char input[INPUT_SIZE]; // To hold a line of input

 13 char name[NAME_SIZE]; // To hold a name

 14 int idNumber; // To hold an ID number

 15 int age; // To hold an age

 16 double income; // To hold income

 17

 18 // Get the user's ID number.

 19 cout << "What is your ID number? ";

 20 cin.getline(input, INPUT_SIZE); // Read as a string

 21 idNumber = atoi(input); // Convert to int

 22

 23 // Get the user's name. No conversion necessary.

 24 cout << "What is your name? ";

 25 cin.getline(name, NAME_SIZE);

 26

 27 // Get the user's age.

 28 cout << "How old are you? ";

 29 cin.getline(input, INPUT_SIZE); // Read as a string

 30 age = atoi(input); // Convert to int

 31

 32 // Get the user's income.

 33 cout << "What is your annual income? ";

 34 cin.getline(input, INPUT_SIZE); // Read as a string

 35 income = atof(input); // Convert to double

 36

 37 // Show the resulting data.

 38 cout << setprecision(2) << fixed << showpoint;

 39 cout << "Your name is " << name

 40 <<", you are " << age

 41 << " years old,\nand you make $"

 42 << income << " per year.\n";

 43

 44 return 0;

 45 }

(program output continues)

M10_GADD6253_07_SE_C10 Page 567 Friday, January 7, 2011 7:34 PM

568 Chapter 10 Characters, C-Strings, and More About the string Class

Checkpoint

 www.myprogramminglab.com

10.11 Write a short description of each of the following functions:

atoi

atol

atof

itoa

10.12 Write a statement that will convert the string 10 to an integer and store the

result in the variable num.

10.13 Write a statement that will convert the string 100000 to a long and store the

result in the variable num.

10.14 Write a statement that will convert the string 7.2389 to a double and store the

result in the variable num.

10.15 Write a statement that will convert the integer 127 to a string, stored in base-10

notation in the array value.

10.6
Focus on Software Engineering: Writing Your Own
C-String-Handling Functions

CONCEPT: You can design your own specialized functions for manipulating strings.

By being able to pass arrays as arguments, you can write your own functions for process-

ing C-strings. For example, Program 10-12 uses a function to copy a C-string from one

array to another.

Program Output with Example Input Shown in Bold

What is your ID number? 1234 [Enter]
What is your name? Janice Smith [Enter]
How old are you? 25 [Enter]
What is your annual income? 60000 [Enter]
Your name is Janice Smith, you are 25 years old,

and you make $60000.00 per year.

Program 10-12

 1 // This program uses a function to copy a C-string into an array.

 2 #include <iostream>

 3 using namespace std;

 4

 5 void stringCopy(char [], char []); // Function prototype

 6

Program 10-11 (continued)

VideoNote

Writing a

C-String-

Handling

Function

M10_GADD6253_07_SE_C10 Page 568 Friday, January 7, 2011 7:34 PM

10.6 Focus on Software Engineering: Writing Your Own C-String-Handling Functions 569

Notice the function stringCopy does not accept an argument indicating the size of the

arrays. It simply copies the characters from string1 into string2 until it encounters a

null terminator in string1. When the null terminator is found, the loop has reached the

end of the C-string. The last statement in the function assigns a null terminator (the '\0'

character) to the end of string2, so it is properly terminated.

 7 int main()

 8 {

 9 const int LENGTH = 30; // Size of the arrays

 10 char first[LENGTH]; // To hold the user's input

 11 char second[LENGTH]; // To hold the copy

 12

 13 // Get a string from the user and store in first.

 14 cout << "Enter a string with no more than "

 15 << (LENGTH - 1) << " characters:\n";

 16 cin.getline(first, LENGTH);

 17

 18 // Copy the contents of first to second.

 19 stringCopy(first, second);

 20

 21 // Display the copy.

 22 cout << "The string you entered is:\n" << second << endl;

 23 return 0;

 24 }

 25

 26 //***

 27 // Definition of the stringCopy function. *

 28 // This function copies the C-string in string1 to string2. *

 29 //***

 30

 31 void stringCopy(char string1[], char string2[])

 32 {

 33 int index = 0; // Loop counter

 34

 35 // Step through string1, copying each element to

 36 // string2. Stop when the null character is encountered.

 37 while (string1[index] != '\0')

 38 {

 39 string2[index] = string1[index];

 40 index++;

 41 }

 42

 43 // Place a null character in string2.

 44 string2[index] = '\0';

 45 }

Program Output with Example Input Shown in Bold

Enter a string with no more than 29 characters:

 Thank goodness it s Friday! [Enter]
The string you entered is:

Thank goodness it's Friday!

M10_GADD6253_07_SE_C10 Page 569 Friday, January 7, 2011 7:34 PM

570 Chapter 10 Characters, C-Strings, and More About the string Class

Program 10-13 uses another C-string-handling function: nameSlice. The program asks

the user to enter his or her rst and last names, separated by a space. The function

searches the string for the space, and replaces it with a null terminator. In effect, this

cuts the last name off of the string.

WARNING! Because the stringCopy function doesn t know the size of the second

array, it s the programmer s responsibility to make sure the second array is large enough

to hold the string in the rst array.

Program 10-13

 1 // This program uses the function nameSlice to cut the last

 2 // name off of a string that contains the user's first and

 3 // last names.

 4 #include <iostream>

 5 using namespace std;

 6

 7 void nameSlice(char []); // Function prototype

 8

 9 int main()

 10 {

 11 const int SIZE = 41; // Array size

 12 char name[SIZE]; // To hold the user's name

 13

 14 cout << "Enter your first and last names, separated ";

 15 cout << "by a space:\n";

 16 cin.getline(name, SIZE);

 17 nameSlice(name);

 18 cout << "Your first name is: " << name << endl;

 19 return 0;

 20 }

 21

 22 //**

 23 // Definition of function nameSlice. This function accepts a *

 24 // character array as its argument. It scans the array looking *

 25 // for a space. When it finds one, it replaces it with a null *

 26 // terminator. *

 27 //**

 28

 29 void nameSlice(char userName[])

 30 {

 31 int count = 0; // Loop counter

 32

 33 // Locate the first space, or the null terminator if there

 34 // are no spaces.

 35 while (userName[count] != ' ' && userName[count] != '\0')

 36 count++;

 37

 38 // If a space was found, replace it with a null terminator.

 39 if (userName[count] == ' ')

 40 userName[count] = '\0';

 41 }

M10_GADD6253_07_SE_C10 Page 570 Friday, January 7, 2011 7:34 PM

10.6 Focus on Software Engineering: Writing Your Own C-String-Handling Functions 571

The following loop in lines 35 and 36 starts at the rst character in the array and scans the

string searching for either a space or a null terminator:

while (userName[count] != ' ' && userName[count] != '\0')

 count++;

If the character in userName[count] isn t a space or the null terminator, count is incre-

mented, and the next character is examined. With the example input Jimmy Jones, the

loop nds the space separating Jimmy and Jones at userName[5]. When the loop

stops, count is set to 5. This is illustrated in Figure 10-3.

Once the loop has nished, userName[count] will either contain a space or a null termi-

nator. If it contains a space, the following if statement, in lines 39 and 40, replaces it with

a null terminator:

if (userName[count] == ' ')

 userName[count] = '\0';

This is illustrated in Figure 10-4.

The new null terminator now becomes the end of the string.

Program Output with Example Input Shown in Bold

Enter your first and last names, separated by a space:

Jimmy Jones [Enter]
Your first name is: Jimmy

Figure 10-3

NOTE: The loop will also stop if it encounters a null terminator. This is so it will not go

beyond the boundary of the array if the user didn t enter a space.

Figure 10-4

J i m m y o n e s \0 J

0 1 2 3 4 5 7 8 9 10 11 12 6

The loop stops when count reaches 5 because userName[5] contains a space

Subscripts

J i m m y \0 o n e s \0 J

0 1 2 3 4 5 7 8 9 10 11 12 6

The space is replaced with a null terminator. This now becomes the end of the string.

Subscripts

M10_GADD6253_07_SE_C10 Page 571 Friday, January 7, 2011 7:34 PM

572 Chapter 10 Characters, C-Strings, and More About the string Class

Using Pointers to Pass C-String Arguments

Pointers are extremely useful for writing functions that process C-strings. If the starting

address of a string is passed into a pointer parameter variable, it can be assumed that all

the characters, from that address up to the byte that holds the null terminator, are part of

the string. (It isn t necessary to know the length of the array that holds the string.)

Program 10-14 demonstrates a function, countChars, that uses a pointer to count the

number of times a speci c character appears in a C-string.

Program 10-14

 1 // This program demonstrates a function, countChars, that counts

 2 // the number of times a specific character appears in a string.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int countChars(char *, char); // Function prototype

 7

 8 int main()

 9 {

 10 const int SIZE = 51; // Array size

 11 char userString[SIZE]; // To hold a string

 12 char letter; // The character to count

 13

 14 // Get a string from the user.

 15 cout << "Enter a string (up to 50 characters): ";

 16 cin.getline(userString, SIZE);

 17

 18 // Choose a character whose occurrences within the string will be counted.

 19 cout << "Enter a character and I will tell you how many\n";

 20 cout << "times it appears in the string: ";

 21 cin >> letter;

 22

 23 // Display the number of times the character appears.

 24 cout << letter << " appears ";

 25 cout << countChars(userString, letter) << " times.\n";

 26 return 0;

 27 }

 28

 29 //**

 30 // Definition of countChars. The parameter strPtr is a pointer *

 31 // that points to a string. The parameter Ch is a character that *

 32 // the function searches for in the string. The function returns *

 33 // the number of times the character appears in the string. *

 34 //**

 35

 36 int countChars(char *strPtr, char ch)

 37 {

 38 int times = 0; // Number of times ch appears in the string

 39

M10_GADD6253_07_SE_C10 Page 572 Friday, January 7, 2011 7:34 PM

10.6 Focus on Software Engineering: Writing Your Own C-String-Handling Functions 573

In the function countChars, strPtr points to the C-string that is to be searched and ch

contains the character to look for. The while loop in lines 41 through 46 repeats as long

as the character that strPtr points to is not the null terminator:

while (*strPtr != '\0')

Inside the loop, the if statement in line 43 compares the character that strPtr points to

with the character in ch:

if (*strPtr == ch)

If the two are equal, the variable times is incremented in line 44. (times keeps a running

total of the number of times the character appears.) The last statement in the loop is

strPtr++;

This statement increments the address in strPtr. This causes strPtr to point to the next

character in the string. Then, the loop starts over. When strPtr nally reaches the null

terminator, the loop terminates and the function returns the value in times.

For another example, see the String Manipulation Case Study, available for download

from the book s companion Web site at www.pearsonhighered.com/gaddis.

Checkpoint

 www.myprogramminglab.com

10.16 What is the output of the following program?

#include <iostream>

using namespace std;

// Function Prototype

void mess(char []);

int main()

{

 char stuff[] = "Tom Talbert Tried Trains";

 40 // Step through the string counting occurrences of ch.

 41 while (*strPtr != '\0')

 42 {

 43 if (*strPtr == ch) // If the current character equals ch...

 44 times++; // ... increment the counter

 45 strPtr++; // Go to the next char in the string.

 46 }

 47

 48 return times;

 49 }

Program Output with Example Input Shown in Bold

Enter a string (up to 50 characters): Starting Out with C++ [Enter]
Enter a character and I will tell you how many

times it appears in the string: t [Enter]
t appears 4 times.

M10_GADD6253_07_SE_C10 Page 573 Friday, January 7, 2011 7:34 PM

574

Chapter 10 Characters, C-Strings, and More About the

string

 Class

 cout << stuff << endl;

 mess(stuff);

 cout << stuff << endl;

 return 0;

}

// Definition of function mess

void mess(char str[])

{

 int step = 0;

 while (str[step] != '\0')

 {

 if (str[step] == 'T')

 str[step] = 'D';

 step++;

 }

}

10.7

More About the C++

string

 Class

CONCEPT:

Standard C++ provides a special data type for storing and working with

strings.

The

string

 class is an abstract data type. This means it is not a built-in, primitive data

type like

int

 or

char

. Instead, it is a programmer-de ned data type that accompanies the

C++ language. It provides many capabilities that make storing and working with strings

easy and intuitive.

Using the

string

 Class

The rst step in using the

string

 class is to

#include

 the

string

 header le. This is

accomplished with the following preprocessor directive:

#include <string>

Now you are ready to de ne a

string

 object. De ning a

string

 object is similar to de n-

ing a variable of a primitive type. For example, the following statement de nes a

string

object named

movieTitle

.

string movieTitle;

You assign a string value to the

movieTitle

 object with the assignment operator, as

shown in the following statement.

movieTitle = "Wheels of Fury";

VideoNote

More About

the string

Class

M10_GADD6253_07_SE_C10 Page 574 Monday, January 17, 2011 3:05 PM

10.7 More About the C++ string Class 575

The contents of movieTitle is displayed on the screen with the cout object, as shown in

the next statement:

cout << "My favorite movie is " << movieTitle << endl;

Program 10-15 is a complete program that demonstrates the statements shown above.

As you can see, working with string objects is similar to working with variables of other

types. For example, Program 10-16 demonstrates how you can use cin to read a value

from the keyboard into a string object.

Program 10-15

 1 // This program demonstrates the string class.

 2 #include <iostream>

 3 #include <string> // Required for the string class.

 4 using namespace std;

 5

 6 int main()

 7 {

 8 string movieTitle;

 9

 10 movieTitle = "Wheels of Fury";

 11 cout << "My favorite movie is " << movieTitle << endl;

 12 return 0;

 13 }

Program Output

My favorite movie is Wheels of Fury

Program 10-16

 1 // This program demonstrates how cin can read a string into

 2 // a string class object.

 3 #include <iostream>

 4 #include <string>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 string name;

 10

 11 cout << "What is your name? ";

 12 cin >> name;

 13 cout << "Good morning " << name << endl;

 14 return 0;

 15 }

Program Output with Example Input Shown in Bold

What is your name? Peggy [Enter]
Good morning Peggy

M10_GADD6253_07_SE_C10 Page 575 Friday, January 7, 2011 7:34 PM

576 Chapter 10 Characters, C-Strings, and More About the string Class

Reading a Line of Input into a string Object

If you want to read a line of input (with spaces) into a string object, use the getline()

function. Here is an example:

string name;

cout << "What is your name? ";

getline(cin, name);

The getline() function s rst argument is the name of a stream object you wish to read

the input from. The function call above passes the cin object to getline(), so the func-

tion reads a line of input from the keyboard. The second argument is the name of a

string object. This is where getline() stores the input that it reads.

Comparing and Sorting string Objects

There is no need to use a function such as strcmp to compare string objects. You may

use the <, >, <=, >=, ==, and != relational operators. For example, assume the following

de nitions exist in a program:

string set1 = "ABC";

string set2 = "XYZ";

The object set1 is considered less than the object set2 because the characters ABC

alphabetically precede the characters XYZ. So, the following if statement will cause

the message set1 is less than set2 to be displayed on the screen.

if (set1 < set2)

 cout << "set1 is less than set2.\n";

Relational operators perform comparisons on string objects in a fashion similar to the

way the strcmp function compares C-strings. One by one, each character in the rst oper-

and is compared with the character in the corresponding position in the second operand.

If all the characters in both strings match, the two strings are equal. Other relationships

can be determined if two characters in corresponding positions do not match. The rst

operand is less than the second operand if the mismatched character in the rst operand is

less than its counterpart in the second operand. Likewise, the rst operand is greater than

the second operand if the mismatched character in the rst operand is greater than its

counterpart in the second operand.

For example, assume a program has the following de nitions:

string name1 = "Mary";

string name2 = "Mark";

The value in name1, Mary, is greater than the value in name2, Mark. This is because

the y in Mary has a greater ASCII value than the k in Mark.

string objects can also be compared to C-strings with relational operators. Assuming

str is a string object, all of the following are valid relational expressions:

str > "Joseph"

"Kimberly" < str

str == "William"

M10_GADD6253_07_SE_C10 Page 576 Friday, January 7, 2011 7:34 PM

10.7 More About the C++ string Class 577

Program 10-17 demonstrates string objects and relational operators.

You may also use relational operators to sort string objects. Program 10-18 demon-

strates this.

Program 10-17

 1 // This program uses the == operator to compare the string entered

 2 // by the user with the valid stereo part numbers.

 3 #include <iostream>

 4 #include <iomanip>

 5 #include <string>

 6 using namespace std;

 7

 8 int main()

 9 {

 10 const double APRICE = 249.0; // Price for part A

 11 const double BPRICE = 299.0; // Price for part B

 12 string partNum; // Part number

 13

 14 cout << "The stereo part numbers are:\n";

 15 cout << "\tBoom Box, part number S147-29A\n";

 16 cout << "\tShelf Model, part number S147-29B\n";

 17 cout << "Enter the part number of the stereo you\n";

 18 cout << "wish to purchase: ";

 19 cin >> partNum;

 20 cout << fixed << showpoint << setprecision(2);

 21

 22 if (partNum == "S147-29A")

 23 cout << "The price is $" << APRICE << endl;

 24 else if (partNum == "S147-29B")

 25 cout << "The price is $" << BPRICE << endl;

 26 else

 27 cout << partNum << " is not a valid part number.\n";

 28 return 0;

 29 }

Program Output with Example Input Shown in Bold

The stereo part numbers are:

 Boom Box, part number S147-29A

 Shelf Model, part number S147-29B

Enter the part number of the stereo you

wish to purchase: S147-29A [Enter]
The price is $249.00

M10_GADD6253_07_SE_C10 Page 577 Friday, January 7, 2011 7:34 PM

578 Chapter 10 Characters, C-Strings, and More About the string Class

Other Ways to De ne string Objects

There are a variety of ways to initialize a string object when you de ne it. Table 10-5

shows several example de nitions, and describes each. Program 10-19 demonstrates a

string object initialized with the string William Smith.

Program 10-18

 1 // This program uses relational operators to alphabetically

 2 // sort two strings entered by the user.

 3 #include <iostream>

 4 #include <string>

 5 using namespace std;

 6

 7 int main ()

 8 {

 9 string name1, name2;

 10

 11 // Get a name.

 12 cout << "Enter a name (last name first): ";

 13 getline(cin, name1);

 14

 15 // Get another name.

 16 cout << "Enter another name: ";

 17 getline(cin, name2);

 18

 19 // Display them in alphabetical order.

 20 cout << "Here are the names sorted alphabetically:\n";

 21 if (name1 < name2)

 22 cout << name1 << endl << name2 << endl;

 23 else if (name1 > name2)

 24 cout << name2 << endl << name1 << endl;

 25 else

 26 cout << "You entered the same name twice!\n";

 27 return 0;

 28 }

Program Output with Example Input Shown in Bold

Enter a name (last name first): Smith, Richard [Enter]
Enter another name: Jones, John [Enter]
Here are the names sorted alphabetically:

Jones, John

Smith, Richard

Program 10-19

 1 // This program initializes a string object.

 2 #include <iostream>

 3 #include <string>

 4 using namespace std;

 5

M10_GADD6253_07_SE_C10 Page 578 Friday, January 7, 2011 7:34 PM

10.7 More About the C++ string Class 579

Notice in Program 10-16 the use of the = operator to assign a value to the string object.

The string class supports several operators, which are described in Table 10-6.

 6 int main()

 7 {

 8 string greeting;

 9 string name("William Smith");

 10

 11 greeting = "Hello ";

 12 cout << greeting << name << endl;

 13 return 0;

 14 }

Program Output

Hello William Smith

Table 10-5

De nition Description

string address; De nes an empty string object named address.

string name("William Smith"); De nes a string object named name, initialized with

William Smith.

string person1(person2); De nes a string object named person1, which is a copy

of person2. person2 may be either a string object or

character array.

string set1(set2, 5); De nes a string object named set1, which is initialized

to the rst ve characters in the character array set2.

string lineFull('z', 10); De nes a string object named lineFull initialized

with 10 'z' characters.

string firstName(fullName, 0, 7); De nes a string object named firstName, initialized

with a substring of the string fullName. The substring

is seven characters long, beginning at position 0.

Table 10-6

Supported

Operator Description

>> Extracts characters from a stream and inserts them into the string. Characters

are copied until a whitespace or the end of the string is encountered.

<< Inserts the string into a stream.

= Assigns the string on the right to the string object on the left.

+= Appends a copy of the string on the right to the string object on the left.

+ Returns a string that is the concatenation of the two string operands.

[] Implements array-subscript notation, as in name[x]. A reference to the

character in the x position is returned.

Relational Operators Each of the relational operators is implemented:

< > <= >= == !=

M10_GADD6253_07_SE_C10 Page 579 Friday, January 7, 2011 7:34 PM

580 Chapter 10 Characters, C-Strings, and More About the string Class

Program 10-20 demonstrates some of the string operators.

Using string Class Member Functions

The string class also has member functions. For example, the length member function

returns the length of the string stored in the object. The value is returned as an unsigned

integer.

Assume the following string object de nition exists in a program:

string town = "Charleston";

The following statement in the same program would assign the value 10 to the variable x.

x = town.length();

Program 10-21 further demonstrates the length member function.

Program 10-20

 1 // This program demonstrates the C++ string class.

 2 #include <iostream>

 3 #include <string>

 4 using namespace std;

 5

 6 int main ()

 7 {

 8 // Define three string objects.

 9 string str1, str2, str3;

 10

 11 // Assign values to all three.

 12 str1 = "ABC";

 13 str2 = "DEF";

 14 str3 = str1 + str2;

 15

 16 // Display all three.

 17 cout << str1 << endl;

 18 cout << str2 << endl;

 19 cout << str3 << endl;

 20

 21 // Concatenate a string onto str3 and display it.

 22 str3 += "GHI";

 23 cout << str3 << endl;

 24 return 0;

 25 }

Program Output

ABC

DEF

ABCDEF

ABCDEFGHI

M10_GADD6253_07_SE_C10 Page 580 Friday, January 7, 2011 7:34 PM

10.7 More About the C++ string Class 581

The size function also returns the length of the string. It is demonstrated in the for loop

in Program 10-22.

Program 10-21

 1 // This program demonstrates a string

 2 // object's length member function.

 3 #include <iostream>

 4 #include <string>

 5 using namespace std;

 6

 7 int main ()

 8 {

 9 string town;

 10

 11 cout << "Where do you live? ";

 12 cin >> town;

 13 cout << "Your town's name has " << town.length() ;

 14 cout << " characters\n";

 15 return 0;

 16 }

Program Output with Example Input Shown in Bold

Where do you live? Jacksonville [Enter]
Your town's name has 12 characters

Program 10-22

 1 // This program demonstrates the C++ string class.

 2 #include <iostream>

 3 #include <string>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 // Define three string objects.

 9 string str1, str2, str3;

 10

 11 // Assign values to all three.

 12 str1 = "ABC";

 13 str2 = "DEF";

 14 str3 = str1 + str2;

 15

 16 // Use subscripts to display str3 one character

 17 // at a time.

 18 for (int x = 0; x < str3.size(); x++)

 19 cout << str3[x];

 20 cout << endl;

 21

(program continues)

M10_GADD6253_07_SE_C10 Page 581 Friday, January 7, 2011 7:34 PM

582 Chapter 10 Characters, C-Strings, and More About the string Class

Table 10-7 lists many of the string class member functions and their overloaded varia-

tions. In the examples, assume theString is the name of a string object.

 22 // Compare str1 with str2.

 23 if (str1 < str2)

 24 cout << "str1 is less than str2\n";

 25 else

 26 cout << "str1 is not less than str2\n";

 27 return 0;

 28 }

Program Output

ABCDEF

str1 is less than str2

Table 10-7

Member Function

Example Description

theString.append(n, 'z'); Appends n copies of z to theString.

theString.append(str); Appends str to theString. str can be a string object or

character array.

theString.append(str, n); The rst n characters of the character array str are appended

to theString.

theString.append(str, x, n); n number of characters from str, starting at position x, are

appended to theString. If theString is too small, the

function will copy as many characters as possible.

theString.assign(n, 'z'); Assigns n copies of 'z' to theString.

theString.assign(str); Assigns str to theString. str can be a string object or

character array.

theString.assign(str, n); The rst n characters of the character array str are assigned

to theString.

theString.assign(str, x, n); n number of characters from str, starting at position x, are

assigned to theString. If theString is too small, the

function will copy as many characters as possible.

theString.at(x); Returns the character at position x in the string.

theString.begin(); Returns an iterator pointing to the rst character in the

string. (For more information on iterators, see Chapter 16.)

theString.c_str(); Converts the contents of theString to a C-string, and returns

a pointer to the C-string.

theString.capacity(); Returns the size of the storage allocated for the string.

theString.clear(); Clears the string by deleting all the characters stored in it.

Program 10-22 (continued)

M10_GADD6253_07_SE_C10 Page 582 Friday, January 7, 2011 7:34 PM

10.7 More About the C++ string Class 583

theString.compare(str); Performs a comparison like the strcmp function (see Chapter

4), with the same return values. str can be a string object or

a character array.

theString.compare(x, n, str); Compares theString and str, starting at position x, and

continuing for n characters. The return value is like strcmp.

str can be a string object or character array.

theString.copy(str, x, n); Copies the character array str to theString, beginning at

position x, for n characters. If theString is too small, the

function will copy as many characters as possible.

theString.empty(); Returns true if theString is empty.

theString.end(); Returns an iterator pointing to the last character of the string

in theString. (For more information on iterators, see

Chapter 15.)

theString.erase(x, n); Erases n characters from theString, beginning at position x.

theString.find(str, x); Returns the rst position at or beyond position x where the

string str is found in theString. str may be either a string

object or a character array.

theString.find('z', x); Returns the rst position at or beyond position x where z is

found in theString.

theString.insert(x, n, 'z'); Inserts z n times into theString at position x.

theString.insert(x, str); Inserts a copy of str into theString, beginning at position x.

str may be either a string object or a character array.

theString.length(); Returns the length of the string in theString.

theString.replace(x, n, str); Replaces the n characters in theString beginning at position

x with the characters in string object str.

theString.resize(n, 'z'); Changes the size of the allocation in theString to n. If n is

less than the current size of the string, the string is truncated

to n characters. If n is greater, the string is expanded and z is

appended at the end enough times to ll the new spaces.

theString.size(); Returns the length of the string in theString.

theString.substr(x, n); Returns a copy of a substring. The substring is n characters

long and begins at position x of theString.

theString.swap(str); Swaps the contents of theString with str.

Table 10-7 (continued)

Member Function

Example Description

M10_GADD6253_07_SE_C10 Page 583 Friday, January 7, 2011 7:34 PM

584 Chapter 10 Characters, C-Strings, and More About the string Class

10.8
Focus on Problem Solving and Program Design:
A Case Study

As a programmer for the Home Software Company, you are asked to develop a function
named dollarFormat that inserts commas and a $ sign at the appropriate locations in a
string object containing an unformatted dollar amount. As an argument, the function
should accept a reference to a string object. You may assume the string object contains
a value such as 1084567.89. The function should modify the string object so it contains
a formatted dollar amount, such as $1,084,567.89.

The code for the dollarFormat function follows.

void dollarFormat(string ¤cy)

{

int dp;

dp = currency.find('.'); // Find decimal point

if (dp > 3) // Insert commas

{

for (int x = dp - 3; x > 0; x -= 3)

currency.insert(x, ",");

}

currency.insert(0, "$"); // Insert dollar sign

}

The function de nes an int variable named dp. This variable is used to hold the position
of the unformatted number s decimal point. This is accomplished with the statement:

dp = currency.find('.');

The string class find member function returns the position number in the string where
the . character is found. An if statement determines if the number has more than three
numbers preceding the decimal point:

if (dp > 3)

If the decimal point is at a position greater than 3, then the function inserts commas in the
string with the following loop:

for (int x = dp - 3; x > 0; x -= 3)

 currency.insert(x, ",");

Finally, a $ symbol is inserted at position 0 (the rst character in the string).

Program 10-23 demonstrates the function.

M10_GADD6253_07_SE_C10 Page 584 Friday, January 7, 2011 7:34 PM

10.8 Focus on Problem Solving and Program Design: A Case Study 585

Program 10-23

 1 // This program lets the user enter a number. The

 2 // dollarFormat function formats the number as

 3 // a dollar amount.

 4 #include <iostream>

 5 #include <string>

 6 using namespace std;

 7

 8 // Function prototype

 9 void dollarFormat(string &);

 10

 11 int main ()

 12 {

 13 string input;

 14

 15 // Get the dollar amount from the user.

 16 cout << "Enter a dollar amount in the form nnnnn.nn : ";

 17 cin >> input;

 18 dollarFormat(input);

 19 cout << "Here is the amount formatted:\n";

 20 cout << input << endl;

 21 return 0;

 22 }

 23

 24 //**

 25 // Definition of the dollarFormat function. This function *

 26 // accepts a string reference object, which is assumed *

 27 // to hold a number with a decimal point. The function *

 28 // formats the number as a dollar amount with commas and *

 29 // a $ symbol. *

 30 //**

 31

 32 void dollarFormat(string ¤cy)

 33 {

 34 int dp;

 35

 36 dp = currency.find('.'); // Find decimal point

 37 if (dp > 3) // Insert commas

 38 {

 39 for (int x = dp - 3; x > 0; x -= 3)

 40 currency.insert(x, ",");

 41 }

 42 currency.insert(0, "$"); // Insert dollar sign

 43 }

Program Output with Example Input Shown in Bold

Enter a dollar amount in the form nnnnn.nn: 1084567.89 [Enter]
Here is the amount formatted:

$1,084,567.89

M10_GADD6253_07_SE_C10 Page 585 Friday, January 7, 2011 7:34 PM

586 Chapter 10 Characters, C-Strings, and More About the string Class

Review Questions and Exercises

Short Answer

1. What header le must you include in a program using character testing functions such

as isalpha and isdigit?

2. What header file must you include in a program using the character conversion func-
tions toupper and tolower?

3. Assume c is a char variable. What value does c hold after each of the following state-
ments executes?

Statement Contents of c

c = toupper('a');___________

c = toupper('B');___________

c = tolower('D');___________

c = toupper('e');___________

4. Look at the following code. What value will be stored in s after the code executes?

char name[10];

int s;

strcpy(name, "Jimmy");

s = strlen(name);

5. What header file must you include in a program using string functions such as strlen
and strcpy?

6. What header file must you include in a program using string/numeric conversion func-
tions such as atoi and atof?

7. What header file must you include in a program using string class objects?

8. How do you compare string class objects?

Fill-in-the-Blank

9. The _________ function returns true if the character argument is uppercase.

10. The _________ function returns true if the character argument is a letter of the alphabet.

11. The _________ function returns true if the character argument is a digit.

12. The _________ function returns true if the character argument is a whitespace character.

13. The _________ function returns the uppercase equivalent of its character argument.

14. The _________ function returns the lowercase equivalent of its character argument.

15. The _________ file must be included in a program that uses character testing functions.

16. The _________ function returns the length of a string.

17. To _________ two strings means to append one string to the other.

18. The _________ function concatenates two strings.

19. The _________ function copies one string to another.

20. The _________ function searches for a string inside of another one.

21. The _________ function compares two strings.

M10_GADD6253_07_SE_C10 Page 586 Friday, January 7, 2011 7:34 PM

Review Questions and Exercises 587

22. The _________ function copies, at most, n number of characters from one string to
another.

23. The _________ function returns the value of a string converted to an integer.

24. The _________ function returns the value of a string converted to a long integer.

25. The _________ function returns the value of a string converted to a float.

26. The _________ function converts an integer to a string.

Algorithm Workbench

27. The following if statement determines whether choice is equal to Y or y .

if (choice == 'Y' || choice == 'y')

Simplify this statement by using either the toupper or tolower function.

28. Assume input is a char array holding a C-string. Write code that counts the number
of elements in the array that contain an alphabetic character.

29. Look at the following array definition.

char str[10];

Assume that name is also a char array, and it holds a C-string. Write code that copies

the contents of name to str if the C-string in name is not too big to t in str.

30. Look at the following statements.

char str[] = "237.89";

double value;

Write a statement that converts the string in str to a double and stores the result in

value.

31. Write a function that accepts a pointer to a C-string as its argument. The function
should count the number of times the character w occurs in the argument and return
that number.

32. Assume that str1 and str2 are string class objects. Write code that displays They
are the same! if the two objects contain the same string.

True or False

33. T F Character testing functions, such as isupper, accept strings as arguments and

test each character in the string.

34. T F If toupper s argument is already uppercase, it is returned as is, with no

changes.

35. T F If tolower s argument is already lowercase, it will be inadvertently converted

to uppercase.

36. T F The strlen function returns the size of the array containing a string.

37. T F If the starting address of a string is passed into a pointer parameter, it can be

assumed that all the characters, from that address up to the byte that holds the

null terminator, are part of the string.

38. T F String-handling functions accept as arguments pointers to strings (array names

or pointer variables), or literal strings.

M10_GADD6253_07_SE_C10 Page 587 Friday, January 7, 2011 7:34 PM

588 Chapter 10 Characters, C-Strings, and More About the string Class

39. T F The strcat function checks to make sure the rst string is large enough to

hold both strings before performing the concatenation.

40. T F The strcpy function will overwrite the contents of its rst string argument.

41. T F The strcpy function performs no bounds checking on the rst argument.

42. T F There is no difference between 847 and 847.

Find the Errors

Each of the following programs or program segments has errors. Find as many as you can.

43. char str[] = "Stop";

if (isupper(str) == "STOP")

 exit(0);

44. char numeric[5];

int x = 123;

numeric = atoi(x);

45. char string1[] = "Billy";

char string2[] = " Bob Jones";

strcat(string1, string2);

46. char x = 'a', y = 'a';

if (strcmp(x, y) == 0)

 exit(0);

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. String Length

Write a function that returns an integer and accepts a pointer to a C-string as an argu-

ment. The function should count the number of characters in the string and return

that number. Demonstrate the function in a simple program that asks the user to input

a string, passes it to the function, and then displays the function s return value.

2. Backward String

Write a function that accepts a pointer to a C-string as an argument and displays its

contents backward. For instance, if the string argument is Gravity the function

should display ytivarG . Demonstrate the function in a program that asks the user

to input a string and then passes it to the function.

3. Word Counter

Write a function that accepts a pointer to a C-string as an argument and returns the

number of words contained in the string. For instance, if the string argument is Four

score and seven years ago the function should return the number 6. Demonstrate the

function in a program that asks the user to input a string and then passes it to the

function. The number of words in the string should be displayed on the screen.

Optional Exercise: Write an overloaded version of this function that accepts a string

class object as its argument.

VideoNote

Solving the

Backward

String

Problem

M10_GADD6253_07_SE_C10 Page 588 Friday, January 7, 2011 7:34 PM

Review Questions and Exercises 589

4. Average Number of Letters

Modify the program you wrote for Problem 3 (Word Counter), so it also displays the

average number of letters in each word.

5. Sentence Capitalizer

Write a function that accepts a pointer to a C-string as an argument and capitalizes

the rst character of each sentence in the string. For instance, if the string argument is

hello. my name is Joe. what is your name? the function should manipulate

the string so it contains Hello. My name is Joe. What is your name? Demon-

strate the function in a program that asks the user to input a string and then passes it

to the function. The modi ed string should be displayed on the screen. Optional

Exercise: Write an overloaded version of this function that accepts a string class

object as its argument.

6. Vowels and Consonants

Write a function that accepts a pointer to a C-string as its argument. The function

should count the number of vowels appearing in the string and return that number.

Write another function that accepts a pointer to a C-string as its argument. This func-

tion should count the number of consonants appearing in the string and return that

number.

Demonstrate these two functions in a program that performs the following steps:

1. The user is asked to enter a string.

2. The program displays the following menu:

A) Count the number of vowels in the string

B) Count the number of consonants in the string

C) Count both the vowels and consonants in the string

D) Enter another string

E) Exit the program

3. The program performs the operation selected by the user and repeats until the
user selects E to exit the program.

7. Name Arranger

Write a program that asks for the user s rst, middle, and last names. The names

should be stored in three different character arrays. The program should then store, in

a fourth array, the name arranged in the following manner: the last name followed by

a comma and a space, followed by the rst name and a space, followed by the middle

name. For example, if the user entered Carol Lynn Smith , it should store

Smith, Carol Lynn in the fourth array. Display the contents of the fourth array

on the screen.

8. Sum of Digits in a String

Write a program that asks the user to enter a series of single digit numbers with noth-

ing separating them. Read the input as a C-string or a string object. The program

should display the sum of all the single-digit numbers in the string. For example, if the

user enters 2514, the program should display 12, which is the sum of 2, 5, 1, and 4.

The program should also display the highest and lowest digits in the string.

Programming Challenges

M10_GADD6253_07_SE_C10 Page 589 Friday, January 7, 2011 7:34 PM

590 Chapter 10 Characters, C-Strings, and More About the string Class

9. Most Frequent Character

Write a function that accepts either a pointer to a C-string, or a string object, as its

argument. The function should return the character that appears most frequently in

the string. Demonstrate the function in a complete program.

10. replaceSubstring Function

Write a function named replaceSubstring. The function should accept three C-

string or string object arguments. Let s call them string1, string2, and string3.

It should search string1 for all occurrences of string2. When it nds an occurrence

of string2, it should replace it with string3. For example, suppose the three argu-

ments have the following values:

string1: the dog jumped over the fence

string2: the

string3: that

With these three arguments, the function would return a string object with the value

that dog jumped over that fence. Demonstrate the function in a complete program.

11. Case Manipulator

Write a program with three functions: upper, lower, and reverse. The upper func-

tion should accept a pointer to a C-string as an argument. It should step through each

character in the string, converting it to uppercase. The lower function, too, should

accept a pointer to a C-string as an argument. It should step through each character in

the string, converting it to lowercase. Like upper and lower, reverse should also

accept a pointer to a string. As it steps through the string, it should test each character

to determine whether it is upper- or lowercase. If a character is uppercase, it should be

converted to lowercase. Likewise, if a character is lowercase, it should be converted to

uppercase.

Test the functions by asking for a string in function main, then passing it to them in

the following order: reverse, lower, and upper.

12. Password Veri er

Imagine you are developing a software package that requires users to enter their own

passwords. Your software requires that users passwords meet the following criteria:

* The password should be at least six characters long.

* The password should contain at least one uppercase and at least one lowercase

letter.

* The password should have at least one digit.

Write a program that asks for a password and then veri es that it meets the stated cri-

teria. If it doesn t, the program should display a message telling the user why.

13. Date Printer

Write a program that reads a string from the user containing a date in the form

mm/dd/yyyy. It should print the date in the form March 12, 2012.

M10_GADD6253_07_SE_C10 Page 590 Friday, January 7, 2011 7:34 PM

Review Questions and Exercises 591

14. Word Separator

Write a program that accepts as input a sentence in which all of the words are run

together, but the rst character of each word is uppercase. Convert the sentence to a

string in which the words are separated by spaces and only the rst word starts with

an uppercase letter. For example the string StopAndSmellTheRoses. would be con-

verted to Stop and smell the roses.

15. Character Analysis

If you have downloaded this book s source code from the companion Web site, you

will nd a le named text.txt in the Chapter 10 folder. (The companion Web site is

at www.pearsonhighered.com/gaddis.) Write a program that reads the le s contents

and determines the following:

The number of uppercase letters in the file

The number of lowercase letters in the file

The number of digits in the file

16. Pig Latin

Write a program that reads a sentence as input and converts each word to Pig

Latin. In one version, to convert a word to Pig Latin you remove the rst letter and

place that letter at the end of the word. Then you append the string ay to the word.

Here is an example:

English: I SLEPT MOST OF THE NIGHT

Pig Latin: IAY LEPTSAY OSTMAY FOAY HETAY IGHTNAY

17. Morse Code Converter

Morse code is a code where each letter of the English alphabet, each digit, and various

punctuation characters are represented by a series of dots and dashes. Table 10-8

shows part of the code.

Write a program that asks the user to enter a string, and then converts that string to

Morse code.

Table 10-8 Morse Code

Character Code Character Code Character Code Character Code

space space 6 -.... G --. Q --.-

comma --..-- 7 --... H R .-.

period .-.-.- 8 ---.. I .. S ...

question mark ..--.. 9 ----. J .--- T -

0 ----- A .- K -.- U ..-

1 .---- B -... L .-.. V ...-

2 ..--- C -.-. M -- W .--

3 ...-- D -.. N -. X -..-

4- E . O --- Y -.--

5 F ..-. P .--. Z --..

Programming Challenges

M10_GADD6253_07_SE_C10 Page 591 Friday, January 7, 2011 7:34 PM

592 Chapter 10 Characters, C-Strings, and More About the string Class

18. Phone Number List

Write a program that has an array of at least 10 string objects that hold people s

names and phone numbers. You may make up your own strings, or use the following:

"Becky Warren, 555-1223"

"Joe Looney, 555-0097"

"Geri Palmer, 555-8787"

"Lynn Presnell, 555-1212"

"Holly Gaddis, 555-8878"

"Sam Wiggins, 555-0998"

"Bob Kain, 555-8712"

"Tim Haynes, 555-7676"

"Warren Gaddis, 555-9037"

"Jean James, 555-4939"

"Ron Palmer, 555-2783"

The program should ask the user to enter a name or partial name to search for in the

array. Any entries in the array that match the string entered should be displayed. For

example, if the user enters Palmer the program should display the following names

from the list:

Geri Palmer, 555-8787

Ron Palmer, 555-2783

19. Check Writer

Write a program that displays a simulated paycheck. The program should ask the user

to enter the date, the payee s name, and the amount of the check. It should then dis-

play a simulated check with the dollar amount spelled out, as shown here:

 Date: 11/24/2012

Pay to the Order of: John Phillips $1920.85

One thousand nine hundred twenty and 85 cents

Be sure to format the numeric value of the check in xed-point notation with two dec-

imal places of precision. Be sure the decimal place always displays, even when the

number is zero or has no fractional part. Use either C-strings or string class objects in

this program.

Input Validation: Do not accept negative dollar amounts, or amounts over $10,000.

M10_GADD6253_07_SE_C10 Page 592 Friday, January 7, 2011 7:34 PM

593

C
H

A
P

T
E

R

11

Structured Data

11.1

Abstract Data Types

CONCEPT:

Abstract data types (ADTs) are data types created by the programmer.

ADTs have their own range (or domain) of data and their own sets of

operations that may be performed on them.

The term

abstract data type,

 or ADT, is very important in computer science and is espe-

cially signi cant in object-oriented programming. This chapter introduces you to the

structure, which is one of C++ s mechanisms for creating abstract data types.

Abstraction

An

abstraction

 is a general model of something. It is a de nition that includes only the

general characteristics of an object. For example, the term dog is an abstraction. It

de nes a general type of animal. The term captures the essence of what all dogs are

without specifying the detailed characteristics of any particular type of dog. According

to

Webster s New Collegiate Dictionary

, a dog is

TOPICS

11.1 Abstract Data Types

11.2 Focus on Software Engineering:

Combining Data into Structures

11.3 Accessing Structure Members

11.4 Initializing a Structure

11.5 Arrays of Structures

11.6 Focus on Software Engineering:

Nested Structures

11.7 Structures as Function Arguments

11.8 Returning a Structure from a

Function

11.9 Pointers to Structures

11.10 Focus on Software Engineering:

When to Use ., When to Use ->,

and When to Use *

11.11 Unions

11.12 Enumerated Data Types

M11_GADD6253_07_SE_C11 Page 593 Friday, January 7, 2011 3:34 PM

594

Chapter 11 Structured Data

a highly variable carnivorous domesticated mammal (

Canis familiaris

) probably

descended from the common wolf.

In real life, however, there is no such thing as a mere dog. There are speci c types of

dogs, each with its own set of characteristics. There are poodles, cocker spaniels, Great

Danes, rottweilers, and many other breeds. There are small dogs and large dogs. There are

gentle dogs and ferocious dogs. They come in all shapes, sizes, and dispositions. A real-life

dog is not abstract. It is concrete.

Data Types

C++ has several

primitive data types

, or data types that are de ned as a basic part of the

language, as shown in Table 11-1.

A data type de nes what values a variable may hold. Each data type listed in Table 11-1

has its own range of values, such as 32,768 to +32,767 for

short

s, and so forth. Data

types also de ne what values a variable may not hold. For example, integer variables may

not be used to hold fractional numbers.

In addition to de ning a range or domain of values that a variable may hold, data types also

de ne the operations that may be performed on a value. All of the data types listed in

Table 11-1 allow the following mathematical and relational operators to be used with them:

+ - * / > < >= <= == !=

Only the integer data types, however, allow operations with the modulus operator (%).

So, a data type de nes what values an object may hold and the operations that may be

performed on the object.

The primitive data types are abstract in the sense that a data type and an object of that

data type are not the same thing. For example, consider the following variable de nition:

int x = 1, y = 2, z = 3;

In the statement above the integer variables

x

,

y

, and

z

 are de ned. They are three separate

instances of the data type

int

. Each variable has its own characteristics (

x

 is set to 1,

y

 is

set to 2, and

z

 is set to 3). In this example, the data type

int

 is the abstraction and the

variables

x

,

y

, and

z

 are concrete occurrences.

Abstract Data Types

An abstract data type (ADT) is a data type created by the programmer and is composed of

one or more primitive data types. The programmer decides what values are acceptable for

the data type, as well as what operations may be performed on the data type. In many

cases, the programmer designs his or her own specialized operations.

Table 11-1

bool int unsigned long int

char long int float

unsigned char unsigned short int double

short int unsigned int long double

M11_GADD6253_07_SE_C11 Page 594 Friday, January 7, 2011 3:34 PM

11.2 Focus on Software Engineering: Combining Data into Structures

595

For example, suppose a program is created to simulate a 12-hour clock. The program

could contain three ADTs:

Hours

,

Minutes

, and

Seconds

. The range of values for the

Hours

data type would be the integers 1 through 12. The range of values for the

Minutes

and

Seconds

data types would be 0 through 59. If an

Hours

 object is set to 12 and then

incremented, it will then take on the value 1. Likewise if a

Minutes

 object or a

Seconds

object is set to 59 and then incremented, it will take on the value 0.

Abstract data types often combine several values. In the clock program, the

Hours

,

Minutes

, and

Seconds

 objects could be combined to form a single

Clock

 object. In this

chapter you will learn how to combine variables of primitive data types to form your own

data structures, or ADTs.

11.2

Focus on Software Engineering:
Combining Data into Structures

CONCEPT:

C++ allows you to group several variables together into a single item

known as a structure.

So far you ve written programs that keep data in individual variables. If you need to group

items together, C++ allows you to create arrays. The limitation of arrays, however, is that

all the elements must be of the same data type. Sometimes a relationship exists between

items of different types. For example, a payroll system might keep the variables shown in

Table 11-2. These variables hold data for a single employee.

All of the variables listed in Table 11-2 are related because they can hold data about the

same employee. Their de nition statements, though, do not make it clear that they belong

together. To create a relationship between variables, C++ gives you the ability to package

them together into a

structure

.

Before a structure can be used, it must be declared. Here is the general format of a struc-

ture declaration:

Table 11-2

Variable De nition Data Held

int empNumber;

Employee number

string name;

Employee s name

double hours;

Hours worked

double payRate;

Hourly pay rate

double grossPay;

Gross pay

 struct

tag

 {

variable declaration

;

 // ... more declarations

 // may follow...

 };

VideoNote

Creating a

Structure

M11_GADD6253_07_SE_C11 Page 595 Friday, January 7, 2011 3:34 PM

596

Chapter 11 Structured Data

The

tag

is the name of the structure. As you will see later, it s used like a data type name.

The variable declarations that appear inside the braces declare

members

 of the structure.

Here is an example of a structure declaration that holds the payroll data listed in

Table 11-2:

struct PayRoll

{

 int empNumber; // Employee number

 string name; // Employee's name

 double hours; // Hours worked

 double payRate; // Hourly pay rate

 double grossPay; // Gross pay

};

This declaration declares a structure named

PayRoll

. The structure has ve members:

empNumber

,

name

,

hours

,

payRate

, and

grossPay

.

It s important to note that the structure declaration in our example does not de ne a vari-

able. It simply tells the compiler what a

PayRoll

 structure is made of. In essence, it creates

a new data type named

PayRoll

. You can de ne variables of this type with simple de ni-

tion statements, just as you would with any other data type. For example, the following

statement de nes a variable named

deptHead

:

PayRoll deptHead;

The data type of

deptHead

 is the

PayRoll

 structure. The structure tag,

PayRoll

, is listed

before the variable name just as the word

int

 or

double

 would be listed to de ne vari-

ables of those types.

WARNING!

Notice that a semicolon is required after the closing brace of the structure

declaration.

NOTE:

In this text we begin the names of structure tags with an uppercase letter. Later

you will see the same convention used with unions. This visually differentiates these

names from the names of variables.

NOTE:

The structure declaration shown contains three

double

 members, each declared

on a separate line. The three could also have been declared on the same line, as

 struct PayRoll

 {

 int empNumber;

 string name;

 double hours, payRate, grossPay;

 };

Many programmers prefer to place each member declaration on a separate line, however,

for increased readability.

M11_GADD6253_07_SE_C11 Page 596 Friday, January 7, 2011 3:34 PM

11.2 Focus on Software Engineering: Combining Data into Structures

597

Remember that structure variables are actually made up of other variables known as

members. Because

deptHead is a PayRoll structure it contains the following members:

empNumber, an int
name, a string object
hours, a double
payRate, a double
grossPay, a double

Figure 11-1 illustrates this.

Just as it s possible to de ne multiple int or double variables, it s possible to de ne multi-

ple structure variables in a program. The following statement de nes three PayRoll vari-

ables: deptHead, foreman, and associate:

PayRoll deptHead, foreman, associate;

Figure 11-2 illustrates the existence of these three variables.

Figure 11-1

Figure 11-2

empNumber

name

hours

payRate

grossPay

deptHead

Structure variable name

Members

empNumber

name

hours

payRate

grossPay

deptHead

empNumber

name

hours

payRate

grossPay

foreman

empNumber

name

hours

payRate

grossPay

associate

M11_GADD6253_07_SE_C11 Page 597 Friday, January 7, 2011 3:34 PM

598 Chapter 11 Structured Data

Each of the variables de ned in this example is a separate instance of the PayRoll structure

and contains its own members. An instance of a structure is a variable that exists in mem-

ory. It contains within it all the members described in the structure declaration.

Although the structure variables in the example are separate, each contains members with

the same name. (In the next section you ll see how to access these members.) Here are

some other examples of structure declarations and variable de nitions:

struct Time struct Date

{ {

 int hour; int day;

 int minutes; int month;

 int seconds; int year;

}; };

// Definition of the // Definition of the structure

// structure variable now. // variable today.

Time now; Date today;

In review, there are typically two steps to implementing structures in a program:

Create the structure declaration. This establishes the tag (or name) of the struc-

ture and a list of items that are members.

Define variables (or instances) of the structure and use them in the program to

hold data.

11.3 Accessing Structure Members

CONCEPT: The dot operator (.) allows you to access structure members in

a program.

C++ provides the dot operator (a period) to access the individual members of a structure.

Using our example of deptHead as a PayRoll structure variable, the following statement

demonstrates how to access the empNumber member:

deptHead.empNumber = 475;

In this statement, the number 475 is assigned to the empNumber member of deptHead.

The dot operator connects the name of the member variable with the name of the struc-

ture variable it belongs to. The following statements assign values to the empNumber mem-

bers of the deptHead, foreman, and associate structure variables:

deptHead.empNumber = 475;

foreman.empNumber = 897;

associate.empNumber = 729;

M11_GADD6253_07_SE_C11 Page 598 Friday, January 7, 2011 3:34 PM

11.3 Accessing Structure Members 599

With the dot operator you can use member variables just like regular variables. For exam-

ple these statements display the contents of deptHead s members:

cout << deptHead.empNumber << endl;

cout << deptHead.name << endl;

cout << deptHead.hours << endl;

cout << deptHead.payRate << endl;

cout << deptHead.grossPay << endl;

Program 11-1 is a complete program that uses the PayRoll structure.

Program 11-1

 1 // This program demonstrates the use of structures.

 2 #include <iostream>

 3 #include <string>

 4 #include <iomanip>

 5 using namespace std;

 6

 7 struct PayRoll

 8 {

 9 int empNumber; // Employee number

 10 string name; // Employee's name

 11 double hours; // Hours worked

 12 double payRate; // Hourly payRate

 13 double grossPay; // Gross pay

 14 };

 15

 16 int main()

 17 {

 18 PayRoll employee; // employee is a PayRoll structure.

 19

 20 // Get the employee's number.

 21 cout << "Enter the employee's number: ";

 22 cin >> employee.empNumber;

 23

 24 // Get the employee's name.

 25 cout << "Enter the employee's name: ";

 26 cin.ignore(); // To skip the remaining '\n' character

 27 getline(cin, employee.name);

 28

 29 // Get the hours worked by the employee.

 30 cout << "How many hours did the employee work? ";

 31 cin >> employee.hours;

 32

 33 // Get the employee's hourly pay rate.

 34 cout << "What is the employee's hourly payRate? ";

 35 cin >> employee.payRate;

 36

 37 // Calculate the employee's gross pay.

 38 employee.grossPay = employee.hours * employee.payRate;

 39

(program continues)

M11_GADD6253_07_SE_C11 Page 599 Friday, January 7, 2011 3:34 PM

600 Chapter 11 Structured Data

As you can see from Program 11-1, structure members that are of a primitive data type

can be used with cin, cout, mathematical statements, and any operation that can be per-

formed with regular variables. The only difference is that the structure variable name and

the dot operator must precede the name of a member. Program 11-2 shows the member of

a structure variable being passed to the pow function.

 40 // Display the employee data.

 41 cout << "Here is the employee's payroll data:\n";

 42 cout << "Name: " << employee.name << endl;

 43 cout << "Number: " << employee.empNumber << endl;

 44 cout << "Hours worked: " << employee.hours << endl;

 45 cout << "Hourly payRate: " << employee.payRate << endl;

 46 cout << fixed << showpoint << setprecision(2);

 47 cout << "Gross Pay: $" << employee.grossPay << endl;

 48 return 0;

 49 }

Program Output with Example Input Shown in Bold

Enter the employee's number: 489 [Enter]
Enter the employee's name: Jill Smith [Enter]
How many hours did the employee work? 40 [Enter]
What is the employee's hourly pay rate? 20 [Enter]
Here is the employee's payroll data:

Name: Jill Smith

Number: 489

Hours worked: 40

Hourly pay rate: 20

Gross pay: $800.00

NOTE: Program 11-1 has the following call, in line 26, to cin s ignore member

function:

 cin.ignore();

Recall that the ignore function causes cin to ignore the next character in the input

buffer. This is necessary for the getline function to work properly in the program.

NOTE: The contents of a structure variable cannot be displayed by passing the entire

variable to cout. For example, assuming employee is a PayRoll structure variable, the

following statement will not work:

 cout << employee << endl; // Will not work!

Instead, each member must be separately passed to cout.

Program 11-1 (continued)

M11_GADD6253_07_SE_C11 Page 600 Friday, January 7, 2011 3:34 PM

11.3 Accessing Structure Members 601

Program 11-2

 1 // This program stores data about a circle in a structure.

 2 #include <iostream>

 3 #include <cmath> // For the pow function

 4 #include <iomanip>

 5 using namespace std;

 6

 7 // Constant for pi.

 8 const double PI = 3.14159;

 9

 10 // Structure declaration

 11 struct Circle

 12 {

 13 double radius; // A circle's radius

 14 double diameter; // A circle's diameter

 15 double area; // A circle's area

 16 };

 17

 18 int main()

 19 {

 20 Circle c; // Define a structure variable

 21

 22 // Get the circle's diameter.

 23 cout << "Enter the diameter of a circle: ";

 24 cin >> c.diameter;

 25

 26 // Calculate the circle's radius.

 27 c.radius = c.diameter / 2;

 28

 29 // Calculate the circle's area.

 30 c.area = PI * pow(c.radius, 2.0);

 31

 32 // Display the circle data.

 33 cout << fixed << showpoint << setprecision(2);

 34 cout << "The radius and area of the circle are:\n";

 35 cout << "Radius: " << c.radius << endl;

 36 cout << "Area: " << c.area << endl;

 37 return 0;

 38 }

Program Output with Example Input Shown in Bold

Enter the diameter of a circle: 10 [Enter]
The radius and area of the circle are:

Radius: 5

Area: 78.54

M11_GADD6253_07_SE_C11 Page 601 Friday, January 7, 2011 3:34 PM

602 Chapter 11 Structured Data

Comparing Structure Variables

You cannot perform comparison operations directly on structure variables. For example,

assume that circle1 and circle2 are Circle structure variables. The following state-

ment will cause an error.

if (circle1 == circle2) // Error!

In order to compare two structures, you must compare the individual members, as shown

in the following code.

if (circle1.radius == circle2.radius &&

 circle1.diameter == circle2.diameter &&

 circle1.area == circle2.area)

11.4 Initializing a Structure

CONCEPT: The members of a structure variable may be initialized with starting

values when the structure variable is de ned.

A structure variable may be initialized when it is de ned, in a fashion similar to the initial-

ization of an array. Assume the following structure declaration exists in a program:

struct CityInfo

{

 string cityName;

 string state;

 long population;

 int distance;

};

A variable may then be de ned with an initialization list, as shown in the following:

CityInfo location = {"Asheville", "NC", 50000, 28};

This statement de nes the variable location. The rst value in the initialization list is

assigned to the rst declared member, the second value in the initialization list is assigned

to the second member, and so on. The location variable is initialized in the following

manner:

The string Asheville is assigned to location.cityName
The string NC is assigned to location.state
50000 is assigned to location.population
28 is assigned to location.distance

You do not have to provide initializers for all the members of a structure variable. For

example, the following statement only initializes the cityName member of location:

CityInfo location = {"Tampa"};

M11_GADD6253_07_SE_C11 Page 602 Friday, January 7, 2011 3:34 PM

11.4 Initializing a Structure 603

The state, population, and distance members are left uninitialized. The following

statement only initializes the cityName and state members, while leaving population

and distance uninitialized:

CityInfo location = {"Atlanta", "GA"};

If you leave a structure member uninitialized, you must leave all the members that fol-

low it uninitialized as well. C++ does not provide a way to skip members in a structure.

For example, the following statement, which attempts to skip the initialization of the

population member, is not legal:

CityInfo location = {"Knoxville", "TN", , 90}; // Illegal!

Program 11-3 demonstrates the use of partially initialized structure variables.

Program 11-3

 1 // This program demonstrates partially initialized

 2 // structure variables.

 3 #include <iostream>

 4 #include <string>

 5 #include <iomanip>

 6 using namespace std;

 7

 8 struct EmployeePay

 9 {

 10 string name; // Employee name

 11 int empNum; // Employee number

 12 double payRate; // Hourly pay rate

 13 double hours; // Hours worked

 14 double grossPay; // Gross pay

 15 };

 16

 17 int main()

 18 {

 19 EmployeePay employee1 = {"Betty Ross", 141, 18.75};

 20 EmployeePay employee2 = {"Jill Sandburg", 142, 17.50};

 21

 22 cout << fixed << showpoint << setprecision(2);

 23

 24 // Calculate pay for employee1

 25 cout << "Name: " << employee1.name << endl;

 26 cout << "Employee Number: " << employee1.empNum << endl;

 27 cout << "Enter the hours worked by this employee: ";

 28 cin >> employee1.hours;

 29 employee1.grossPay = employee1.hours * employee1.payRate;

 30 cout << "Gross Pay: " << employee1.grossPay << endl << endl;

 31

 32 // Calculate pay for employee2

 33 cout << "Name: " << employee2.name << endl;

 34 cout << "Employee Number: " << employee2.empNum << endl;

 35 cout << "Enter the hours worked by this employee: ";

(program continues)

M11_GADD6253_07_SE_C11 Page 603 Friday, January 7, 2011 3:34 PM

604 Chapter 11 Structured Data

It s important to note that you cannot initialize a structure member in the declaration of
the structure. For instance, the following declaration is illegal:

// Illegal structure declaration

struct CityInfo

{

 string cityName = "Asheville"; // Error!

 string state = "NC"; // Error!

 long population = 50000; // Error!

 int distance = 28; // Error!

};

Remember that a structure declaration doesn t actually create the member variables. It
only declares what the structure looks like. The member variables are created in mem-
ory when a structure variable is de ned. Because no variables are created by the structure
declaration, there s nothing that can be initialized there.

Checkpoint

 www.myprogramminglab.com

11.1 Write a structure declaration to hold the following data about a savings account:

Account Number (string object)
Account Balance (double)
Interest Rate (double)
Average Monthly Balance (double)

11.2 Write a de nition statement for a variable of the structure you declared in Ques-
tion 11.1. Initialize the members with the following data:

Account Number: ACZ42137-B12-7
Account Balance: $4512.59
Interest Rate: 4%
Average Monthly Balance: $4217.07

 36 cin >> employee2.hours;

 37 employee2.grossPay = employee2.hours * employee2.payRate;

 38 cout << "Gross Pay: " << employee2.grossPay << endl;

 39 return 0;

 40 }

Program Output with Example Input Shown in Bold

Name: Betty Ross

Employee Number: 141

Enter the hours worked by this employee: 40 [Enter]
Gross Pay: 750.00

Name: Jill Sandburg

Employee Number: 142

Enter the hours worked by this employee: 20 [Enter]
Gross Pay: 350.00

Program 11-3 (continued)

M11_GADD6253_07_SE_C11 Page 604 Friday, January 7, 2011 3:34 PM

11.5 Arrays of Structures 605

11.3 The following program skeleton, when complete, asks the user to enter these data

about his or her favorite movie:

Name of movie

Name of the movie s director

Name of the movie s producer

The year the movie was released

Complete the program by declaring the structure that holds this data, de ning a

structure variable, and writing the individual statements necessary.

#include <iostream>

using namespace std;

// Write the structure declaration here to hold the movie data.

int main()

{

 // define the structure variable here.

 cout << "Enter the following data about your\n";

 cout << "favorite movie.\n";

 cout << "name: ";

 // Write a statement here that lets the user enter the

 // name of a favorite movie. Store the name in the

 // structure variable.

 cout << "Director: ";

 // Write a statement here that lets the user enter the

 // name of the movie's director. Store the name in the

 // structure variable.

 cout << "Producer: ";

 // Write a statement here that lets the user enter the

 // name of the movie's producer. Store the name in the

 // structure variable.

 cout << "Year of release: ";

 // Write a statement here that lets the user enter the

 // year the movie was released. Store the year in the

 // structure variable.

 cout << "Here is data on your favorite movie:\n";

 // Write statements here that display the data.

 // just entered into the structure variable.

 return 0;

}

11.5 Arrays of Structures

CONCEPT: Arrays of structures can simplify some programming tasks.

In Chapter 7 you saw that data can be stored in two or more arrays, with a relationship

established between the arrays through their subscripts. Because structures can hold sev-

eral items of varying data types, a single array of structures can be used in place of several

arrays of regular variables.

M11_GADD6253_07_SE_C11 Page 605 Friday, January 7, 2011 3:34 PM

606 Chapter 11 Structured Data

An array of structures is de ned like any other array. Assume the following structure dec-

laration exists in a program:

struct BookInfo

{

 string title;

 string author;

 string publisher;

 double price;

};

The following statement de nes an array, bookList, that has 20 elements. Each element is

a BookInfo structure.

BookInfo bookList[20];

Each element of the array may be accessed through a subscript. For example,

bookList[0] is the rst structure in the array, bookList[1] is the second, and so forth.

To access a member of any element, simply place the dot operator and member name after

the subscript. For example, the following expression refers to the title member of

bookList[5]:

bookList[5].title

The following loop steps through the array, displaying the data stored in each element:

for (int index = 0; index < 20; index++)

{

 cout << bookList[index].title << endl;

 cout << bookList[index].author << endl;

 cout << bookList[index].publisher << endl;

 cout << bookList[index].price << endl << endl;

}

Program 11-4 calculates and displays payroll data for three employees. It uses a single

array of structures.

Program 11-4

 1 // This program uses an array of structures.

 2 #include <iostream>

 3 #include <iomanip>

 4 using namespace std;

 5

 6 struct PayInfo

 7 {

 8 int hours; // Hours worked

 9 double payRate; // Hourly pay rate

 10 };

 11

 12 int main()

 13 {

 14 const int NUM_WORKERS = 3; // Number of workers

 15 PayInfo workers[NUM_WORKERS]; // Array of structures

 16 int index; // Loop counter

 17

M11_GADD6253_07_SE_C11 Page 606 Friday, January 7, 2011 3:34 PM

11.5 Arrays of Structures 607

 18 // Get employee pay data.

 19 cout << "Enter the hours worked by " << NUM_WORKERS

 20 << " employees and their hourly rates.\n";

 21

 22 for (index = 0; index < NUM_WORKERS; index++)

 23 {

 24 // Get the hours worked by an employee.

 25 cout << "Hours worked by employee #" << (index + 1);

 26 cout << ": ";

 27 cin >> workers[index].hours;

 28

 29 // Get the employee's hourly pay rate.

 30 cout << "Hourly pay rate for employee #";

 31 cout << (index + 1) << ": ";

 32 cin >> workers[index].payRate;

 33 cout << endl;

 34 }

 35

 36 // Display each employee's gross pay.

 37 cout << "Here is the gross pay for each employee:\n";

 38 cout << fixed << showpoint << setprecision(2);

 39 for (index = 0; index < NUM_WORKERS; index++)

 40 {

 41 double gross;

 42 gross = workers[index].hours * workers[index].payRate;

 43 cout << "Employee #" << (index + 1);

 44 cout << ": $" << gross << endl;

 45 }

 46 return 0;

 47 }

Program Output with Example Input Shown in Bold

Enter the hours worked by 3 employees and their hourly rates.

Hours worked by employee #1: 10 [Enter]
Hourly pay rate for employee #1: 9.75 [Enter]

Hours worked by employee #2: 20 [Enter]
Hourly pay rate for employee #2: 10.00 [Enter]

Hours worked by employee #3: 40 [Enter]
Hourly pay rate for employee #3: 20.00 [Enter]

Here is the gross pay for each employee:

Employee #1: $97.50

Employee #2: $200.00

Employee #3: $800.00

M11_GADD6253_07_SE_C11 Page 607 Friday, January 7, 2011 3:34 PM

608 Chapter 11 Structured Data

Initializing a Structure Array

To initialize a structure array, simply provide an initialization list for one or more of the

elements. For example, the array in Program 11-4 could have been initialized as follows:

PayInfo workers[NUM_WORKERS] = {

 {10, 9.75 },

 {15, 8.62 },

 {20, 10.50},

 {40, 18.75},

 {40, 15.65}

 };

As in all single-dimensional arrays, you can initialize all or part of the elements in an array

of structures, as long as you do not skip elements.

11.6 Focus on Software Engineering: Nested Structures

CONCEPT: It s possible for a structure variable to be a member of another structure

variable.

Sometimes it s helpful to nest structures inside other structures. For example, consider the

following structure declarations:

struct Costs

{

 double wholesale;

 double retail;

};

struct Item

{

 string partNum;

 string description;

 Costs pricing;

};

The Costs structure has two members: wholesale and retail, both doubles. Notice

that the third member of the Item structure, pricing, is a Costs structure. Assume the

variable widget is de ned as follows:

Item widget;

The following statements show examples of accessing members of the pricing variable,

which is inside widget:

widget.pricing.wholesale = 100.0;

widget.pricing.retail = 150.0;

Program 11-5 gives a more elaborate illustration of nested structures.

M11_GADD6253_07_SE_C11 Page 608 Friday, January 7, 2011 3:34 PM

11.6 Focus on Software Engineering: Nested Structures 609

Program 11-5

 1 // This program uses nested structures.

 2 #include <iostream>

 3 #include <string>

 4 using namespace std;

 5

 6 // The Date structure holds data about a date.

 7 struct Date

 8 {

 9 int month;

 10 int day;

 11 int year;

 12 };

 13

 14 // The Place structure holds a physical address.

 15 struct Place

 16 {

 17 string address;

 18 string city;

 19 string state;

 20 string zip;

 21 };

 22

 23 // The EmployeeInfo structure holds an employee's data.

 24 struct EmployeeInfo

 25 {

 26 string name;

 27 int employeeNumber;

 28 Date birthDate; // Nested structure

 29 Place residence; // Nested structure

 30 };

 31

 32 int main()

 33 {

 34 // Define a structure variable to hold info about the manager.

 35 EmployeeInfo manager;

 36

 37 // Get the manager's name and employee number

 38 cout << "Enter the manager's name: ";

 39 getline(cin, manager.name);

 40 cout << "Enter the manager's employee number: ";

 41 cin >> manager.employeeNumber;

 42

 43 // Get the manager's birth date

 44 cout << "Now enter the manager's date of birth.\n";

 45 cout << "Month (up to 2 digits): ";

(program continues)

M11_GADD6253_07_SE_C11 Page 609 Friday, January 7, 2011 3:34 PM

610 Chapter 11 Structured Data

 46 cin >> manager.birthDate.month;

 47 cout << "Day (up to 2 digits): ";

 48 cin >> manager.birthDate.day;

 49 cout << "Year: ";

 50 cin >> manager.birthDate.year;

 51 cin.ignore(); // Skip the remaining newline character

 52

 53 // Get the manager's residence information

 54 cout << "Enter the manager's street address: ";

 55 getline(cin, manager.residence.address);

 56 cout << "City: ";

 57 getline(cin, manager.residence.city);

 58 cout << "State: ";

 59 getline(cin, manager.residence.state);

 60 cout << "ZIP Code: ";

 61 getline(cin, manager.residence.zip);

 62

 63 // Display the information just entered

 64 cout << "\nHere is the manager's information:\n";

 65 cout << manager.name << endl;

 66 cout << "Employee number " << manager.employeeNumber << endl;

 67 cout << "Date of birth: ";

 68 cout << manager.birthDate.month << "-";

 69 cout << manager.birthDate.day << "-";

 70 cout << manager.birthDate.year << endl;

 71 cout << "Place of residence:\n";

 72 cout << manager.residence.address << endl;

 73 cout << manager.residence.city << ", ";

 74 cout << manager.residence.state << " ";

 75 cout << manager.residence.zip << endl;

 76 return 0;

 77 }

Program Output with Example Input Shown in Bold

Enter the manager's name: John Smith [Enter]
Enter the manager's employee number: 789 [Enter]
Now enter the manager's date of birth.

Month (up to 2 digits): 10 [Enter]
Day (up to 2 digits): 14 [Enter]
Year: 1970 [Enter]
Enter the manager's street address: 190 Disk Drive [Enter]
City: Redmond [Enter]
State: WA [Enter]
ZIP Code: 98052 [Enter]

Program 11-5 (continued)

M11_GADD6253_07_SE_C11 Page 610 Friday, January 7, 2011 3:34 PM

11.6 Focus on Software Engineering: Nested Structures 611

Checkpoint

 www.myprogramminglab.com

For Questions 11.4 11.7 below, assume the Product structure is declared as follows:

struct Product

{

 string description; // Product description

 int partNum; // Part number

 double cost; // Product cost

};

11.4 Write a de nition for an array of 100 Product structures. Do not initialize the
array.

11.5 Write a loop that will step through the entire array you de ned in Question 11.4,
setting all the product descriptions to an empty string, all part numbers to zero,
and all costs to zero.

11.6 Write the statements that will store the following data in the rst element of the
array you de ned in Question 11.4:

Description: Claw hammer
Part Number: 547
Part Cost: $8.29

11.7 Write a loop that will display the contents of the entire array you created in
Question 11.4.

11.8 Write a structure declaration named Measurement, with the following members:

miles, an integer
meters, a long integer

11.9 Write a structure declaration named Destination, with the following members:

city, a string object
distance, a Measurement structure (declared in Question 11.8)

Also de ne a variable of this structure type.

11.10 Write statements that store the following data in the variable you de ned in
Question 11.9:

City: Tupelo
Miles: 375
Meters: 603,375

Here is the manager's information:

John Smith

Employee number 789

Date of birth: 10-14-1970

Place of residence:

190 Disk Drive

Redmond, WA 98052

M11_GADD6253_07_SE_C11 Page 611 Friday, January 7, 2011 3:34 PM

612 Chapter 11 Structured Data

11.7 Structures as Function Arguments

CONCEPT: Structure variables may be passed as arguments to functions.

Like other variables, the individual members of a structure variable may be used as func-

tion arguments. For example, assume the following structure declaration exists in a pro-

gram:

struct Rectangle

{

 double length;

 double width;

 double area;

};

Let s say the following function de nition exists in the same program:

double multiply(double x, double y)

{

 return x * y;

}

Assuming that box is a variable of the Rectangle structure type, the following function

call will pass box.length into x and box.width into y. The return value will be stored in

box.area.

box.area = multiply(box.length, box.width);

Sometimes it s more convenient to pass an entire structure variable into a function instead

of individual members. For example, the following function de nition uses a Rectangle

structure variable as its parameter:

void showRect(Rectangle r)

{

 cout << r.length << endl;

 cout << r.width << endl;

 cout << r.area << endl;

}

The following function call passes the box variable into r:

showRect(box);

Inside the function showRect, r s members contain a copy of box s members. This is illus-

trated in Figure 11-3.

Once the function is called, r.length contains a copy of box.length, r.width contains

a copy of box.width, and r.area contains a copy of box.area.

Structures, like all variables, are normally passed by value into a function. If a function is to

access the members of the original argument, a reference variable may be used as the param-

eter. Program 11-6 uses two functions that accept structures as arguments. Arguments are

passed to the getItem function by reference, and to the showItem function by value.

VideoNote

Passing a
Structure to
a Function

M11_GADD6253_07_SE_C11 Page 612 Friday, January 7, 2011 3:34 PM

11.7 Structures as Function Arguments 613

Figure 11-3

Program 11-6

 1 // This program has functions that accept structure variables

 2 // as arguments.

 3 #include <iostream>

 4 #include <string>

 5 #include <iomanip>

 6 using namespace std;

 7

 8 struct InventoryItem

 9 {

 10 int partNum; // Part number

 11 string description; // Item description

 12 int onHand; // Units on hand

 13 double price; // Unit price

 14 };

 15

 16 // Function Prototypes

 17 void getItem(InventoryItem&); // Argument passed by reference

 18 void showItem(InventoryItem); // Argument passed by value

 19

 20 int main()

 21 {

 22 InventoryItem part;

 23

 24 getItem(part);

 25 showItem(part);

 26 return 0;

 27 }

 28

 29 //***

 30 // Definition of function getItem. This function uses *

 31 // a structure reference variable as its parameter. It asks *

 32 // the user for information to store in the structure. *

 33 //***

 34

(program continues)

showRect(box);

 void showRect(Rectangle r)

 {

 cout << r.length << endl;

 cout << r.width << endl;

 cout << r.area << endl;

 }

M11_GADD6253_07_SE_C11 Page 613 Friday, January 7, 2011 3:34 PM

614 Chapter 11 Structured Data

Notice that the InventoryItem structure declaration in Program 11-6 appears before

both the prototypes and the de nitions of the getItem and showItem functions. This is

because both functions use an InventoryItem structure variable as their parameter. The

compiler must know what InventoryItem is before it encounters any de nitions for vari-

ables of that type. Otherwise, an error will occur.

 35 void getItem(InventoryItem &p) // Uses a reference parameter

 36 {

 37 // Get the part number.

 38 cout << "Enter the part number: ";

 39 cin >> p.partNum;

 40

 41 // Get the part description.

 42 cout << "Enter the part description: ";

 43 cin.ignore(); // Ignore the remaining newline character

 44 getline(cin, p.description);

 45

 46 // Get the quantity on hand.

 47 cout << "Enter the quantity on hand: ";

 48 cin >> p.onHand;

 49

 50 // Get the unit price.

 51 cout << "Enter the unit price: ";

 52 cin >> p.price;

 53 }

 54

 55 //***

 56 // Definition of function showItem. This function accepts *

 57 // an argument of the InventoryItem structure type. The *

 58 // contents of the structure is displayed. *

 59 //***

 60

 61 void showItem(InventoryItem p)

 62 {

 63 cout << fixed << showpoint << setprecision(2);

 64 cout << "Part Number: " << p.partNum << endl;

 65 cout << "Description: " << p.description << endl;

 66 cout << "Units On Hand: " << p.onHand << endl;

 67 cout << "Price: $" << p.price << endl;

 68 }

Program Output with Example Input Shown in Bold

Enter the part number: 800 [Enter]
Enter the part description: Screwdriver [Enter]
Enter the quantity on hand: 135 [Enter]
Enter the unit price: 1.25 [Enter]
Part Number: 800

Description: Screwdriver

Units on Hand: 135

Price: $1.25

Program 11-6 (continued)

M11_GADD6253_07_SE_C11 Page 614 Friday, January 7, 2011 3:34 PM

11.8 Returning a Structure from a Function 615

Constant Reference Parameters

Sometimes structures can be quite large. Passing large structures by value can decrease a

program s performance because a copy of the structure has to be created. When a struc-

ture is passed by reference, however, it isn t copied. A reference that points to the original

argument is passed instead. So, it s often preferable to pass large objects such as structures

by reference.

Of course, the disadvantage of passing an object by reference is that the function has

access to the original argument. It can potentially alter the argument s value. This can be

prevented, however, by passing the argument as a constant reference. The showItem func-

tion from Program 11-6 is shown here, modi ed to use a constant reference parameter.

void showItem(const InventoryItem &p)

{

 cout << fixed << showpoint << setprecision(2);

 cout << "Part Number: " << p.partNum << endl;

 cout << "Description: " << p.description << endl;

 cout << "Units on Hand: " << p.onHand << endl;

 cout << "Price: $" << p.price << endl;

}

This version of the function is more ef cient than the original version because the amount

of time and memory consumed in the function call is reduced. Because the parameter is

de ned as a constant, the function cannot accidentally corrupt the value of the argument.

The prototype for this version of the function follows.

void showItem(const InventoryItem&);

11.8 Returning a Structure from a Function

CONCEPT: A function may return a structure.

Just as functions can be written to return an int, long, double, or other data type, they

can also be designed to return a structure. Recall the following structure declaration from

Program 11-2:

struct Circle

{

 double radius;

 double diameter;

 double area;

};

A function, such as the following, could be written to return a variable of the Circle data

type:

M11_GADD6253_07_SE_C11 Page 615 Friday, January 7, 2011 3:34 PM

616 Chapter 11 Structured Data

Circle getCircleData()

{

 Circle temp; // Temporary Circle structure

 temp.radius = 10.0; // Store the radius

 temp.diameter = 20.0; // Store the diameter

 temp.area = 314.159; // Store the area

 return temp; // Return the temporary structure

}

Notice that the getCircleData function has a return data type of Circle. That means

the function returns an entire Circle structure when it terminates. The return value can

be assigned to any variable that is a Circle structure. The following statement, for exam-

ple, assigns the function s return value to the Circle structure variable named myCircle:

myCircle = getCircleData();

After this statement executes, myCircle.radius will be set to 10.0, myCircle.diameter

will be set to 20.0, and myCircle.area will be set to 314.159.

When a function returns a structure, it is always necessary for the function to have a

local structure variable to hold the member values that are to be returned. In the

getCircleData function, the values for diameter, radius, and area are stored in the

local variable temp. The temp variable is then returned from the function.

Program 11-7 is a modi cation of Program 11-2. The function getInfo gets the circle s

diameter from the user and calculates the circle s radius. The diameter and radius are

stored in a local structure variable, round, which is returned from the function.

Program 11-7

 1 // This program uses a function to return a structure. This

 2 // is a modification of Program 11-2.

 3 #include <iostream>

 4 #include <iomanip>

 5 #include <cmath> // For the pow function

 6 using namespace std;

 7

 8 // Constant for pi.

 9 const double PI = 3.14159;

 10

 11 // Structure declaration

 12 struct Circle

 13 {

 14 double radius; // A circle's radius

 15 double diameter; // A circle's diameter

 16 double area; // A circle's area

 17 };

 18

 19 // Function prototype

 20 Circle getInfo();

 21

 22 int main()

 23 {

 24 Circle c; // Define a structure variable

M11_GADD6253_07_SE_C11 Page 616 Friday, January 7, 2011 3:34 PM

11.8 Returning a Structure from a Function 617

 25

 26 // Get data about the circle.

 27 c = getInfo();

 28

 29 // Calculate the circle's area.

 30 c.area = PI * pow(c.radius, 2.0);

 31

 32 // Display the circle data.

 33 cout << "The radius and area of the circle are:\n";

 34 cout << fixed << setprecision(2);

 35 cout << "Radius: " << c.radius << endl;

 36 cout << "Area: " << c.area << endl;

 37 return 0;

 38 }

 39

 40 //***

 41 // Definition of function getInfo. This function uses a local *

 42 // variable, tempCircle, which is a circle structure. The user *

 43 // enters the diameter of the circle, which is stored in *

 44 // tempCircle.diameter. The function then calculates the radius *

 45 // which is stored in tempCircle.radius. tempCircle is then *

 46 // returned from the function. *

 47 //***

 48

 49 Circle getInfo()

 50 {

 51 Circle tempCircle; // Temporary structure variable

 52

 53 // Store circle data in the temporary variable.

 54 cout << "Enter the diameter of a circle: ";

 55 cin >> tempCircle.diameter;

 56 tempCircle.radius = tempCircle.diameter / 2.0;

 57

 58 // Return the temporary variable.

 59 return tempCircle;

 60 }

Program Output with Example Input Shown in Bold

Enter the diameter of a circle: 10 [Enter]
The radius and area of the circle are:

Radius: 5.00

Area: 78.54

NOTE: In Chapter 6 you learned that C++ only allows you to return a single value from

a function. Structures, however, provide a way around this limitation. Even though a

structure may have several members, it is technically a single value. By packaging

multiple values inside a structure, you can return as many variables as you need from a

function.

M11_GADD6253_07_SE_C11 Page 617 Friday, January 7, 2011 3:34 PM

618 Chapter 11 Structured Data

11.9 Pointers to Structures

CONCEPT: You may take the address of a structure variable and create variables that are

pointers to structures.

De ning a variable that is a pointer to a structure is as simple as de ning any other pointer

variable: The data type is followed by an asterisk and the name of the pointer variable.

Here is an example:

Circle *cirPtr;

This statement de nes cirPtr as a pointer to a Circle structure. Look at the following code:

Circle myCircle = { 10.0, 20.0, 314.159 };

Circle *cirPtr;

cirPtr = &myCircle;

The rst two lines de ne myCircle, a structure variable, and cirPtr, a pointer. The third

line assigns the address of myCircle to cirPtr. After this line executes, cirPtr will point

to the myCircle structure. This is illustrated in Figure 11-4.

Indirectly accessing the members of a structure through a pointer can be clumsy, however,

if the indirection operator is used. One might think the following statement would access

the radius member of the structure pointed to by cirPtr, but it doesn t:

*cirPtr.radius = 10;

The dot operator has higher precedence than the indirection operator, so the indirection

operator tries to dereference cirPtr.radius, not cirPtr. To dereference the cirPtr

pointer, a set of parentheses must be used.

(*cirPtr).radius = 10;

Because of the awkwardness of this notation, C++ has a special operator for dereferencing

structure pointers. It s called the structure pointer operator, and it consists of a hyphen (-)

followed by the greater-than symbol (>). The previous statement, rewritten with the struc-

ture pointer operator, looks like this:

cirPtr->radius = 10;

Figure 11-4

cirPtr

0xA604

myCircle Structure

At Address 0xA604

M11_GADD6253_07_SE_C11 Page 618 Friday, January 7, 2011 3:34 PM

11.9 Pointers to Structures 619

The structure pointer operator takes the place of the dot operator in statements using

pointers to structures. The operator automatically dereferences the structure pointer on its

left. There is no need to enclose the pointer name in parentheses.

Program 11-8 shows that a pointer to a structure may be used as a function parameter,

allowing the function to access the members of the original structure argument.

NOTE: The structure pointer operator is supposed to look like an arrow, thus visually

indicating that a pointer is being used.

Program 11-8

 1 // This program demonstrates a function that uses a

 2 // pointer to a structure variable as a parameter.

 3 #include <iostream>

 4 #include <string>

 5 #include <iomanip>

 6 using namespace std;

 7

 8 struct Student

 9 {

 10 string name; // Student's name

 11 int idNum; // Student ID number

 12 int creditHours; // Credit hours enrolled

 13 double gpa; // Current GPA

 14 };

 15

 16 void getData(Student *); // Function prototype

 17

 18 int main()

 19 {

 20 Student freshman;

 21

 22 // Get the student data.

 23 cout << "Enter the following student data:\n";

 24 getData(&freshman); // Pass the address of freshman.

 25 cout << "\nHere is the student data you entered:\n";

 26

 27 // Now display the data stored in freshman

 28 cout << setprecision(3);

 29 cout << "Name: " << freshman.name << endl;

 30 cout << "ID Number: " << freshman.idNum << endl;

 31 cout << "Credit Hours: " << freshman.creditHours << endl;

 32 cout << "GPA: " << freshman.gpa << endl;

 33 return 0;

 34 }

 35

(program continues)

M11_GADD6253_07_SE_C11 Page 619 Friday, January 7, 2011 3:34 PM

620 Chapter 11 Structured Data

Dynamically Allocating a Structure

You can also use a structure pointer and the new operator to dynamically allocate a struc-

ture. For example, the following code de nes a Circle pointer named cirPtr and

dynamically allocates a Circle structure. Values are then stored in the dynamically allo-

cated structure s members.

Circle *cirPtr; // Define a Circle pointer

cirPtr = new Circle; // Dynamically allocate a Circle structure

cirPtr->radius = 10; // Store a value in the radius member

cirPtr->diameter = 20; // Store a value in the diameter member

cirPtr->area = 314.159; // Store a value in the area member

 36 //***

 37 // Definition of function getData. Uses a pointer to a *

 38 // Student structure variable. The user enters student *

 39 // information, which is stored in the variable. *

 40 //***

 41

 42 void getData(Student *s)

 43 {

 44 // Get the student name.

 45 cout << "Student name: ";

 46 getline(cin, s->name);

 47

 48 // Get the student ID number.

 49 cout << "Student ID Number: ";

 50 cin >> s->idNum;

 51

 52 // Get the credit hours enrolled.

 53 cout << "Credit Hours Enrolled: ";

 54 cin >> s->creditHours;

 55

 56 // Get the GPA.

 57 cout << "Current GPA: ";

 58 cin >> s->gpa;

 59 }

Program Output with Example Input Shown in Bold

Enter the following student data:

Student Name: Frank Smith [Enter]
Student ID Number: 4876 [Enter]
Credit Hours Enrolled: 12 [Enter]
Current GPA: 3.45 [Enter]

Here is the student data you entered:

Name: Frank Smith

ID Number: 4876

Credit Hours: 12

GPA: 3.45

Program 11-8 (continued)

M11_GADD6253_07_SE_C11 Page 620 Friday, January 7, 2011 3:34 PM

11.10 Focus on Software Engineering: When to Use ., When to Use ->, and When to Use * 621

You can also dynamically allocate an array of structures. The following code shows an

array of ve Circle structures being allocated.

Circle *circles;

circles = new Circle[5];

for (int count = 0; count < 5; count++)

{

 cout << "Enter the radius for circle "

 << (count + 1) << ": ";

 cin >> circles[count].radius;

}

11.10
Focus on Software Engineering: When to Use .,
When to Use ->, and When to Use *

Sometimes structures contain pointers as members. For example, the following structure

declaration has an int pointer member:

struct GradeInfo

{

 string name; // Student names

 int *testScores; // Dynamically allocated array

 float average; // Test average

};

It is important to remember that the structure pointer operator (->) is used to dereference

a pointer to a structure, not a pointer that is a member of a structure. If a program deref-

erences the testScores pointer in this structure, the indirection operator must be used.

For example, assume that the following variable has been de ned:

GradeInfo student1;

The following statement will display the value pointed to by the testScores member:

cout << *student1.testScores;

It is still possible to de ne a pointer to a structure that contains a pointer member. For

instance, the following statement de nes stPtr as a pointer to a GradeInfo structure:

GradeInfo *stPtr;

Assuming that stPtr points to a valid GradeInfo variable, the following statement will

display the value pointed to by its testScores member:

cout << *stPtr->testScores;

In this statement, the * operator dereferences stPtr->testScores, while the -> operator

dereferences stPtr. It might help to remember that the following expression:

stPtr->testScores

is equivalent to

(*stPtr).testScores

M11_GADD6253_07_SE_C11 Page 621 Friday, January 7, 2011 3:34 PM

622 Chapter 11 Structured Data

So, the expression

*stPtr->testScores

is the same as

*(*stPtr).testScores

The awkwardness of this last expression shows the necessity of the -> operator. Table 11-3

lists some expressions using the *, ->, and . operators, and describes what each references.

Checkpoint

 www.myprogramminglab.com

Assume the following structure declaration exists for Questions 11.11 11.15:

struct Rectangle

{

 int length;

 int width;

};

11.11 Write a function that accepts a Rectangle structure as its argument and displays

the structure s contents on the screen.

11.12 Write a function that uses a Rectangle structure reference variable as its parame-

ter and stores the user s input in the structure s members.

11.13 Write a function that returns a Rectangle structure. The function should store

the user s input in the members of the structure before returning it.

11.14 Write the de nition of a pointer to a Rectangle structure.

Table 11-3

Expression Description

s->m s is a structure pointer and m is a member. This expression accesses the m member of the

structure pointed to by s.

*a.p a is a structure variable and p, a pointer, is a member. This expression dereferences the

value pointed to by p.

(*s).m s is a structure pointer and m is a member. The * operator dereferences s, causing the

expression to access the m member of the structure pointed to by s. This expression is

the same as s->m.

*s->p s is a structure pointer and p, a pointer, is a member of the structure pointed to by s.

This expression accesses the value pointed to by p. (The -> operator dereferences s and

the * operator dereferences p.)

*(*s).p s is a structure pointer and p, a pointer, is a member of the structure pointed to by s.

This expression accesses the value pointed to by p. (*s) dereferences s and the

outermost * operator dereferences p. The expression *s->p is equivalent.

M11_GADD6253_07_SE_C11 Page 622 Friday, January 7, 2011 3:34 PM

11.11 Unions 623

11.15 Assume rptr is a pointer to a Rectangle structure. Which of the expressions, A,

B, or C, is equivalent to the following expression:

 rptr->width

A) *rptr.width

B) (*rptr).width

C) rptr.(*width)

11.11 Unions

CONCEPT: A union is like a structure, except all the members occupy the same

memory area.

A union, in almost all regards, is just like a structure. The difference is that all the mem-

bers of a union use the same memory area, so only one member can be used at a time. A

union might be used in an application where the program needs to work with two or more

values (of different data types), but only needs to use one of the values at a time. Unions

conserve memory by storing all their members in the same memory location.

Unions are declared just like structures, except the key word union is used instead of

struct. Here is an example:

union PaySource

{

 short hours;

 float sales;

};

A union variable of the data type shown above can then be de ned as

PaySource employee1;

The PaySource union variable de ned here has two members: hours (a short), and

sales (a float). The entire variable will only take up as much memory as the largest

member (in this case, a float). The way this variable is stored on a typical PC is illus-

trated in Figure 11-5.

As shown in Figure 11-5, the union uses four bytes on a typical PC. It can store a short or

a float, depending on which member is used. When a value is stored in the sales mem-

ber, all four bytes are needed to hold the data. When a value is stored in the hours mem-

ber, however, only the rst two bytes are used. Obviously, both members can t hold values

at the same time. This union is demonstrated in Program 11-9.

Figure 11-5

employee1: a PaySource union variable

1st two bytes are used

by hours, a short

All four bytes are used by sales, a float

M11_GADD6253_07_SE_C11 Page 623 Friday, January 7, 2011 3:34 PM

624 Chapter 11 Structured Data

Program 11-9

 1 // This program demonstrates a union.

 2 #include <iostream>

 3 #include <iomanip>

 4 using namespace std;

 5

 6 union PaySource

 7 {

 8 int hours; // Hours worked

 9 float sales; // Amount of sales

 10 };

 11

 12 int main()

 13 {

 14 PaySource employee1; // Define a union variable

 15 char payType; // To hold the pay type

 16 float payRate; // Hourly pay rate

 17 float grossPay; // Gross pay

 18

 19 cout << fixed << showpoint << setprecision(2);

 20 cout << "This program calculates either hourly wages or\n";

 21 cout << "sales commission.\n";

 22

 23 // Get the pay type, hourly or commission.

 24 cout << "Enter H for hourly wages or C for commission: ";

 25 cin >> payType;

 26

 27 // Determine the gross pay, depending on the pay type.

 28 if (payType == 'H' || payType == 'h')

 29 {

 30 // This is an hourly paid employee. Get the

 31 // pay rate and hours worked.

 32 cout << "What is the hourly pay rate? ";

 33 cin >> payRate;

 34 cout << "How many hours were worked? ";

 35 cin >> employee1.hours;

 36

 37 // Calculate and display the gross pay.

 38 grossPay = employee1.hours * payRate;

 39 cout << "Gross pay: $" << grossPay << endl;

 40 }

 41 else if (payType == 'C' || payType == 'c')

 42 {

 43 // This is a commission-paid employee. Get the

 44 // amount of sales.

 45 cout << "What are the total sales for this employee? ";

 46 cin >> employee1.sales;

 47

 48 // Calculate and display the gross pay.

 49 grossPay = employee1.sales * 0.10;

 50 cout << "Gross pay: $" << grossPay << endl;

 51 }

M11_GADD6253_07_SE_C11 Page 624 Friday, January 7, 2011 3:34 PM

11.11 Unions 625

Everything else you already know about structures applies to unions. For example, arrays

of unions may be de ned. A union may be passed as an argument to a function or

returned from a function. Pointers to unions may be de ned and the members of the union

referenced by the pointer can be accessed with the -> operator.

Anonymous Unions

The members of an anonymous union have names, but the union itself has no name. Here

is the general format of an anonymous union declaration:

An anonymous union declaration actually creates the member variables in memory, so

there is no need to separately de ne a union variable. Anonymous unions are simple to use

because the members may be accessed without the dot operator. Program 11-10, which is

a modi cation of Program 11-9, demonstrates the use of an anonymous union.

 52 else

 53 {

 54 // The user made an invalid selection.

 55 cout << payType << " is not a valid selection.\n";

 56 }

 57 return 0;

 58 }

Program Output with Example Input Shown in Bold

This program calculates either hourly wages or

sales commission.

Enter H for hourly wages or C for commission: C [Enter]
What are the total sales for this employee? 5000 [Enter]
Gross pay: $500.00

Program Output with Different Example Input Shown in Bold

This program calculates either hourly wages or

sales commission.

Enter H for hourly wages or C for commission: H [Enter]
What is the hourly pay rate? 20 [Enter]
How many hours were worked? 40 [Enter]
Gross pay: $800.00

 union

 {

 member declaration;

 ...

 };

Program 11-10

 1 // This program demonstrates an anonymous union.

 2 #include <iostream>

 3 #include <iomanip>

 4 using namespace std;

(program continues)

M11_GADD6253_07_SE_C11 Page 625 Friday, January 7, 2011 3:34 PM

626 Chapter 11 Structured Data

 5

 6 int main()

 7 {

 8 union // Anonymous union

 9 {

 10 int hours;

 11 float sales;

 12 };

 13

 14 char payType; // To hold the pay type

 15 float payRate; // Hourly pay rate

 16 float grossPay; // Gross pay

 17

 18 cout << fixed << showpoint << setprecision(2);

 19 cout << "This program calculates either hourly wages or\n";

 20 cout << "sales commission.\n";

 21

 22 // Get the pay type, hourly or commission.

 23 cout << "Enter H for hourly wages or C for commission: ";

 24 cin >> payType;

 25

 26 // Determine the gross pay, depending on the pay type.

 27 if (payType == 'H' || payType == 'h')

 28 {

 29 // This is an hourly paid employee. Get the

 30 // pay rate and hours worked.

 31 cout << "What is the hourly pay rate? ";

 32 cin >> payRate;

 33 cout << "How many hours were worked? ";

 34 cin >> hours; // Anonymous union member

 35

 36 // Calculate and display the gross pay.

 37 grossPay = hours * payRate;

 38 cout << "Gross pay: $" << grossPay << endl;

 39 }

 40 else if (payType == 'C' || payType == 'c')

 41 {

 42 // This is a commission-paid employee. Get the

 43 // amount of sales.

 44 cout << "What are the total sales for this employee? ";

 45 cin >> sales; // Anonymous union member

 46

 47 // Calculate and display the gross pay.

 48 grossPay = sales * 0.10;

 49 cout << "Gross pay: $" << grossPay << endl;

 50 }

 51 else

 52 {

 53 // The user made an invalid selection.

 54 cout << payType << " is not a valid selection.\n";

 55 }

 56 return 0;

 57 }

Program 11-10 (continued)

M11_GADD6253_07_SE_C11 Page 626 Friday, January 7, 2011 3:34 PM

11.12 Enumerated Data Types 627

Checkpoint

 www.myprogramminglab.com

11.16 Declare a union named ThreeTypes with the following members:

letter: A character

whole: An integer

real: A double

11.17 Write the de nition for an array of 50 of the ThreeTypes structures you declared

in Question 11.16.

11.18 Write a loop that stores the oating point value 2.37 in all the elements of the

array you de ned in Question 11.17.

11.19 Write a loop that stores the character A in all the elements of the array you

de ned in Question 11.17.

11.20 Write a loop that stores the integer 10 in all the elements of the array you de ned

in Question 11.17.

11.12 Enumerated Data Types

CONCEPT: An enumerated data type is a programmer-de ned data type. It consists of

values known as enumerators, which represent integer constants.

Using the enum key word you can create your own data type and specify the values that

belong to that type. Such a type is known as an enumerated data type. Here is an example

of an enumerated data type declaration:

enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };

An enumerated type declaration begins with the key word enum, followed by the name of

the type, followed by a list of identi ers inside braces, and is terminated with a semicolon.

The example declaration creates an enumerated data type named Day. The identi ers

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, and FRIDAY, which are listed inside the braces,

Program Output with Example Input Shown in Bold

This program calculates either hourly wages or

sales commission.

Enter H for hourly wages or C for commission: C [Enter]
What are the total sales for this employee? 12000 [Enter]
Gross pay: $1200.00

NOTE: Notice the anonymous union in Program 11-10 is declared inside function main.

If an anonymous union is declared globally (outside all functions), it must be declared

static. This means the word static must appear before the word union.

M11_GADD6253_07_SE_C11 Page 627 Friday, January 7, 2011 3:34 PM

628 Chapter 11 Structured Data

are known as enumerators. They represent the values that belong to the Day data type.

Here is the general format of an enumerated type declaration:

Note that the enumerators are not enclosed in quotation marks, therefore they are not

strings. Enumerators must be legal C++ identi ers.

Once you have created an enumerated data type in your program, you can de ne variables

of that type. For example, the following statement de nes workDay as a variable of the

Day type:

Day workDay;

Because workDay is a variable of the Day data type, we may assign any of the enumerators

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, or FRIDAY to it. For example, the following

statement assigns the value WEDNESDAY to the workDay variable.

Day workDay = WEDNESDAY;

So just what are these enumerators MONDAY, TUESDAY, WEDNESDAY, THURSDAY, and FRIDAY?

You can think of them as integer named constants. Internally, the compiler assigns integer

values to the enumerators, beginning with 0. The enumerator MONDAY is stored in memory

as the number 0, TUESDAY is stored in memory as the number 1, WEDNESDAY is stored in

memory as the number 2, and so forth. To prove this, look at the following code.

cout << MONDAY << endl << TUESDAY << endl

 << WEDNESDAY << endl << THURSDAY << endl

 << FRIDAY << endl;

This statement will produce the following output:

0

1

2

3

4

Assigning an Integer to an enum Variable

Even though the enumerators of an enumerated data type are stored in memory as inte-

gers, you cannot directly assign an integer value to an enum variable. For example, assum-

ing that workDay is a variable of the Day data type previously described, the following

assignment statement is illegal.

workDay = 3; // Error!

 enum TypeName { One or more enumerators };

NOTE: When making up names for enumerators, it is not required that they be written in

all uppercase letters. For example, we could have written the enumerators of the Days type as

monday, tuesday, etc. Because they represent constant values, however, many programmers

prefer to write them in all uppercase letters. This is strictly a preference of style.

M11_GADD6253_07_SE_C11 Page 628 Friday, January 7, 2011 3:34 PM

11.12 Enumerated Data Types 629

Compiling this statement will produce an error message such as Cannot convert int to

Day. When assigning a value to an enum variable, you should use a valid enumerator.

However, if circumstances require that you store an integer value in an enum variable, you

can do so by casting the integer. Here is an example:

workDay = static_cast<Day>(3);

This statement will produce the same results as:

workDay = THURSDAY;

Assigning an Enumerator to an int Variable

Although you cannot directly assign an integer value to an enum variable, you can directly

assign an enumerator to an integer variable. For example, the following code will work

just ne.

enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };

int x;

x = THURSDAY;

cout << x << endl;

When this code runs it will display 3. You can also assign a variable of an enumerated

type to an integer variable, as shown here:

Day workDay = FRIDAY;

int x = workDay;

cout << x << endl;

When this code runs it will display 4.

Comparing Enumerator Values

Enumerator values can be compared using the relational operators. For example, using

the Day data type we have been discussing, the following expression is true.

FRIDAY > MONDAY

The expression is true because the enumerator FRIDAY is stored in memory as 4 and the

enumerator MONDAY is stored as 0. The following code will display the message Friday is

greater than Monday.

if (FRIDAY > MONDAY)

 cout << "Friday is greater than Monday.\n";

You can also compare enumerator values with integer values. For example, the following

code will display the message Monday is equal to zero.

if (MONDAY == 0)

 cout << "Monday is equal to zero.\n";

Let s look at a complete program that uses much of what we have learned so far.

Program 11-11 uses the Day data type that we have been discussing.

M11_GADD6253_07_SE_C11 Page 629 Friday, January 7, 2011 3:34 PM

630 Chapter 11 Structured Data

Anonymous Enumerated Types

Notice that Program 11-11 does not de ne a variable of the Day data type. Instead it uses

the Day data type s enumerators in the for loops. The counter variable index is initialized

to MONDAY (which is 0), and the loop iterates as long as index is less than or equal to

FRIDAY (which is 4). When you do not need to de ne variables of an enumerated type,

you can actually make the type anonymous. An anonymous enumerated type is simply

one that does not have a name. For example, in Program 11-11 we could have declared

the enumerated type as:

enum { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };

Program 11-11

 1 // This program demonstrates an enumerated data type.

 2 #include <iostream>

 3 #include <iomanip>

 4 using namespace std;

 5

 6 enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };

 7

 8 int main()

 9 {

 10 const int NUM_DAYS = 5; // The number of days

 11 double sales[NUM_DAYS]; // To hold sales for each day

 12 double total = 0.0; // Accumulator

 13 int index; // Loop counter

 14

 15 // Get the sales for each day.

 16 for (index = MONDAY; index <= FRIDAY; index++)

 17 {

 18 cout << "Enter the sales for day "

 19 << index << ": ";

 20 cin >> sales[index];

 21 }

 22

 23 // Calculate the total sales.

 24 for (index = MONDAY; index <= FRIDAY; index++)

 25 total += sales[index];

 26

 27 // Display the total.

 28 cout << "The total sales are $" << setprecision(2)

 29 << fixed << total << endl;

 30

 31 return 0;

 32 }

Program Output with Example Input Shown in Bold

Enter the sales for day 0: 1525.00 [Enter]
Enter the sales for day 1: 1896.50 [Enter]
Enter the sales for day 2: 1975.63 [Enter]
Enter the sales for day 3: 1678.33 [Enter]
Enter the sales for day 4: 1498.52 [Enter]
The total sales are $8573.98

M11_GADD6253_07_SE_C11 Page 630 Friday, January 7, 2011 3:34 PM

11.12 Enumerated Data Types 631

This declaration still creates the enumerators. We just can t use the data type to de ne

variables because the type does not have a name.

Using Math Operators to Change the Value
of an enum Variable

Even though enumerators are really integers, and enum variables really hold integer val-

ues, you can run into problems when trying to perform math operations with them. For

example, look at the following code.

Day day1, day2; // Defines two Day variables.

day1 = TUESDAY; // Assign TUESDAY to day1.

day2 = day1 + 1; // ERROR! This will not work!

The third statement causes a problem because the expression day1 + 1 results in the integer

value 2. The assignment operator then attempts to assign the integer value 2 to the enum

variable day2. Because C++ cannot implicitly convert an int to a Day, an error occurs. You

can x this by using a cast to explicitly convert the result to Day, as shown here:

day2 = static_cast<Day>(day1 + 1); // This works.

Using an enum Variable to Step Through
an Array s Elements

Because enumerators are stored in memory as integers, you can use them as array sub-

scripts. For example, look at the following code.

enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };

const int NUM_DAYS = 5;

double sales[NUM_DAYS];

sales[MONDAY] = 1525.0; // Stores 1525.0 in sales[0].

sales[TUESDAY] = 1896.5; // Stores 1896.5 in sales[1].

sales[WEDNESDAY] = 1975.63; // Stores 1975.63 in sales[2].

sales[THURSDAY] = 1678.33; // Stores 1678.33 in sales[3].

sales[FRIDAY] = 1498.52; // Stores 1498.52 in sales[4].

This code stores values in all ve elements of the sales array. Because enumerator values

can be used as array subscripts, you can use an enum variable in a loop to step through the

elements of an array. However, using an enum variable for this purpose is not as straight-

forward as using an int variable. This is because you cannot use the ++ or -- operators

directly on an enum variable. To understand what I mean, rst look at the following code

taken from Program 11-11:

for (index = MONDAY; index <= FRIDAY; index++)

{

 cout << "Enter the sales for day "

 << index << ": ";

 cin >> sales[index];

}

In this code, index is an int variable used to step through each element of the array. It

is reasonable to expect that we could use a Day variable instead, as shown in the follow-

ing code.

M11_GADD6253_07_SE_C11 Page 631 Friday, January 7, 2011 3:34 PM

632 Chapter 11 Structured Data

Day workDay; // Define a Day variable

// ERROR!!! This code will NOT work.

for (workDay = MONDAY; workDay <= FRIDAY; workDay++)

{

 cout << "Enter the sales for day "

 << workDay << ": ";

 cin >> sales[workDay];

}

Notice that the for loop s update expression uses the ++ operator to increment workDay.

Although this works ne with an int variable, the ++ operator cannot be used with an

enum variable. Instead, you must convert workDay++ to an equivalent expression that will

work. The expression workDay++ attempts to do the same thing as:

workDay = workDay + 1; // Good idea, but still won't work.

However, this still will not work. We have to use a cast to explicitly convert the expression

workDay + 1 to the Day data type, like this:

 workDay = static_cast<Day>(workDay + 1);

This is the expression that we must use in the for loop instead of workDay++. The cor-

rected for loop looks like this:

for (workDay = MONDAY; workDay <= FRIDAY;

 workDay = static_cast<Day>(workDay + 1))

{

 cout << "Enter the sales for day "

 << workDay << ": ";

 cin >> sales[workDay];

}

Program 11-12 is a version of Program 11-11 that is modi ed to use a Day variable to step

through the elements of the sales array.

Program 11-12

 1 // This program demonstrates an enumerated data type.

 2 #include <iostream>

 3 #include <iomanip>

 4 using namespace std;

 5

 6 enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };

 7

 8 int main()

 9 {

 10 const int NUM_DAYS = 5; // The number of days

 11 double sales[NUM_DAYS]; // To hold sales for each day

 12 double total = 0.0; // Accumulator

 13 Day workDay; // Loop counter

 14

M11_GADD6253_07_SE_C11 Page 632 Friday, January 7, 2011 3:34 PM

11.12 Enumerated Data Types 633

Using Enumerators to Output Values

As you have already seen, sending an enumerator to cout causes the enumerator s integer

value to be displayed. For example, assuming we are using the Day type previously

described, the following statement displays 0.

cout << MONDAY << endl;

If you wish to use the enumerator to display a string such as Monday, you ll have to

write code that produces the desired string. For example, in the following code assume

that workDay is a Day variable that has been initialized to some value. The switch state-

ment displays the name of a day, based upon the value of the variable.

switch(workDay)

{

 case MONDAY : cout << "Monday";

 break;

 case TUESDAY : cout << "Tuesday";

 break;

 case WEDNESDAY : cout << "Wednesday";

 break;

 case THURSDAY : cout << "Thursday";

 break;

 case FRIDAY : cout << "Friday";

}

 15 // Get the sales for each day.

 16 for (workDay = MONDAY; workDay <= FRIDAY;

 17 workDay = static_cast<Day>(workDay + 1))

 18 {

 19 cout << "Enter the sales for day "

 20 << workDay << ": ";

 21 cin >> sales[workDay];

 22 }

 23

 24 // Calculate the total sales.

 25 for (workDay = MONDAY; workDay <= FRIDAY;

 26 workDay = static_cast<Day>(workDay + 1))

 27 total += sales[workDay];

 28

 29 // Display the total.

 30 cout << "The total sales are $" << setprecision(2)

 31 << fixed << total << endl;

 32

 33 return 0;

 34 }

Program Output with Example Input Shown in Bold

Enter the sales for day 0: 1525.00 [Enter]
Enter the sales for day 1: 1896.50 [Enter]
Enter the sales for day 2: 1975.63 [Enter]
Enter the sales for day 3: 1678.33 [Enter]
Enter the sales for day 4: 1498.52 [Enter]
The total sales are $8573.98

M11_GADD6253_07_SE_C11 Page 633 Friday, January 7, 2011 3:34 PM

634 Chapter 11 Structured Data

Program 11-13 shows this type of code used in a function. Instead of asking the user to

enter the sales for day 0, day 1, and so forth, it displays the names of the days.

Program 11-13

 1 // This program demonstrates an enumerated data type.

 2 #include <iostream>

 3 #include <iomanip>

 4 using namespace std;

 5

 6 enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };

 7

 8 // Function prototype

 9 void displayDayName(Day);

 10

 11 int main()

 12 {

 13 const int NUM_DAYS = 5; // The number of days

 14 double sales[NUM_DAYS]; // To hold sales for each day

 15 double total = 0.0; // Accumulator

 16 Day workDay; // Loop counter

 17

 18 // Get the sales for each day.

 19 for (workDay = MONDAY; workDay <= FRIDAY;

 20 workDay = static_cast<Day>(workDay + 1))

 21 {

 22 cout << "Enter the sales for day ";

 23 displayDayName(workDay);

 24 cout << ": ";

 25 cin >> sales[workDay];

 26 }

 27

 28 // Calculate the total sales.

 29 for (workDay = MONDAY; workDay <= FRIDAY;

 30 workDay = static_cast<Day>(workDay + 1))

 31 total += sales[workDay];

 32

 33 // Display the total.

 34 cout << "The total sales are $" << setprecision(2)

 35 << fixed << total << endl;

 36

 37 return 0;

 38 }

 39

 40 //**

 41 // Definition of the displayDayName function *

 42 // This function accepts an argument of the Day type and *

 43 // displays the corresponding name of the day. *

 44 //**

 45

M11_GADD6253_07_SE_C11 Page 634 Friday, January 7, 2011 3:34 PM

11.12 Enumerated Data Types 635

Specifying Integer Values for Enumerators

By default, the enumerators in an enumerated data type are assigned the integer values 0,

1, 2, and so forth. If this is not appropriate, you can specify the values to be assigned, as in

the following example.

enum Water { FREEZING = 32, BOILING = 212 };

In this example, the FREEZING enumerator is assigned the integer value 32 and the

BOILING enumerator is assigned the integer value 212. Program 11-14 demonstrates how

this enumerated type might be used.

 46 void displayDayName(Day d)

 47 {

 48 switch(d)

 49 {

 50 case MONDAY : cout << "Monday";

 51 break;

 52 case TUESDAY : cout << "Tuesday";

 53 break;

 54 case WEDNESDAY : cout << "Wednesday";

 55 break;

 56 case THURSDAY : cout << "Thursday";

 57 break;

 58 case FRIDAY : cout << "Friday";

 59 }

 60 }

Program Output with Example Input Shown in Bold

Enter the sales for Monday: 1525.00 [Enter]
Enter the sales for Tuesday: 1896.50 [Enter]
Enter the sales for Wednesday: 1975.63 [Enter]
Enter the sales for Thursday: 1678.33 [Enter]
Enter the sales for Friday: 1498.52 [Enter]
The total sales are $8573.98

Program 11-14

 1 // This program demonstrates an enumerated data type.

 2 #include <iostream>

 3 #include <iomanip>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 enum Water { FREEZING = 32, BOILING = 212 };

 9 int waterTemp; // To hold the water temperature

 10

(program continues)

M11_GADD6253_07_SE_C11 Page 635 Friday, January 7, 2011 3:34 PM

636 Chapter 11 Structured Data

If you leave out the value assignment for one or more of the enumerators, it will be

assigned a default value. Here is an example:

enum Colors { RED, ORANGE, YELLOW = 9, GREEN, BLUE };

In this example the enumerator RED will be assigned the value 0, ORANGE will be assigned

the value 1, YELLOW will be assigned the value 9, GREEN will be assigned the value 10, and

BLUE will be assigned the value 11.

Enumerators Must Be Unique Within the Same Scope

Enumerators are identi ers just like variable names, named constants, and function

names. As with all identi ers, they must be unique within the same scope. For example, an

error will result if both of the following enumerated types are declared within the same

scope. The reason is that ROOSEVELT is declared twice.

enum Presidents { MCKINLEY, ROOSEVELT, TAFT };

enum VicePresidents { ROOSEVELT, FAIRBANKS, SHERMAN }; // Error!

The following declarations will also cause an error if they appear within the same scope.

enum Status { OFF, ON };

const int OFF = 0; // Error!

 11 cout << "Enter the current water temperature: ";

 12 cin >> waterTemp;

 13 if (waterTemp <= FREEZING)

 14 cout << "The water is frozen.\n";

 15 else if (waterTemp >= BOILING)

 16 cout << "The water is boiling.\n";

 17 else

 18 cout << "The water is not frozen or boiling.\n";

 19

 20 return 0;

 21 }

Program Output with Example Input Shown in Bold

Enter the current water temperature: 10 [Enter]
The water is frozen.

Program Output with Example Input Shown in Bold

Enter the current water temperature: 300 [Enter]
The water is boiling.

Program Output with Example Input Shown in Bold

Enter the current water temperature: 92 [Enter]
The water is not frozen or boiling.

Program 11-14 (continued)

M11_GADD6253_07_SE_C11 Page 636 Friday, January 7, 2011 3:34 PM

11.12 Enumerated Data Types 637

Declaring the Type and De ning the Variables
in One Statement

The following code uses two lines to declare an enumerated data type and de ne a vari-

able of the type.

enum Car { PORSCHE, FERRARI, JAGUAR };

Car sportsCar;

C++ allows you to declare an enumerated data type and de ne one or more variables of

the type in the same statement. The previous code could be combined into the following

statement:

enum Car { PORSCHE, FERRARI, JAGUAR } sportsCar;

The following statement declares the Car data type and de nes two variables: myCar and

yourCar.

enum Car { PORSCHE, FERRARI, JAGUAR } myCar, yourCar;

For an additional example of this chapter s topics, see the High Adventure Travel Part 2

Case Study on this book s companion Web site at www.pearsonhighered.com/gaddis.

Checkpoint

 www.myprogramminglab.com

11.21 Look at the following declaration.

enum Flower { ROSE, DAISY, PETUNIA };

In memory, what value will be stored for the enumerator ROSE? For DAISY? For

PETUNIA?

11.22 What will the following code display?

enum { HOBBIT, ELF = 7, DRAGON };

cout << HOBBIT << " " << ELF << " " << DRAGON << endl;

11.23 Does the enumerated data type declared in Checkpoint Question 11.22 have a

name, or is it anonymous?

11.24 What will the following code display?

enum Letters { Z, Y, X };

if (Z > X)

 cout << "Z is greater than X.\n";

else

 cout << "Z is not greater than X.\n";

11.25 Will the following code cause an error, or will it compile without any errors? If it

causes an error, rewrite it so it compiles.

enum Color { RED, GREEN, BLUE };

Color c;

c = 0;

11.26 Will the following code cause an error, or will it compile without any errors? If it

causes an error, rewrite it so it compiles.

enum Color { RED, GREEN, BLUE };

Color c = RED;

c++;

M11_GADD6253_07_SE_C11 Page 637 Friday, January 7, 2011 3:34 PM

638 Chapter 11 Structured Data

Review Questions and Exercises

Short Answer

1. What is a primitive data type?

2. Does a structure declaration cause a structure variable to be created?

3. Both arrays and structures are capable of storing multiple values. What is the differ-
ence between an array and a structure?

4. Look at the following structure declaration.

struct Point

{

 int x;

 int y;

};

Write statements that

A) de ne a Point structure variable named center

B) assign 12 to the x member of center

C) assign 7 to the y member of center

D) display the contents of the x and y members of center

5. Look at the following structure declaration.

struct FullName

{

 string lastName;

 string middleName;

 string firstName;

};

Write statements that

A) De ne a FullName structure variable named info

B) Assign your last, middle, and rst name to the members of the info variable

C) Display the contents of the members of the info variable

6. Look at the following code.

struct PartData

{

 string partName;

 int idNumber;

};

PartData inventory[100];

Write a statement that displays the contents of the partName member of element 49

of the inventory array.

7. Look at the following code.

struct Town

{

 string townName;

 string countyName;

 double population;

 double elevation;

};

M11_GADD6253_07_SE_C11 Page 638 Friday, January 7, 2011 3:34 PM

Review Questions and Exercises 639

Town t = { "Canton", "Haywood", 9478 };

A) What value is stored in t.townName?

B) What value is stored in t.countyName?

C) What value is stored in t.population?

D) What value is stored in t.elevation?

8. Look at the following code.

structure Rectangle

{

 int length;

 int width;

};

Rectangle *r;

Write statements that

A) Dynamically allocate a Rectangle structure variable and use r to point to it.

B) Assign 10 to the structure s length member and 14 to the structure s width mem-

ber.

9. What is the difference between a union and a structure?

10. Look at the following code.

union Values

{

 int ivalue;

 double dvalue;

};

Values v;

Assuming that an int uses four bytes and a double uses eight bytes, how much mem-

ory does the variable v use?

11. What will the following code display?

enum { POODLE, BOXER, TERRIER };

cout << POODLE << " " << BOXER << " " << TERRIER << endl;

12. Look at the following declaration.

enum Person { BILL, JOHN, CLAIRE, BOB };

Person p;

Indicate whether each of the following statements or expressions is valid or invalid.

A) p = BOB;

B) p++;

C) BILL > BOB

D) p = 0;

E) int x = BILL;

F) p = static_cast<Person>(3);

G) cout << CLAIRE << endl;

M11_GADD6253_07_SE_C11 Page 639 Friday, January 7, 2011 3:34 PM

640 Chapter 11 Structured Data

Fill-in-the-Blank

13. Before a structure variable can be created, the structure must be _________.

14. The _________ is the name of the structure type.

15. The variables declared inside a structure declaration are called _________.

16. A(n) _________ is required after the closing brace of a structure declaration.

17. In the definition of a structure variable, the _________ is placed before the variable
name, just like the data type of a regular variable is placed before its name.

18. The _________ operator allows you to access structure members.

Algorithm Workbench

19. The structure Car is declared as follows:

struct Car

{

string carMake;

string carModel;

int yearModel;

double cost;

};

Write a de nition statement that de nes a Car structure variable initialized with the
following data:

Make: Ford
Model: Mustang
Year Model: 1968
Cost: $20,000

20. Define an array of 25 of the Car structure variables (the structure is declared in Ques-
tion 19).

21. Define an array of 35 of the Car structure variables. Initialize the first three elements
with the following data:

Make Model Year Cost

Ford Taurus 1997 $21,000
Honda Accord 1992 $11,000
Lamborghini Countach 1997 $200,000

22. Write a loop that will step through the array you defined in Question 21, displaying
the contents of each element.

23. Declare a structure named TempScale, with the following members:

fahrenheit: a double
centigrade: a double

Next, declare a structure named Reading, with the following members:

windSpeed: an int
humidity: a double
temperature: a TempScale structure variable

Next de ne a Reading structure variable.

M11_GADD6253_07_SE_C11 Page 640 Friday, January 7, 2011 3:34 PM

Review Questions and Exercises 641

24. Write statements that will store the following data in the variable you defined in
Question 23.

Wind Speed: 37 mph

Humidity: 32%

Fahrenheit temperature: 32 degrees

Centigrade temperature: 0 degrees

25. Write a function called showReading. It should accept a Reading structure variable
(see Question 23) as its argument. The function should display the contents of the
variable on the screen.

26. Write a function called findReading. It should use a Reading structure reference
variable (see Question 23) as its parameter. The function should ask the user to enter
values for each member of the structure.

27. Write a function called getReading, which returns a Reading structure (see
Question 23). The function should ask the user to enter values for each member of a
Reading structure, then return the structure.

28. Write a function called recordReading. It should use a Reading structure pointer
variable (see Question 23) as its parameter. The function should ask the user to enter
values for each member of the structure pointed to by the parameter.

29. Rewrite the following statement using the structure pointer operator:

(*rptr).windSpeed = 50;

30. Rewrite the following statement using the structure pointer operator:

*(*strPtr).num = 10;

31. Write the declaration of a union called Items with the following members:

alpha a character

num an integer

bigNum a long integer

real a float

Next, write the de nition of an Items union variable.

32. Write the declaration of an anonymous union with the same members as the union
you declared in Question 31.

33. Write a statement that stores the number 452 in the num member of the anonymous
union you declared in Question 32.

34. Look at the following statement.

enum Color { RED, ORANGE, GREEN, BLUE };

A) What is the name of the data type declared by this statement?

B) What are the enumerators for this type?

C) Write a statement that de nes a variable of this type and initializes it with a valid

value.

35. A pet store sells dogs, cats, birds, and hamsters. Write a declaration for an anony-
mous enumerated data type that can represent the types of pets the store sells.

M11_GADD6253_07_SE_C11 Page 641 Friday, January 7, 2011 3:34 PM

642 Chapter 11 Structured Data

True or False

36. T F A semicolon is required after the closing brace of a structure or union declara-

tion.

37. T F A structure declaration does not de ne a variable.

38. T F The contents of a structure variable can be displayed by passing the structure

variable to the cout object.

39. T F Structure variables may not be initialized.

40. T F In a structure variable s initialization list, you do not have to provide initializers

for all the members.

41. T F You may skip members in a structure s initialization list.

42. T F The following expression refers to the element 5 in the array carInfo:

carInfo.model[5]

43. T F An array of structures may be initialized.

44. T F A structure variable may not be a member of another structure.

45. T F A structure member variable may be passed to a function as an argument.

46. T F An entire structure may not be passed to a function as an argument.

47. T F A function may return a structure.

48. T F When a function returns a structure, it is always necessary for the function to

have a local structure variable to hold the member values that are to be

returned.

49. T F The indirection operator has higher precedence than the dot operator.

50. T F The structure pointer operator does not automatically dereference the structure

pointer on its left.

51. T F In a union, all the members are stored in different memory locations.

52. T F All the members of a union may be used simultaneously.

53. T F You may de ne arrays of unions.

54. T F You may not de ne pointers to unions.

55. T F An anonymous union has no name.

56. T F If an anonymous union is de ned globally (outside all functions), it must be

declared static.

Find the Errors

Each of the following declarations, programs, and program segments has errors. Locate as

many as you can.

57. struct

{

 int x;

 float y;

};

58. struct Values

{

 string name;

 int age;

}

M11_GADD6253_07_SE_C11 Page 642 Friday, January 7, 2011 3:34 PM

Review Questions and Exercises 643

59. struct TwoVals

{

 int a, b;

};

int main ()

{

 TwoVals.a = 10;

 TwoVals.b = 20;

 return 0;

}

60. #include <iostream>

using namespace std;

struct ThreeVals

{

 int a, b, c;

};

int main()

{

 ThreeVals vals = {1, 2, 3};

 cout << vals << endl;

 return 0;

}

61. #include <iostream>

#include <string>

using namespace std;

struct names

{

 string first;

 string last;

};

int main ()

{

 names customer = "Smith", "Orley";

 cout << names.first << endl;

 cout << names.last << endl;

 return 0;

}

62. struct FourVals

{

 int a, b, c, d;

};

int main ()

{

 FourVals nums = {1, 2, , 4};

 return 0;

}

63. #include <iostream>

using namespace std;

M11_GADD6253_07_SE_C11 Page 643 Friday, January 7, 2011 3:34 PM

644 Chapter 11 Structured Data

struct TwoVals

{

 int a = 5;

 int b = 10;

};

int main()

{

 TwoVals v;

 cout << v.a << " " << v.b;

 return 0;

}

64. struct TwoVals

{

 int a = 5;

 int b = 10;

};

int main()

{

 TwoVals varray[10];

 varray.a[0] = 1;

 return 0;

}

65. struct TwoVals

{

 int a;

 int b;

};

TwoVals getVals()

{

 TwoVals.a = TwoVals.b = 0;

}

66. struct ThreeVals

{

 int a, b, c;

};

int main ()

{

 TwoVals s, *sptr;

 sptr = &s;

 *sptr.a = 1;

 return 0;

}

67. #include <iostream>

using namespace std;

union Compound

{

 int x;

 float y;

};

M11_GADD6253_07_SE_C11 Page 644 Friday, January 7, 2011 3:34 PM

Review Questions and Exercises 645

int main()

{

 Compound u;

 u.x = 1000;

 cout << u.y << endl;

 return 0;

}

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. Movie Data

Write a program that uses a structure named MovieData to store the following infor-

mation about a movie:

Title

Director

Year Released

Running Time (in minutes)

The program should create two MovieData variables, store values in their members,

and pass each one, in turn, to a function that displays the information about the

movie in a clearly formatted manner.

2. Movie Pro t

Modify the Movie Data program written for Programming Challenge 1 to include

two additional members that hold the movie s production costs and rst-year reve-

nues. Modify the function that displays the movie data to display the title, director,

release year, running time, and rst year s pro t or loss.

3. Corporate Sales Data

Write a program that uses a structure to store the following data on a company division:

Division Name (such as East, West, North, or South)

First-Quarter Sales

Second-Quarter Sales

Third-Quarter Sales

Fourth-Quarter Sales

Total Annual Sales

Average Quarterly Sales

The program should use four variables of this structure. Each variable should rep-

resent one of the following corporate divisions: East, West, North, and South. The

user should be asked for the four quarters sales gures for each division. Each

division s total and average sales should be calculated and stored in the appropri-

ate member of each structure variable. These gures should then be displayed on

the screen.

Input Validation: Do not accept negative numbers for any sales gures.

Programming Challenges

M11_GADD6253_07_SE_C11 Page 645 Friday, January 7, 2011 3:34 PM

646 Chapter 11 Structured Data

4. Weather Statistics

Write a program that uses a structure to store the following weather data for a partic-

ular month:

Total Rainfall

High Temperature

Low Temperature

Average Temperature

The program should have an array of 12 structures to hold weather data for an

entire year. When the program runs, it should ask the user to enter data for each

month. (The average temperature should be calculated.) Once the data are entered

for all the months, the program should calculate and display the average monthly

rainfall, the total rainfall for the year, the highest and lowest temperatures for the

year (and the months they occurred in), and the average of all the monthly average

temperatures.

Input Validation: Only accept temperatures within the range between 100 and +140

degrees Fahrenheit.

5. Weather Statistics Modi cation

Modify the program that you wrote for Programming Challenge 4 so it de nes an enu-

merated data type with enumerators for the months (JANUARY, FEBRUARY, etc.). The

program should use the enumerated type to step through the elements of the array.

6. Soccer Scores

Write a program that stores the following data about a soccer player in a structure:

Player s Name

Player s Number

Points Scored by Player

The program should keep an array of 12 of these structures. Each element is for a dif-

ferent player on a team. When the program runs it should ask the user to enter the

data for each player. It should then show a table that lists each player s number, name,

and points scored. The program should also calculate and display the total points

earned by the team. The number and name of the player who has earned the most

points should also be displayed.

Input Validation: Do not accept negative values for players numbers or points scored.

7. Customer Accounts

Write a program that uses a structure to store the following data about a customer

account:

Name

Address

City, State, and ZIP

Telephone Number

Account Balance

Date of Last Payment

VideoNote

Solving the

Weather

Statistics

Problem

M11_GADD6253_07_SE_C11 Page 646 Friday, January 7, 2011 3:34 PM

Review Questions and Exercises 647

The program should use an array of at least 20 structures. It should let the user enter

data into the array, change the contents of any element, and display all the data stored

in the array. The program should have a menu-driven user interface.

Input Validation: When the data for a new account is entered, be sure the user enters

data for all the elds. No negative account balances should be entered.

8. Search Function for Customer Accounts Program

Add a function to Programming Challenge 7 that allows the user to search the struc-

ture array for a particular customer s account. It should accept part of the customer s

name as an argument and then search for an account with a name that matches it. All

accounts that match should be displayed. If no account matches, a message saying so

should be displayed.

9. Speakers Bureau

Write a program that keeps track of a speakers bureau. The program should use a

structure to store the following data about a speaker:

Name

Telephone Number

Speaking Topic

Fee Required

The program should use an array of at least 10 structures. It should let the user enter

data into the array, change the contents of any element, and display all the data stored

in the array. The program should have a menu-driven user interface.

Input Validation: When the data for a new speaker is entered, be sure the user enters

data for all the elds. No negative amounts should be entered for a speaker s fee.

10. Search Function for the Speakers Bureau Program

Add a function to Programming Challenge 9 that allows the user to search for a speaker

on a particular topic. It should accept a key word as an argument and then search the

array for a structure with that key word in the Speaking Topic eld. All structures that

match should be displayed. If no structure matches, a message saying so should be

displayed.

11. Monthly Budget

A student has established the following monthly budget:

Housing 500.00

Utilities 150.00

Household Expenses 65.00

Transportation 50.00

Food 250.00

Medical 30.00

Insurance 100.00

Entertainment 150.00

Clothing 75.00

Miscellaneous 50.00

Programming Challenges

M11_GADD6253_07_SE_C11 Page 647 Friday, January 7, 2011 3:34 PM

648 Chapter 11 Structured Data

Write a program that has a MonthlyBudget structure designed to hold each of these

expense categories. The program should pass the structure to a function that asks the

user to enter the amounts spent in each budget category during a month. The program

should then pass the structure to a function that displays a report indicating the

amount over or under in each category, as well as the amount over or under for the

entire monthly budget.

12. Course Grade

Write a program that uses a structure to store the following data:

The program should keep a list of test scores for a group of students. It should ask the

user how many test scores there are to be and how many students there are. It should

then dynamically allocate an array of structures. Each structure s Tests member

should point to a dynamically allocated array that will hold the test scores.

After the arrays have been dynamically allocated, the program should ask for the ID

number and all the test scores for each student. The average test score should be cal-

culated and stored in the average member of each structure. The course grade should

be computed on the basis of the following grading scale:

The course grade should then be stored in the Grade member of each structure. Once

all this data is calculated, a table should be displayed on the screen listing each stu-

dent s name, ID number, average test score, and course grade.

Input Validation: Be sure all the data for each student is entered. Do not accept nega-

tive numbers for any test score.

13. Drink Machine Simulator

Write a program that simulates a soft drink machine. The program should use a struc-

ture that stores the following data:

Drink Name

Drink Cost

Number of Drinks in Machine

Member Name Description

Name Student name

Idnum Student ID number

Tests Pointer to an array of test scores

Average Average test score

Grade Course grade

Average Test Grade Course Grade

91 100 A

81 90 B

71 80 C

61 70 D

60 or below F

M11_GADD6253_07_SE_C11 Page 648 Friday, January 7, 2011 3:34 PM

Review Questions and Exercises 649

The program should create an array of ve structures. The elements should be initial-

ized with the following data:

Each time the program runs, it should enter a loop that performs the following

steps: A list of drinks is displayed on the screen. The user should be allowed to

either quit the program or pick a drink. If the user selects a drink, he or she will

next enter the amount of money that is to be inserted into the drink machine. The

program should display the amount of change that would be returned and subtract

one from the number of that drink left in the machine. If the user selects a drink that

has sold out, a message should be displayed. The loop then repeats. When the user

chooses to quit the program it should display the total amount of money the

machine earned.

Input Validation: When the user enters an amount of money, do not accept negative
values, or values greater than $1.00.

14. Inventory Bins

Write a program that simulates inventory bins in a warehouse. Each bin holds a num-

ber of the same type of parts. The program should use a structure that keeps the fol-

lowing data:

Description of the part kept in the bin

Number of parts in the bin

The program should have an array of 10 bins, initialized with the following data:

Drink Name Cost Number in Machine

Cola .75 20

Root Beer .75 20

Lemon-Lime .75 20

Grape Soda .80 20

Cream Soda .80 20

Part Description Number of Parts in the Bin

Valve 10

Bearing 5

Bushing 15

Coupling 21

Flange 7

Gear 5

Gear Housing 5

Vacuum Gripper 25

Cable 18

Rod 12

Programming Challenges

M11_GADD6253_07_SE_C11 Page 649 Friday, January 7, 2011 3:34 PM

650 Chapter 11 Structured Data

The program should have the following functions:

AddParts: a function that increases a speci c bin s part count by a speci ed number.

RemoveParts: a function that decreases a speci c bin s part count by a speci ed number.

When the program runs, it should repeat a loop that performs the following steps:

The user should see a list of what each bin holds and how many parts are in each bin.

The user can choose to either quit the program or select a bin. When a bin is selected,

the user can either add parts to it or remove parts from it. The loop then repeats,

showing the updated bin data on the screen.

Input Validation: No bin can hold more than 30 parts, so don t let the user add more

than a bin can hold. Also, don t accept negative values for the number of parts being

added or removed.

15. Multipurpose Payroll

Write a program that calculates pay for either an hourly paid worker or a salaried

worker. Hourly paid workers are paid their hourly pay rate times the number of

hours worked. Salaried workers are paid their regular salary plus any bonus they may

have earned. The program should declare two structures for the following data:

Hourly Paid:

HoursWorked

HourlyRate

Salaried:

Salary

Bonus

The program should also declare a union with two members. Each member should be

a structure variable: one for the hourly paid worker and another for the salaried

worker.

The program should ask the user whether he or she is calculating the pay for an

hourly paid worker or a salaried worker. Regardless of which the user selects, the

appropriate members of the union will be used to store the data that will be used to

calculate the pay.

Input Validation: Do not accept negative numbers. Do not accept values greater than

80 for HoursWorked.

M11_GADD6253_07_SE_C11 Page 650 Friday, January 7, 2011 3:34 PM

651

C
H

A
P

T
E

R

12

Advanced
File Operations

12.1

File Operations

CONCEPT:

A le is a collection of data that is usually stored on a computer s disk.

Data can be saved to les and then later reused.

Almost all real-world programs use les to store and retrieve data. Here are a few exam-

ples of familiar software packages that use les extensively.

Word Processors:

 Word processing programs are used to write letters, memos,

reports, and other documents. The documents are then saved in files so they can

be edited and reprinted.

Database Management Systems:

DBMSs are used to create and maintain data-

bases. Databases are files that contain large collections of data, such as payroll

records, inventories, sales statistics, and customer records.

Spreadsheets

: Spreadsheet programs are used to work with numerical data. Num-

bers and mathematical formulas can be inserted into the rows and columns of the

spreadsheet. The spreadsheet can then be saved to a file for use later.

TOPICS

12.1 File Operations

12.2 File Output Formatting

12.3 Passing File Stream Objects

to Functions

12.4 More Detailed Error Testing

12.5 Member Functions for Reading

and Writing Files

12.6 Focus on Software Engineering:

Working with Multiple Files

12.7 Binary Files

12.8 Creating Records with Structures

12.9 Random-Access Files

12.10 Opening a File for Both Input

and Output

M12_GADD6253_07_SE_C12 Page 651 Friday, January 7, 2011 8:10 PM

652

Chapter 12 Advanced File Operations

Compilers

: Compilers translate the source code of a program, which is saved in a

file, into an executable file. Throughout the previous chapters of this book you

have created many C++ source files and compiled them to executable files.

Chapter 5 provided enough information for you to write programs that perform simple

le operations. This chapter covers more advanced le operations, and focuses primarily

on the

fstream

 data type. As a review, Table 12-1 compares the

ifstream

,

ofstream

,

and

fstream

 data types. All of these data types require the

fstream

 header le.

Using the

fstream

 Data Type

You de ne an

fstream

 object just as you de ne objects of other data types. The following

statement de nes an

fstream

 object named

dataFile

.

fstream dataFile;

As with

ifstream

 and

ofstream

 objects, you use an

fstream

 object s

open

 function to

open a le. An

fstream

 object s

open

 function requires two arguments, however. The rst

argument is a string containing the name of the le. The second argument is a le access

ag that indicates the mode in which you wish to open the le. Here is an example.

dataFile.open("info.txt", ios::out);

The rst argument in this function call is the name of the le,

info.txt

. The second

argument is the le access ag

ios::out

. This tells C++ to open the le in output

mode. Output mode allows data to be written to a le. The following statement uses

the

ios::in

 access ag to open a le in input mode, which allows data to be read from

the le.

dataFile.open("info.txt", ios::in);

There are many le access ags, as listed in Table 12-2.

Table 12-1 File Stream

Data Type Description

ifstream

Input File Stream. This data type can be used only to read data from les into memory.

ofstream

Output File Stream. This data type can be used to create les and write data to them.

fstream

File Stream. This data type can be used to create les, write data to them, and read

data from them.

M12_GADD6253_07_SE_C12 Page 652 Friday, January 7, 2011 8:10 PM

12.1 File Operations

653

Several ags may be used together if they are connected with the | operator. For example,

assume

dataFile

is an

fstream

 object in the following statement:

dataFile.open("info.txt", ios::in | ios::out);

This statement opens the le

info.txt

 in both input and output modes. This means data

may be written to and read from the le.

The following statement opens the le in such a way that data will only be written to its end:

dataFile.open("info.txt", ios::out | ios::app);

By using different combinations of access ags, you can open les in many possible modes.

Program 12-1 uses an

fstream

 object to open a le for output, and then writes data to the le.

Table 12-2

File Access Flag Meaning

ios::app

Append mode. If the le already exists, its contents are preserved and all output

is written to the end of the le. By default, this ag causes the le to be created if

it does not exist.

ios::ate

If the le already exists, the program goes directly to the end of it. Output may

be written anywhere in the le.

ios::binary

Binary mode. When a le is opened in binary mode, data are written to or read

from it in pure binary format. (The default mode is text.)

ios::in

Input mode. Data will be read from the le. If the le does not exist, it will not be

created and the open function will fail.

ios::out

Output mode. Data will be written to the le. By default, the le s contents will

be deleted if it already exists.

ios::trunc

If the le already exists, its contents will be deleted (truncated). This is the

default mode used by

ios::out

.

NOTE:

When used by itself, the

 ios::out

 ag causes the le s contents to be deleted if

the le already exists. When used with the

ios::in

 ag, however, the le s existing

contents are preserved. If the le does not already exist, it will be created.

Program 12-1

 1 // This program uses an fstream object to write data to a file.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 fstream dataFile;

 9

(program continues)

M12_GADD6253_07_SE_C12 Page 653 Friday, January 7, 2011 8:10 PM

654

Chapter 12 Advanced File Operations

The le output is shown for Program 12-1 the way it would appear if the le contents were

displayed on the screen. The

\n

 characters cause each name to appear on a separate line.

The actual le contents, however, appear as a stream of characters as shown in Figure 12-1.

As you can see from the gure,

\n

 characters are written to the le along with all the other

characters. The characters are added to the le sequentially, in the order they are written

by the program. The very last character is an

end-of- le marker

. It is a character that

marks the end of the le and is automatically written when the le is closed. (The actual

character used to mark the end of a le depends upon the operating system being used. It

is always a nonprinting character. For example, some systems use control-Z.)

Program 12-2 is a modi cation of Program 12-1 that further illustrates the sequential

nature of les. The le is opened, two names are written to it, and it is closed. The le is

then reopened by the program in append mode (with the

 ios::app

 access ag). When a

le is opened in append mode, its contents are preserved and all subsequent output is

appended to the le s end. Two more names are added to the le before it is closed and the

program terminates.

 10 cout << "Opening file...\n";

 11 dataFile.open("demofile.txt", ios::out); // Open for output

 12 cout << "Now writing data to the file.\n";

 13 dataFile << "Jones\n"; // Write line 1

 14 dataFile << "Smith\n"; // Write line 2

 15 dataFile << "Willis\n"; // Write line 3

 16 dataFile << "Davis\n"; // Write line 4

 17 dataFile.close(); // Close the file

 18 cout << "Done.\n";

 19 return 0;

 20 }

Program Output

Opening file...

Now writing data to the file.

Done.

Output to File

demofile.txt

Jones

Smith

Willis

Davis

Figure 12-1

Program 12-1

(continued)

J o n e s \n m i t h \n W i l S

l i s \n D a v i s \n <EOF>

M12_GADD6253_07_SE_C12 Page 654 Friday, January 7, 2011 8:10 PM

12.1 File Operations

655

The rst time the le is opened, the names are written as shown in Figure 12-2.

The le is closed and an end-of- le character is automatically written. When the le is

reopened, the new output is appended to the end of the le, as shown in Figure 12-3.

Program 12-2

 1 // This program writes data to a file, closes the file,

 2 // then reopens the file and appends more data.

 3 #include <iostream>

 4 #include <fstream>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 ofstream dataFile;

 10

 11 cout << "Opening file...\n";

 12 // Open the file in output mode.

 13 dataFile.open("demofile.txt", ios::out);

 14 cout << "Now writing data to the file.\n";

 15 dataFile << "Jones\n"; // Write line 1

 16 dataFile << "Smith\n"; // Write line 2

 17 cout << "Now closing the file.\n";

 18 dataFile.close(); // Close the file

 19

 20 cout << "Opening the file again...\n";

 21 // Open the file in append mode.

 22 dataFile.open("demofile.txt", ios::out | ios::app);

 23 cout << "Writing more data to the file.\n";

 24 dataFile << "Willis\n"; // Write line 3

 25 dataFile << "Davis\n"; // Write line 4

 26 cout << "Now closing the file.\n";

 27 dataFile.close(); // Close the file

 28

 29 cout << "Done.\n";

 30 return 0;

 31 }

Output to File

demofile.txt

Jones

Smith

Willis

Davis

Figure 12-2

Figure 12-3

J o n e s \n m i t h \n <EOF> S

J o n e s \n m i t h \n W i l S

l i s \n D a v i s \n <EOF>

M12_GADD6253_07_SE_C12 Page 655 Friday, January 7, 2011 8:10 PM

656

Chapter 12 Advanced File Operations

File Open Modes with

ifstream

 and

ofstream

 Objects

The

ifstream

 and

ofstream

 data types each have a default mode in which they open

les. This mode determines the operations that may be performed on the le, and what

happens if the le that is being opened already exists. Table 12-3 describes each data type s

default open mode.

You cannot change the fact that

ifstream

 les may only be read from, and

ofstream

 les

may only be written to. You can, however, vary the way operations are carried out on

these les by providing a le access ag as an optional second argument to the

open

 func-

tion. The following code shows an example using an ofstream object.

ofstream outputFile;

outputFile.open("values.txt", ios::out|ios::app);

The ios::app ag speci es that data written to the values.txt le should be appended

to its existing contents.

Checking for a File s Existence Before Opening It

Sometimes you want to determine whether a le already exists before opening it for out-

put. You can do this by rst attempting to open the le for input. If the le does not exist,

the open operation will fail. In that case, you can create the le by opening it for output.

The following code gives an example.

fstream dataFile;

dataFile.open("values.txt", ios::in);

if (dataFile.fail())

{

 // The file does not exist, so create it.

 dataFile.open("values.txt", ios::out);

 //

 // Continue to process the file...

 //

}

NOTE: If the ios::out ag had been alone, without ios::app the second time the le

was opened, the le s contents would have been deleted. If this had been the case, the

names Jones and Smith would have been erased and the le would only have contained

the names Willis and Davis.

Table 12-3

File Type Default Open Mode

ofstream The le is opened for output only. Data may be written to the le, but not read from the

le. If the le does not exist, it is created. If the le already exists, its contents are

deleted (the le is truncated).

ifstream The le is opened for input only. Data may be read from the le, but not written to it.

The le s contents will be read from its beginning. If the le does not exist, the open

function fails.

M12_GADD6253_07_SE_C12 Page 656 Friday, January 7, 2011 8:10 PM

12.1 File Operations 657

else // The file already exists.

{

 dataFile.close();

 cout << "The file values.txt already exists.\n";

}

Opening a File with the File Stream Object De nition
Statement

An alternative to using the open member function is to use the le stream object de nition

statement to open the le. Here is an example:

fstream dataFile("names.txt", ios::in | ios::out);

This statement de nes an fstream object named dataFile and uses it to open the le

names.txt. The le is opened in both input and output modes. This technique eliminates

the need to call the open function when your program knows the name and access mode

of the le at the time the object is de ned. You may also use this technique with ifstream

and ofstream objects, as shown in the following examples.

ifstream inputFile("info.txt");

ofstream outputFile("addresses.txt");

ofstream dataFile("customers.txt", ios::out|ios::app);

You may also test for errors after you have opened a le with this technique. The follow-

ing code shows an example.

ifstream inputFile("SalesData.txt");

if (!inputFile)

 cout << "Error opening SalesData.txt.\n";

Checkpoint

 www.myprogramminglab.com

12.1 Which le access ag would you use if you want all output to be written to the

end of an existing le?

12.2 How do you use more than one le access ag?

12.3 Assuming that diskInfo is an fstream object, write a statement that opens the

le names.dat for output.

12.4 Assuming that diskInfo is an fstream object, write a statement that opens the le

customers.txt for output, where all output will be written to the end of the le.

12.5 Assuming that diskInfo is an fstream object, write a statement that opens the

le payable.txt for both input and output.

12.6 Write a statement that de nes an fstream object named dataFile and opens a

le named salesfigures.txt for input. (Note: The le should be opened with

the de nition statement, not an open function call.)

M12_GADD6253_07_SE_C12 Page 657 Friday, January 7, 2011 8:10 PM

658 Chapter 12 Advanced File Operations

12.2 File Output Formatting

CONCEPT: File output may be formatted in the same way that screen output is

formatted.

The same output formatting techniques that are used with cout, which are covered in

Chapter 3, may also be used with le stream objects. For example, the setprecision and

fixed manipulators may be called to establish the number of digits of precision that oat-

ing point values are rounded to. Program 12-3 demonstrates this.

Program 12-3

 1 // This program uses the setprecision and fixed

 2 // manipulators to format file output.

 3 #include <iostream>

 4 #include <iomanip>

 5 #include <fstream>

 6 using namespace std;

 7

 8 int main()

 9 {

 10 fstream dataFile;

 11 double num = 17.816392;

 12

 13 dataFile.open("numfile.txt", ios::out); // Open in output mode

 14

 15 dataFile << fixed; // Format for fixed-point notation

 16 dataFile << num << endl; // Write the number

 17

 18 dataFile << setprecision(4); // Format for 4 decimal places

 19 dataFile << num << endl; // Write the number

 20

 21 dataFile << setprecision(3); // Format for 3 decimal places

 22 dataFile << num << endl; // Write the number

 23

 24 dataFile << setprecision(2); // Format for 2 decimal places

 25 dataFile << num << endl; // Write the number

 26

 27 dataFile << setprecision(1); // Format for 1 decimal place

 28 dataFile << num << endl; // Write the number

 29

 30 cout << "Done.\n";

 31 dataFile.close(); // Close the file

 32 return 0;

 33 }

Contents of File numfile.txt

 17.816392

 17.8164

 17.816

 17.82

 17.8

M12_GADD6253_07_SE_C12 Page 658 Friday, January 7, 2011 8:10 PM

12.2 File Output Formatting 659

Notice the le output is formatted just as cout would format screen output. Program 12-4

shows the setw stream manipulator being used to format le output into columns.

Figure 12-4 shows the way the characters appear in the le.

Program 12-4

 1 // This program writes three rows of numbers to a file.

 2 #include <iostream>

 3 #include <fstream>

 4 #include <iomanip>

 5 using namespace std;

 6

 7 int main()

 8 {

 9 const int ROWS = 3; // Rows to write

 10 const int COLS = 3; // Columns to write

 11 int nums[ROWS][COLS] = { 2897, 5, 837,

 12 34, 7, 1623,

 13 390, 3456, 12 };

 14 fstream outFile("table.txt", ios::out);

 15

 16 // Write the three rows of numbers with each

 17 // number in a field of 8 character spaces.

 18 for (int row = 0; row < ROWS; row++)

 19 {

 20 for (int col = 0; col < COLS; col++)

 21 {

 22 outFile << setw(8) << nums[row][col];

 23 }

 24 outFile << endl;

 25 }

 26 outFile.close();

 27 cout << "Done.\n";

 28 return 0;

 29 }

Contents of File table.txt

 2897 5 837

 34 7 1623

 390 3456 12

Figure 12-4

2 8 9 7 5 8 3 7 \n

3 4 7 \n 1 6 2 3

3 9 0 1 2 \n 3 4 5 6

<EOF>

M12_GADD6253_07_SE_C12 Page 659 Friday, January 7, 2011 8:10 PM

660 Chapter 12 Advanced File Operations

12.3 Passing File Stream Objects to Functions

CONCEPT: File stream objects may be passed by reference to functions.

When writing actual programs, you ll want to create modularized code for handling le

operations. File stream objects may be passed to functions, but they should always be

passed by reference. The openFile function shown below uses an fstream reference

object parameter:

bool openFileIn(fstream &file, string name)

{

 bool status;

 file.open(name.c_str(), ios::in);

 if (file.fail())

 status = false;

 else

 status = true;

 return status;

}

The internal state of le stream objects changes with most every operation. They should

always be passed to functions by reference to ensure internal consistency. Program 12-5

shows an example of how le stream objects may be passed as arguments to functions.

Program 12-5

 1 // This program demonstrates how file stream objects may

 2 // be passed by reference to functions.

 3 #include <iostream>

 4 #include <fstream>

 5 #include <string>

 6 using namespace std;

 7

 8 // Function prototypes

 9 bool openFileIn(fstream &, string);

 10 void showContents(fstream &);

 11

 12 int main()

 13 {

 14 fstream dataFile;

 15

 16 if (openFileIn(dataFile, "demofile.txt"))

 17 {

 18 cout << "File opened successfully.\n";

 19 cout << "Now reading data from the file.\n\n";

 20 showContents(dataFile);

 21 dataFile.close();

 22 cout << "\nDone.\n";

 23 }

VideoNote

Passing

File Stream

Objects to

Functions

M12_GADD6253_07_SE_C12 Page 660 Friday, January 7, 2011 8:10 PM

12.3 Passing File Stream Objects to Functions 661

 24 else

 25 cout << "File open error!" << endl;

 26

 27 return 0;

 28 }

 29

 30 //***

 31 // Definition of function openFileIn. Accepts a reference *

 32 // to an fstream object as an argument. The file is opened *

 33 // for input. The function returns true upon success, false *

 34 // upon failure. *

 35 //***

 36

 37 bool openFileIn(fstream &file, string name)

 38 {

 39 file.open(name.c_str(), ios::in);

 40 if (file.fail())

 41 return false;

 42 else

 43 return true;

 44 }

 45

 46 //***

 47 // Definition of function showContents. Accepts an fstream *

 48 // reference as its argument. Uses a loop to read each name *

 49 // from the file and displays it on the screen. *

 50 //***

 51

 52 void showContents(fstream &file)

 53 {

 54 string line;

 55

 56 while (file >> line)

 57 {

 58 cout << line << endl;

 59 }

 60 }

Program Output

File opened successfully.

Now reading data from the file.

Jones

Smith

Willis

Davis

Done.

M12_GADD6253_07_SE_C12 Page 661 Friday, January 7, 2011 8:10 PM

662 Chapter 12 Advanced File Operations

12.4 More Detailed Error Testing

CONCEPT: All stream objects have error state bits that indicate the

condition of the stream.

All stream objects contain a set of bits that act as ags. These ags indicate the current

state of the stream. Table 12-4 lists these bits.

These bits can be tested by the member functions listed in Table 12-5. (You ve already

learned about the fail() function.) One of the functions listed in the table, clear(), can

be used to set a status bit.

The function showState, shown here, accepts a le stream reference as its argument. It

shows the state of the le by displaying the return values of the eof(), fail(), bad(),

and good() member functions:

void showState(fstream &file)

{

 cout << "File Status:\n";

 cout << " eof bit: " << file.eof() << endl;

 cout << " fail bit: " << file.fail() << endl;

 cout << " bad bit: " << file.bad() << endl;

 cout << " good bit: " << file.good() << endl;

 file.clear(); // Clear any bad bits

}

Program 12-6 uses the showState function to display testFile s status after various

operations. First, the le is created and the integer value 10 is stored in it. The le is then

closed and reopened for input. The integer is read from the le, and then a second read

Table 12-4

Bit Description

ios::eofbit Set when the end of an input stream is encountered.

ios::failbit Set when an attempted operation has failed.

ios::hardfail Set when an unrecoverable error has occurred.

ios::badbit Set when an invalid operation has been attempted.

ios::goodbit Set when all the ags above are not set. Indicates the stream is in good condition.

Table 12-5

Function Description

eof() Returns true (nonzero) if the eofbit ag is set, otherwise returns false.

fail() Returns true (nonzero) if the failbit or hardfail ags are set, otherwise returns false.

bad() Returns true (nonzero) if the badbit ag is set, otherwise returns false.

good() Returns true (nonzero) if the goodbit ag is set, otherwise returns false.

clear() When called with no arguments, clears all the ags listed above. Can also be called

with a speci c ag as an argument.

M12_GADD6253_07_SE_C12 Page 662 Friday, January 7, 2011 8:10 PM

12.4 More Detailed Error Testing 663

operation is performed. Because there is only one item in the le, the second read opera-

tion will result in an error.

Program 12-6

 1 // This program demonstrates the return value of the stream

 2 // object error testing member functions.

 3 #include <iostream>

 4 #include <fstream>

 5 using namespace std;

 6

 7 // Function prototype

 8 void showState(fstream &);

 9

 10 int main()

 11 {

 12 int num = 10;

 13

 14 // Open the file for output.

 15 fstream testFile("stuff.dat", ios::out);

 16 if (testFile.fail())

 17 {

 18 cout << "ERROR: Cannot open the file.\n";

 19 return 0;

 20 }

 21

 22 // Write a value to the file.

 23 cout << "Writing the value " << num << " to the file.\n";

 24 testFile << num;

 25

 26 // Show the bit states.

 27 showState(testFile);

 28

 29 // Close the file.

 30 testFile.close();

 31

 32 // Reopen the file for input.

 33 testFile.open("stuff.dat", ios::in);

 34 if (testFile.fail())

 35 {

 36 cout << "ERROR: Cannot open the file.\n";

 37 return 0;

 38 }

 39

 40 // Read the only value from the file.

 41 cout << "Reading from the file.\n";

 42 testFile >> num;

 43 cout << "The value " << num << " was read.\n";

 44

 45 // Show the bit states.

 46 showState(testFile);

 47

(program continues)

M12_GADD6253_07_SE_C12 Page 663 Friday, January 7, 2011 8:10 PM

664 Chapter 12 Advanced File Operations

 48 // No more data in the file, but force an invalid read operation.

 49 cout << "Forcing a bad read operation.\n";

 50 testFile >> num;

 51

 52 // Show the bit states.

 53 showState(testFile);

 54

 55 // Close the file.

 56 testFile.close();

 57 return 0;

 58 }

 59

 60 //***

 61 // Definition of function showState. This function uses *

 62 // an fstream reference as its parameter. The return values of *

 63 // the eof(), fail(), bad(), and good() member functions are *

 64 // displayed. The clear() function is called before the function *

 65 // returns. *

 66 //***

 67

 68 void showState(fstream &file)

 69 {

 70 cout << "File Status:\n";

 71 cout << " eof bit: " << file.eof() << endl;

 72 cout << " fail bit: " << file.fail() << endl;

 73 cout << " bad bit: " << file.bad() << endl;

 74 cout << " good bit: " << file.good() << endl;

 75 file.clear(); // Clear any bad bits

 76 }

Program Output

Writing the value 10 to the file.

File Status:

 eof bit: 0

 fail bit: 0

 bad bit: 0

 good bit: 1

Reading from the file.

The value 10 was read.

File Status:

 eof bit: 1

 fail bit: 0

 bad bit: 0

 good bit: 1

Forcing a bad read operation.

File Status:

 eof bit: 1

 fail bit: 1

 bad bit: 0

 good bit: 0

Program 12-6 (continued)

M12_GADD6253_07_SE_C12 Page 664 Friday, January 7, 2011 8:10 PM

12.5 Member Functions for Reading and Writing Files 665

12.5 Member Functions for Reading and Writing Files

CONCEPT: File stream objects have member functions for more specialized le

reading and writing.

If whitespace characters are part of the data in a le, a problem arises when the le is read by

the >> operator. Because the operator considers whitespace characters as delimiters, it does not

read them. For example, consider the le murphy.txt, which contains the following data:

Jayne Murphy

47 Jones Circle

Almond, NC 28702

Figure 12-5 shows the way the data is recorded in the le.

The problem that arises from the use of the >> operator is evident in the output of

Program 12-7.

Figure 12-5

Program 12-7

 1 // This program demonstrates how the >> operator should not

 2 // be used to read data that contain whitespace characters

 3 // from a file.

 4 #include <iostream>

 5 #include <fstream>

 6 #include <string>

 7 using namespace std;

 8

 9 int main()

 10 {

 11 string input; // To hold file input

 12 fstream nameFile; // File stream object

 13

 14 // Open the file in input mode.

 15 nameFile.open("murphy.txt", ios::in);

 16

 17 // If the file was successfully opened, continue.

 18 if (nameFile)

(program continues)

J a y n e u r p h y \n 4 7 M

 J o n e s C i r c l e \n A

l m o n d , N C 2 8 7 0

2 \n <EOF>

M12_GADD6253_07_SE_C12 Page 665 Friday, January 7, 2011 8:10 PM

666 Chapter 12 Advanced File Operations

The getline Function

The problem with Program 12-7 can be solved by using the getline function. The func-

tion reads a line of data, including whitespace characters. Here is an example of the

function call:

getline(dataFile, str,'\n');

The three arguments in this statement are explained as follows:

dataFile This is the name of the le stream object. It speci es the stream object

from which the data is to be read.

str This is the name of a string object. The data read from the le will be

stored here.

'\n' This is a delimiter character of your choice. If this delimiter is encoun-

tered, it will cause the function to stop reading. (This argument is

optional. If it s left out, '\n' is the default.)

The statement is an instruction to read a line of characters from the le. The function will

read until it encounters a \n. The line of characters will be stored in the str object.

Program 12-8 is a modi cation of Program 12-7. It uses the getline function to read

whole lines of data from the le.

 19 {

 20 // Read the file contents.

 21 while (nameFile >> input)

 22 {

 23 cout << input;

 24 }

 25

 26 // Close the file.

 27 nameFile.close();

 28 }

 29 else

 30 {

 31 cout << "ERROR: Cannot open file.\n";

 32 }

 33 return 0;

 34 }

Program Output

JayneMurphy47JonesCircleAlmond,NC28702

Program 12-8

 1 // This program uses the getline function to read a line of

 2 // data from the file.

 3 #include <iostream>

 4 #include <fstream>

 5 #include <string>

 6 using namespace std;

 7

 8 int main()

Program 12-7 (continued)

M12_GADD6253_07_SE_C12 Page 666 Friday, January 7, 2011 8:10 PM

12.5 Member Functions for Reading and Writing Files 667

Because the third argument of the getline function was left out in Program 12-8, its

default value is \n. Sometimes you might want to specify another delimiter. For example,

consider a le that contains multiple names and addresses, and that is internally formatted

in the following manner:

 Contents of names2.txt
Jayne Murphy$47 Jones Circle$Almond, NC 28702\n$Bobbie Smith$

217 Halifax Drive$Canton, NC 28716\n$Bill Hammet$PO Box 121$

Springfield, NC 28357\n$

Think of this le as consisting of three records. A record is a complete set of data about a

single item. Also, the records in the le above are made of three elds. The rst eld is the

person s name. The second eld is the person s street address or PO box number. The third

eld contains the person s city, state, and ZIP code. Notice that each eld ends with a $

character, and each record ends with a \n character. Program 12-9 demonstrates how a

getline function can be used to detect the $ characters.

 9 {

 10 string input; // To hold file input

 11 fstream nameFile; // File stream object

 12

 13 // Open the file in input mode.

 14 nameFile.open("murphy.txt", ios::in);

 15

 16 // If the file was successfully opened, continue.

 17 if (nameFile)

 18 {

 19 // Read an item from the file.

 20 getline(nameFile, input);

 21

 22 // While the last read operation

 23 // was successful, continue.

 24 while (nameFile)

 25 {

 26 // Display the last item read.

 27 cout << input << endl;

 28

 29 // Read the next item.

 30 getline(nameFile, input);

 31 }

 32

 33 // Close the file.

 34 nameFile.close();

 35 }

 36 else

 37 {

 38 cout << "ERROR: Cannot open file.\n";

 39 }

 40 return 0;

 41 }

Program Output

Jayne Murphy

47 Jones Circle

Almond, NC 28702

M12_GADD6253_07_SE_C12 Page 667 Friday, January 7, 2011 8:10 PM

668 Chapter 12 Advanced File Operations

Program 12-9

 1 // This file demonstrates the getline function with

 2 // a specified delimiter.

 3 #include <iostream>

 4 #include <fstream>

 5 #include <string>

 6 using namespace std;

 7

 8 int main()

 9 {

 10 string input; // To hold file input

 11

 12 // Open the file for input.

 13 fstream dataFile("names2.txt", ios::in);

 14

 15 // If the file was successfully opened, continue.

 16 if (dataFile)

 17 {

 18 // Read an item using $ as a delimiter.

 19 getline(dataFile, input, '$');

 20

 21 // While the last read operation

 22 // was successful, continue.

 23 while (dataFile)

 24 {

 25 // Display the last item read.

 26 cout << input << endl;

 27

 28 // Read an item using $ as a delimiter.

 29 getline(dataFile, input, '$');

 30 }

 31

 32 // Close the file.

 33 dataFile.close();

 34 }

 35 else

 36 {

 37 cout << "ERROR: Cannot open file.\n";

 38 }

 39 return 0;

 40 }

Program Output

Jayne Murphy

47 Jones Circle

Almond, NC 28702

Bobbie Smith

217 Halifax Drive

Canton, NC 28716

Bill Hammet

PO Box 121

Springfield, NC 28357

M12_GADD6253_07_SE_C12 Page 668 Friday, January 7, 2011 8:10 PM

12.5 Member Functions for Reading and Writing Files 669

Notice that the \n characters, which mark the end of each record, are also part of the out-

put. They cause an extra blank line to be printed on the screen, separating the records.

The get Member Function

The le stream object s get member function is also useful. It reads a single character

from the le. Here is an example of its usage:

inFile.get(ch);

In this example, ch is a char variable. A character will be read from the le and stored in

ch. Program 12-10 shows the function used in a complete program. The user is asked for

the name of a le. The le is opened and the get function is used in a loop to read the le s

contents, one character at a time.

NOTE: When using a printable character, such as $, to delimit data in a le, be sure to

select a character that will not actually appear in the data itself. Since it s doubtful that

anyone s name or address contains a $ character, it s an acceptable delimiter. If the le

contained dollar amounts, however, another delimiter would have been chosen.

Program 12-10

 1 // This program asks the user for a file name. The file is

 2 // opened and its contents are displayed on the screen.

 3 #include <iostream>

 4 #include <fstream>

 5 #include <string>

 6 using namespace std;

 7

 8 int main()

 9 {

 10 string fileName; // To hold the file name

 11 char ch; // To hold a character

 12 fstream file; // File stream object

 13

 14 // Get the file name

 15 cout << "Enter a file name: ";

 16 cin >> fileName;

 17

 18 // Open the file.

 19 file.open(fileName.c_str(), ios::in);

 20

 21 // If the file was successfully opened, continue.

 22 if (file)

 23 {

 24 // Get a character from the file.

 25 file.get(ch);

 26

 27 // While the last read operation was

 28 // successful, continue.

 29 while (file)

 30 {

(program continues)

M12_GADD6253_07_SE_C12 Page 669 Friday, January 7, 2011 8:10 PM

670 Chapter 12 Advanced File Operations

Program 12-10 will display the contents of any le. The get function even reads

whitespaces, so all the characters will be shown exactly as they appear in the le.

The put Member Function

The put member function writes a single character to the le. Here is an example of its usage:

outFile.put(ch);

In this statement, the variable ch is assumed to be a char variable. Its contents will be

written to the le associated with the le stream object outFile. Program 12-11 demon-

strates the put function.

 31 // Display the last character read.

 32 cout << ch;

 33

 34 // Read the next character

 35 file.get(ch);

 36 }

 37

 38 // Close the file.

 39 file.close();

 40 }

 41 else

 42 cout << fileName << " could not be opened.\n";

 43 return 0;

 44 }

Program 12-11

 1 // This program demonstrates the put member function.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 char ch; // To hold a character

 9

 10 // Open the file for output.

 11 fstream dataFile("sentence.txt", ios::out);

 12

 13 cout << "Type a sentence and be sure to end it with a ";

 14 cout << "period.\n";

 15

 16 // Get a sentence from the user one character at a time

 17 // and write each character to the file.

 18 cin.get(ch);

 19 while (ch != '.')

 20 {

 21 dataFile.put(ch);

 22 cin.get(ch);

 23 }

Program 12-10 (continued)

M12_GADD6253_07_SE_C12 Page 670 Friday, January 7, 2011 8:10 PM

12.5 Member Functions for Reading and Writing Files 671

Checkpoint

 www.myprogramminglab.com

12.7 Assume the le input.txt contains the following characters:

What will the following program display on the screen?

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main()

{

 fstream inFile("input.txt", ios::in);

 string item;

 inFile >> item;

 while (inFile)

 {

 cout << item << endl;

 inFile >> item;

 }

 inFile.close();

 return 0;

}

12.8 Describe the difference between reading a le with the >> operator and the

getline function.

12.9 What will be stored in the le out.txt after the following program runs?

include <iostream>

#include <fstream>

#include <iomanip>

using namespace std;

 24 dataFile.put(ch); // Write the period.

 25

 26 // Close the file.

 27 dataFile.close();

 28 return 0;

 29 }

Program Output with Example Input Shown in Bold

Type a sentence and be sure to end it with a period.

I am on my way to becoming a great programmer. [Enter]

Resulting Contents of the File sentence.txt:

I am on my way to becoming a great programmer.

R u n S p t r u n \n S e o

e S p o t r u n \n <EOF>

M12_GADD6253_07_SE_C12 Page 671 Friday, January 7, 2011 8:10 PM

672

Chapter 12 Advanced File Operations

int main()

{

 const int SIZE = 5;

 ofstream outFile("out.txt");

 double nums[SIZE] = {100.279, 1.719, 8.602, 7.777, 5.099};

 outFile << fixed << setprecision(2);

 for (int count = 0; count < 5; count++)

 {

 outFile << setw(8) << nums[count];

 }

 outFile.close();

 return 0;

}

12.6

Focus on Software Engineering:
Working with Multiple Files

CONCEPT:

It s possible to have more than one le open at once in a program.

Quite often you will need to have multiple les open at once. In many real-world applica-

tions, data about a single item are categorized and written to several different les. For

example, a payroll system might keep the following les:

emp.dat

A le that contains the following data about each employee: name, job

title, address, telephone number, employee number, and the date hired.

pay.dat

A le that contains the following data about each employee: employee

number, hourly pay rate, overtime rate, and number of hours worked

in the current pay cycle.

withhold.dat

A le that contains the following data about each employee: employee

number, dependents, and extra withholdings.

When the system is writing paychecks, you can see that it will need to open each of the

les listed above and read data from them. (Notice that each le contains the employee

number. This is how the program can locate a speci c employee s data.)

In C++, you open multiple les by de ning multiple le stream objects. For example, if

you need to read from three les, you can de ne three le stream objects, such as:

ifstream file1, file2, file3;

Sometimes you will need to open one le for input and another le for output. For exam-

ple, Program 12-12 asks the user for a le name. The le is opened and read. Each charac-

ter is converted to uppercase and written to a second le called

out.txt

. This type of

program can be considered a

lter

. Filters read the input of one le, changing the data in

some fashion, and write it out to a second le. The second le is a modi ed version of the

rst le.

VideoNote

Working with

Multiple Files

M12_GADD6253_07_SE_C12 Page 672 Monday, January 17, 2011 3:09 PM

12.6 Focus on Software Engineering: Working with Multiple Files 673

Program 12-12

 1 // This program demonstrates reading from one file and writing

 2 // to a second file.

 3 #include <iostream>

 4 #include <fstream>

 5 #include <string>

 6 #include <cctype> // Needed for the toupper function.

 7 using namespace std;

 8

 9 int main()

 10 {

 11 string fileName; // To hold the file name

 12 char ch; // To hold a character

 13 ifstream inFile; // Input file

 14

 15 // Open a file for output.

 16 ofstream outFile("out.txt");

 17

 18 // Get the input file name.

 19 cout << "Enter a file name: ";

 20 cin >> fileName;

 21

 22 // Open the file for input.

 23 inFile.open(fileName.c_str());

 24

 25 // If the input file opened successfully, continue.

 26 if (inFile)

 27 {

 28 // Read a char from file 1.

 29 inFile.get(ch);

 30

 31 // While the last read operation was

 32 // successful, continue.

 33 while (inFile)

 34 {

 35 // Write uppercase char to file 2.

 36 outFile.put(toupper(ch));

 37

 38 // Read another char from file 1.

 39 inFile.get(ch);

 40 }

 41

 42 // Close the two files.

 43 inFile.close();

 44 outFile.close();

 45 cout << "File conversion done.\n";

 46 }

 47 else

 48 cout << "Cannot open " << fileName << endl;

 49 return 0;

 50 }

(program output continues)

M12_GADD6253_07_SE_C12 Page 673 Friday, January 7, 2011 8:10 PM

674 Chapter 12 Advanced File Operations

12.7 Binary Files

CONCEPT: Binary les contain data that is not necessarily stored as ASCII text.

All the les you ve been working with so far have been text les. That means the data stored

in the les has been formatted as ASCII text. Even a number, when stored in a le with the

<< operator, is converted to text. For example, consider the following program segment:

ofstream file("num.dat");

short x = 1297;

file << x;

The last statement writes the contents of x to the le. When the number is written, however,

it is stored as the characters '1', '2', '9', and '7'. This is illustrated in Figure 12-6.

The number 1297 isn t stored in memory (in the variable x) in the fashion depicted in the g-

ure above, however. It is formatted as a binary number, occupying two bytes on a typical PC.

Figure 12-7 shows how the number is represented in memory, using binary or hexadecimal.

Program Output with Example Input Shown in Bold

Enter a file name: hownow.txt [Enter]
File conversion done.

Contents of hownow.txt

how now brown cow.

How Now?

Resulting Contents of out.txt

HOW NOW BROWN COW.

HOW NOW?

Figure 12-6

Figure 12-7

Program 12-12 (continued)

'1'

1297 expressed in ASCII

'2' '9' '7' <EOF>

49 50 57 55 <EOF>

00000101

1297 as a short integer, in binary

1297 as a short integer, in hexadecimal

00010001

05 11

M12_GADD6253_07_SE_C12 Page 674 Friday, January 7, 2011 8:10 PM

12.7 Binary Files 675

The representation of the number shown in Figure 12-7 is the way the raw data is

stored in memory. Data can be stored in a le in its pure, binary format. The rst step is to

open the le in binary mode. This is accomplished by using the ios::binary ag. Here is

an example:

file.open("stuff.dat", ios::out | ios::binary);

Notice the ios::out and ios::binary ags are joined in the statement with the | oper-

ator. This causes the le to be opened in both output and binary modes.

The write and read Member Functions

The le stream object s write member function is used to write binary data to a le. The

general format of the write member function is

Let s look at the parts of this function call format.

fileObject is the name of a file stream object.

address is the starting address of the section of memory that is to be written to the

file. This argument is expected to be the address of a char (or a pointer to a char).

size is the number of bytes of memory to write. This argument must be an inte-

ger value.

For example, the following code uses a le stream object named file to write a character

to a binary le.

char letter = 'A';

file.write(&letter, sizeof(letter));

The rst argument passed to the write function is the address of the letter variable. This

tells the write function where the data that is to be written to the le is located. The second

argument is the size of the letter variable, which is returned from the sizeof operator.

This tells the write function the number of bytes of data to write to the le. Because the

sizes of data types can vary among systems, it is best to use the sizeof operator to deter-

mine the number of bytes to write. After this function call executes, the contents of the

letter variable will be written to the binary le associated with the file object.

The following code shows another example. This code writes an entire char array to a

binary le.

char data[] = {'A', 'B', 'C', 'D'};

file.write(data, sizeof(data));

In this code, the rst argument is the name of the data array. By passing the name of the

array we are passing a pointer to the beginning of the array. Because data is an array of

char values, the name of the array is a pointer to a char. The second argument passes the

name of the array to the sizeof operator. When the name of an array is passed to the

sizeof operator, the operator returns the number of bytes allocated to the array. After

this function call executes, the contents of the data array will be written to the binary le

associated with the file object.

NOTE: By default, les are opened in text mode.

 fileObject.write(address, size);

M12_GADD6253_07_SE_C12 Page 675 Friday, January 7, 2011 8:10 PM

676 Chapter 12 Advanced File Operations

The read member function is used to read binary data from a le into memory. The gen-

eral format of the read member function is

Here are the parts of this function call format:

fileObject is the name of a file stream object.

address is the starting address of the section of memory where the data being

read from the file is to be stored. This is expected to be the address of a char (or

a pointer to a char).

size is the number of bytes of memory to read from the file. This argument must

be an integer value.

For example, suppose we want to read a single character from a binary le and store that

character in the letter variable. The following code uses a le stream object named file

to do just that.

char letter;

file.read(&letter, sizeof(letter));

The rst argument passed to the read function is the address of the letter variable. This

tells the read function where to store the value that is read from the le. The second argu-

ment is the size of the letter variable. This tells the read function the number of bytes to

read from the le. After this function executes, the letter variable will contain a charac-

ter that was read from the le.

The following code shows another example. This code reads enough data from a binary

le to ll an entire char array.

char data[4];

file.read(data, sizeof(data));

In this code, the rst argument is the address of the data array. The second argument is

the number of bytes allocated to the array. On a system that uses 1-byte characters, this

function will read four bytes from the le and store them in the data array.

Program 12-13 demonstrates writing a char array to a le and then reading the data from

the le back into memory.

 fileObject.read(address, size);

Program 12-13

 1 // This program uses the write and read functions.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int SIZE = 4;

 9 char data[SIZE] = {'A', 'B', 'C', 'D'};

 10 fstream file;

 11

M12_GADD6253_07_SE_C12 Page 676 Friday, January 7, 2011 8:10 PM

12.7 Binary Files 677

Writing Data Other Than char to Binary Files

Because the write and read member functions expect their rst argument to be a

pointer to a char, you must use a type cast when writing and reading items that are of

other data types. To convert a pointer from one type to another you should use the

reinterpret_cast type cast. The general format of the type cast is

reinterpret_cast<dataType>(value)

where dataType is the data type that you are converting to, and value is the value that

you are converting. For example, the following code uses the type cast to store the address

of an int in a char pointer variable.

int x = 65;

char *ptr;

ptr = reinterpret_cast<char *>(&x);

The following code shows how to use the type cast to pass the address of an integer as the

rst argument to the write member function.

int x = 27;

file.write(reinterpret_cast<char *>(&x), sizeof(x));

 12 // Open the file for output in binary mode.

 13 file.open("test.dat", ios::out | ios::binary);

 14

 15 // Write the contents of the array to the file.

 16 cout << "Writing the characters to the file.\n";

 17 file.write(data, sizeof(data));

 18

 19 // Close the file.

 20 file.close();

 21

 22 // Open the file for input in binary mode.

 23 file.open("test.dat", ios::in | ios::binary);

 24

 25 // Read the contents of the file into the array.

 26 cout << "Now reading the data back into memory.\n";

 27 file.read(data, sizeof(data));

 28

 29 // Display the contents of the array.

 30 for (int count = 0; count < SIZE; count++)

 31 cout << data[count] << " ";

 32 cout << endl;

 33

 34 // Close the file.

 35 file.close();

 36 return 0;

 37 }

Program Output

Writing the characters to the file.

Now reading the data back into memory.

A B C D

M12_GADD6253_07_SE_C12 Page 677 Friday, January 7, 2011 8:10 PM

678 Chapter 12 Advanced File Operations

After the function executes, the contents of the variable x will be written to the binary le associ-

ated with the file object. The following code shows an int array being written to a binary le.

const int SIZE = 10;

int numbers[SIZE] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

file.write(reinterpret_cast<char *>(numbers), sizeof(numbers));

After this function call executes, the contents of the numbers array will be written to the

binary le. The following code shows values being read from the le and stored into the

numbers array.

const int SIZE = 10;

int numbers[SIZE];

file.read(reinterpret_cast<char *>(numbers), sizeof(numbers));

Program 12-14 demonstrates writing an int array to a le and then reading the data from

the le back into memory.

Program 12-14

 1 // This program uses the write and read functions.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int SIZE = 10;

 9 fstream file;

 10 int numbers[SIZE] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 11

 12 // Open the file for output in binary mode.

 13 file.open("numbers.dat", ios::out | ios::binary);

 14

 15 // Write the contents of the array to the file.

 16 cout << "Writing the data to the file.\n";

 17 file.write(reinterpret_cast<char *>(numbers), sizeof(numbers));

 18

 19 // Close the file.

 20 file.close();

 21

 22 // Open the file for input in binary mode.

 23 file.open("numbers.dat", ios::in | ios::binary);

 24

 25 // Read the contents of the file into the array.

 26 cout << "Now reading the data back into memory.\n";

 27 file.read(reinterpret_cast<char *>(numbers), sizeof(numbers));

 28

 29 // Display the contents of the array.

 30 for (int count = 0; count < SIZE; count++)

 31 cout << numbers[count] << " ";

 32 cout << endl;

 33

 34 // Close the file.

 35 file.close();

 36 return 0;

 37 }

M12_GADD6253_07_SE_C12 Page 678 Friday, January 7, 2011 8:10 PM

12.8 Creating Records with Structures 679

12.8 Creating Records with Structures

CONCEPT: Structures may be used to store xed-length records to a le.

Earlier in this chapter the concept of elds and records was introduced. A eld is an indi-

vidual piece of data pertaining to a single item. A record is made up of elds and is a com-

plete set of data about a single item. For example, a set of elds might be a person s name,

age, address, and phone number. Together, all those elds that pertain to one person make

up a record.

In C++, structures provide a convenient way to organize data into elds and records. For

example, the following code could be used to create a record containing data about a person.

const int NAME_SIZE = 51, ADDR_SIZE = 51, PHONE_SIZE = 14;

struct Info

{

 char name[NAME_SIZE];

 int age;

 char address1[ADDR_SIZE];

 char address2[ADDR_SIZE];

 char phone[PHONE_SIZE];

};

Besides providing an organizational structure for data, structures also package data into a

single unit. For example, assume the structure variable person is de ned as

Info person;

Once the members (or elds) of person are lled with data, the entire variable may be

written to a le using the write function:

file.write(reinterpret_cast<char *>(&person), sizeof(person));

The rst argument is the address of the person variable. The reinterpret_cast opera-

tor is used to convert the address to a char pointer. The second argument is the sizeof

operator with person as its argument. This returns the number of bytes used by the

person structure. Program 12-15 demonstrates this technique.

Program Output

Writing the data to the file.

Now reading the data back into memory.

1 2 3 4 5 6 7 8 9 10

NOTE: Because structures can contain a mixture of data types, you should always use

the ios::binary mode when opening a le to store them.

M12_GADD6253_07_SE_C12 Page 679 Friday, January 7, 2011 8:10 PM

680 Chapter 12 Advanced File Operations

Program 12-15

 1 // This program uses a structure variable to store a record to a file.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 // Array sizes

 7 const int NAME_SIZE = 51, ADDR_SIZE = 51, PHONE_SIZE = 14;

 8

 9 // Declare a structure for the record.

 10 struct Info

 11 {

 12 char name[NAME_SIZE];

 13 int age;

 14 char address1[ADDR_SIZE];

 15 char address2[ADDR_SIZE];

 16 char phone[PHONE_SIZE];

 17 };

 18

 19 int main()

 20 {

 21 Info person; // To hold info about a person

 22 char again; // To hold Y or N

 23

 24 // Open a file for binary output.

 25 fstream people("people.dat", ios::out | ios::binary);

 26

 27 do

 28 {

 29 // Get data about a person.

 30 cout << "Enter the following data about a "

 31 << "person:\n";

 32 cout << "Name: ";

 33 cin.getline(person.name, NAME_SIZE);

 34 cout << "Age: ";

 35 cin >> person.age;

 36 cin.ignore(); // Skip over the remaining newline.

 37 cout << "Address line 1: ";

 38 cin.getline(person.address1, ADDR_SIZE);

 39 cout << "Address line 2: ";

 40 cin.getline(person.address2, ADDR_SIZE);

 41 cout << "Phone: ";

 42 cin.getline(person.phone, PHONE_SIZE);

 43

 44 // Write the contents of the person structure to the file.

 45 people.write(reinterpret_cast<char *>(&person),

 46 sizeof(person));

 47

 48 // Determine whether the user wants to write another record.

 49 cout << "Do you want to enter another record? ";

 50 cin >> again;

 51 cin.ignore(); // Skip over the remaining newline.

 52 } while (again == 'Y' || again == 'y');

 53

M12_GADD6253_07_SE_C12 Page 680 Friday, January 7, 2011 8:10 PM

12.8 Creating Records with Structures 681

Program 12-15 allows you to build a le by lling the members of the person variable,

and then writing the variable to the le. Program 12-16 opens the le and reads each

record into the person variable, then displays the data on the screen.

 54 // Close the file.

 55 people.close();

 56 return 0;

 57 }

Program Output with Example Input Shown in Bold

Enter the following data about a person:

Name: Charlie Baxter [Enter]
Age: 42 [Enter]
Address line 1: 67 Kennedy Blvd. [Enter]
Address line 2: Perth, SC 38754 [Enter]
Phone: (803)555-1234 [Enter]
Do you want to enter another record? Y [Enter]
Enter the following data about a person:

Name: Merideth Murney [Enter]
Age: 22 [Enter]
Address line 1: 487 Lindsay Lane [Enter]
Address line 2: Hazelwood, NC 28737 [Enter]
Phone: (828)555-9999 [Enter]
Do you want to enter another record? N [Enter]

Program 12-16

 1 // This program uses a structure variable to read a record from a file.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 const int NAME_SIZE = 51, ADDR_SIZE = 51, PHONE_SIZE = 14;

 7

 8 // Declare a structure for the record.

 9 struct Info

 10 {

 11 char name[NAME_SIZE];

 12 int age;

 13 char address1[ADDR_SIZE];

 14 char address2[ADDR_SIZE];

 15 char phone[PHONE_SIZE];

 16 };

 17

 18 int main()

 19 {

 20 Info person; // To hold info about a person

 21 char again; // To hold Y or N

 22 fstream people; // File stream object

 23

 24 // Open the file for input in binary mode.

 25 people.open("people.dat", ios::in | ios::binary);

 26

(program continues)

M12_GADD6253_07_SE_C12 Page 681 Friday, January 7, 2011 8:10 PM

682 Chapter 12 Advanced File Operations

 27 // Test for errors.

 28 if (!people)

 29 {

 30 cout << "Error opening file. Program aborting.\n";

 31 return 0;

 32 }

 33

 34

 35 cout << "Here are the people in the file:\n\n";

 36 // Read the first record from the file.

 37 people.read(reinterpret_cast<char *>(&person),

 38 sizeof(person));

 39

 40 // While not at the end of the file, display

 41 // the records.

 42 while (!people.eof())

 43 {

 44 // Display the record.

 45 cout << "Name: ";

 46 cout << person.name << endl;

 47 cout << "Age: ";

 48 cout << person.age << endl;

 49 cout << "Address line 1: ";

 50 cout << person.address1 << endl;

 51 cout << "Address line 2: ";

 52 cout << person.address2 << endl;

 53 cout << "Phone: ";

 54 cout << person.phone << endl;

 55

 56 // Wait for the user to press the Enter key.

 57 cout << "\nPress the Enter key to see the next record.\n";

 58 cin.get(again);

 59

 60 // Read the next record from the file.

 61 people.read(reinterpret_cast<char *>(&person),

 62 sizeof(person));

 63 }

 64

 65 cout << "That's all the data in the file!\n";

 66 people.close();

 67 return 0;

 68 }

Program Output (Using the same le created by Program 12-15 as input)

Here are the people in the file:

Name: Charlie Baxter

Age: 42

Address line 1: 67 Kennedy Blvd.

Address line 2: Perth, SC 38754

Phone: (803)555-1234

Program 12-16 (continued)

M12_GADD6253_07_SE_C12 Page 682 Friday, January 7, 2011 8:10 PM

12.9 Random-Access Files 683

12.9 Random-Access Files

CONCEPT: Random Access means nonsequentially accessing data in a le.

All of the programs created so far in this chapter have performed sequential le access. When

a le is opened, the position where reading and/or writing will occur is at the le s beginning

(unless the ios::app mode is used, which causes data to be written to the end of the le). If

the le is opened for output, bytes are written to it one after the other. If the le is opened for

input, data is read beginning at the rst byte. As the reading or writing continues, the le

stream object s read/write position advances sequentially through the le s contents.

The problem with sequential le access is that in order to read a speci c byte from the le,

all the bytes that precede it must be read rst. For instance, if a program needs data stored

at the hundredth byte of a le, it will have to read the rst 99 bytes to reach it. If you ve

ever listened to a cassette tape player, you understand sequential access. To listen to a song

at the end of the tape, you have to listen to all the songs that come before it, or fast-

forward over them. There is no way to immediately jump to that particular song.

Although sequential le access is useful in many circumstances, it can slow a program

down tremendously. If the le is very large, locating data buried deep inside it can take a

long time. Alternatively, C++ allows a program to perform random le access. In random

le access, a program may immediately jump to any byte in the le without rst reading

the preceding bytes. The difference between sequential and random le access is like the

difference between a cassette tape and a compact disc. When listening to a CD, there is no

need to listen to or fast forward over unwanted songs. You simply jump to the track that

you want to listen to. This is illustrated in Figure 12-8.

The seekp and seekg Member Functions

File stream objects have two member functions that are used to move the read/write posi-

tion to any byte in the le. They are seekp and seekg. The seekp function is used with

Press the Enter key to see the next record.

Name: Merideth Murney

Age: 22

Address line 1: 487 Lindsay Lane

Address line 2: Hazelwood, NC 28737

Phone: (828)555-9999

Press the Enter key to see the next record.

That's all the data in the file!

NOTE: Structures containing pointers cannot be correctly stored to disk using the

techniques of this section. This is because if the structure is read into memory on a

subsequent run of the program, it cannot be guaranteed that all program variables will be

at the same memory locations. Because string class objects contain implicit pointers,

they cannot be a part of a structure that has to be stored.

M12_GADD6253_07_SE_C12 Page 683 Friday, January 7, 2011 8:10 PM

684 Chapter 12 Advanced File Operations

les opened for output and seekg is used with les opened for input. (It makes sense if

you remember that p stands for put and g stands for get. seekp is used with

les that you put data into, and seekg is used with les you get data out of.)

Here is an example of seekp s usage:

file.seekp(20L, ios::beg);

The rst argument is a long integer representing an offset into the le. This is the number

of the byte you wish to move to. In this example, 20L is used. (Remember, the L suf x

forces the compiler to treat the number as a long integer.) This statement moves the le s

write position to byte number 20. (All numbering starts at 0, so byte number 20 is actu-

ally the twenty- rst byte.)

The second argument is called the mode, and it designates where to calculate the offset

from. The ag ios::beg means the offset is calculated from the beginning of the le.

Alternatively, the offset can be calculated from the end of the le or the current position in

the le. Table 12-6 lists the ags for all three of the random-access modes.

Table 12-7 shows examples of seekp and seekg using the various mode ags.

Notice that some of the examples in Table 12-7 use a negative offset. Negative offsets

result in the read or write position being moved backward in the le, while positive offsets

result in a forward movement.

Assume the le letters.txt contains the following data:

abcdefghijklmnopqrstuvwxyz

Program 12-17 uses the seekg function to jump around to different locations in the le,

retrieving a character after each stop.

Figure 12-8

Table 12-6

Mode Flag Description

ios::beg The offset is calculated from the beginning of the le.

ios::end The offset is calculated from the end of the le.

ios::cur The offset is calculated from the current position.

Sequential Access

Random Access

M12_GADD6253_07_SE_C12 Page 684 Friday, January 7, 2011 8:10 PM

12.9 Random-Access Files 685

Table 12-7

Statement How It Affects the Read/Write Position

file.seekp(32L, ios::beg); Sets the write position to the 33rd byte (byte 32) from the

beginning of the le.

file.seekp(-10L, ios::end); Sets the write position to the 10th byte from the end of the le.

file.seekp(120L, ios::cur); Sets the write position to the 121st byte (byte 120) from the current

position.

file.seekg(2L, ios::beg); Sets the read position to the 3rd byte (byte 2) from the beginning of

the le.

file.seekg(-100L, ios::end); Sets the read position to the 100th byte from the end of the le.

file.seekg(40L, ios::cur); Sets the read position to the 41st byte (byte 40) from the current

position.

file.seekg(0L, ios::end); Sets the read position to the end of the le.

Program 12-17

 1 // This program demonstrates the seekg function.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 char ch; // To hold a character

 9

 10 // Open the file for input.

 11 fstream file("letters.txt", ios::in);

 12

 13 // Move to byte 5 from the beginning of the file

 14 // (the 6th byte) and read the character there.

 15 file.seekg(5L, ios::beg);

 16 file.get(ch);

 17 cout << "Byte 5 from beginning: " << ch << endl;

 18

 19 // Move to the 10th byte from the end of the file

 20 // and read the character there.

 21 file.seekg(-10L, ios::end);

 22 file.get(ch);

 23 cout << "10th byte from end: " << ch << endl;

 24

 25 // Move to byte 3 from the current position

 26 // (the 4th byte) and read the character there.

 27 file.seekg(3L, ios::cur);

 28 file.get(ch);

 29 cout << "Byte 3 from current: " << ch << endl;

 30

 31 file.close();

 32 return 0;

 33 }

(program output continues)

M12_GADD6253_07_SE_C12 Page 685 Friday, January 7, 2011 8:10 PM

686 Chapter 12 Advanced File Operations

Program 12-18 shows a more robust example of the seekg function. It opens the

people.dat le created by Program 12-15. The le contains two records. Program 12-18

displays record 1 (the second record) rst, then displays record 0.

The program has two important functions other than main. The rst, byteNum, takes a

record number as its argument and returns that record s starting byte. It calculates the

record s starting byte by multiplying the record number by the size of the Info structure.

This returns the offset of that record from the beginning of the le. The second function,

showRec, accepts an Info structure as its argument and displays its contents on the screen.

Program Screen Output

Byte 5 from beginning: f

10th byte from end: q

Byte 3 from current: u

Program 12-18

 1 // This program randomly reads a record of data from a file.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 const int NAME_SIZE = 51, ADDR_SIZE = 51, PHONE_SIZE = 14;

 7

 8 // Declare a structure for the record.

 9 struct Info

 10 {

 11 char name[NAME_SIZE];

 12 int age;

 13 char address1[ADDR_SIZE];

 14 char address2[ADDR_SIZE];

 15 char phone[PHONE_SIZE];

 16 };

 17

 18 // Function Prototypes

 19 long byteNum(int);

 20 void showRec(Info);

 21

 22 int main()

 23 {

 24 Info person; // To hold info about a person

 25 fstream people; // File stream object

 26

 27 // Open the file for input in binary mode.

 28 people.open("people.dat", ios::in | ios::binary);

 29

Program 12-17 (continued)

M12_GADD6253_07_SE_C12 Page 686 Friday, January 7, 2011 8:10 PM

12.9 Random-Access Files 687

 30 // Test for errors.

 31 if (!people)

 32 {

 33 cout << "Error opening file. Program aborting.\n";

 34 return 0;

 35 }

 36

 37 // Read and display record 1 (the second record).

 38 cout << "Here is record 1:\n";

 39 people.seekg(byteNum(1), ios::beg);

 40 people.read(reinterpret_cast<char *>(&person), sizeof(person));

 41 showRec(person);

 42

 43 // Read and display record 0 (the first record).

 44 cout << "\nHere is record 0:\n";

 45 people.seekg(byteNum(0), ios::beg);

 46 people.read(reinterpret_cast<char *>(&person), sizeof(person));

 47 showRec(person);

 48

 49 // Close the file.

 50 people.close();

 51 return 0;

 52 }

 53

 54 //**

 55 // Definition of function byteNum. Accepts an integer as *

 56 // its argument. Returns the byte number in the file of the *

 57 // record whose number is passed as the argument. *

 58 //**

 59

 60 long byteNum(int recNum)

 61 {

 62 return sizeof(Info) * recNum;

 63 }

 64

 65 //**

 66 // Definition of function showRec. Accepts an Info structure *

 67 // as its argument, and displays the structure's contents. *

 68 //**

 69

 70 void showRec(Info record)

 71 {

 72 cout << "Name: ";

 73 cout << record.name << endl;

 74 cout << "Age: ";

 75 cout << record.age << endl;

 76 cout << "Address line 1: ";

 77 cout << record.address1 << endl;

 78 cout << "Address line 2: ";

 79 cout << record.address2 << endl;

(program continues)

M12_GADD6253_07_SE_C12 Page 687 Friday, January 7, 2011 8:10 PM

688

Chapter 12 Advanced File Operations

The

tellp

 and

tellg

 Member Functions

File stream objects have two more member functions that may be used for random le

access:

tellp

 and

tellg

. Their purpose is to return, as a long integer, the current byte

number of a le s read and write position. As you can guess,

tellp

 returns the write posi-

tion and

tellg

 returns the read position. Assuming

pos

 is a long integer, here is an exam-

ple of the functions usage:

pos = outFile.tellp();

pos = inFile.tellg();

One application of these functions is to determine the number of bytes that a le contains.

The following example demonstrates how to do this using the

tellg

 function.

file.seekg(0L, ios::end);

numBytes = file.tellg();

cout << "The file has " << numBytes << " bytes.\n";

First the

seekg

 member function is used to move the read position to the last byte in the

le. Then the

tellg

 function is used to get the current byte number of the read position.

Program 12-19 demonstrates the

tellg

 function. It opens the

letters.txt

 le, which

was also used in Program 12-17. The le contains the following characters:

abcdefghijklmnopqrstuvwxyz

Program 12-18

(continued)

 80 cout << "Phone: ";

 81 cout << record.phone << endl;

 82 }

Program Output (Using the same le created by Program 12 15 as input)

Here is record 1:

Name: Merideth Murney

Age: 22

Address line 1: 487 Lindsay Lane

Address line 2: Hazelwood, NC 28737

Phone: (828)555-9999

Here is record 0:

Name: Charlie Baxter

Age: 42

Address line 1: 67 Kennedy Blvd.

Address line 2: Perth, SC 38754

Phone: (803)555-1234

WARNING!

If a program has read to the end of a le, you must call the le stream

object s

clear

 member function before calling

seekg

 or

seekp

. This clears the le stream

object s

eof

 ag. Otherwise, the

seekg

 or

seekp

 function will not work.

M12_GADD6253_07_SE_C12 Page 688 Monday, January 17, 2011 3:09 PM

12.9 Random-Access Files 689

Program 12-19

 1 // This program demonstrates the tellg function.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 long offset; // To hold an offset amount

 9 long numBytes; // To hold the file size

 10 char ch; // To hold a character

 11 char again; // To hold Y or N

 12

 13 // Open the file for input.

 14 fstream file("letters.txt", ios::in);

 15

 16 // Determine the number of bytes in the file.

 17 file.seekg(0L, ios::end);

 18 numBytes = file.tellg();

 19 cout << "The file has " << numBytes << " bytes.\n";

 20

 21 // Go back to the beginning of the file.

 22 file.seekg(0L, ios::beg);

 23

 24 // Let the user move around within the file.

 25 do

 26 {

 27 // Display the current read position.

 28 cout << "Currently at position " << file.tellg() << endl;

 29

 30 // Get a byte number from the user.

 31 cout << "Enter an offset from the beginning of the file: ";

 32 cin >> offset;

 33

 34 // Move the read position to that byte, read the

 35 // character there, and display it.

 36 if (offset >= numBytes) // Past the end of the file?

 37 cout << "Cannot read past the end of the file.\n";

 38 else

 39 {

 40 file.seekg(offset, ios::beg);

 41 file.get(ch);

 42 cout << "Character read: " << ch << endl;

 43 }

 44

 45 // Does the user want to try this again?

 46 cout << "Do it again? ";

 47 cin >> again;

 48 } while (again == 'Y' || again == 'y');

 49

 50 // Close the file.

 51 file.close();

 52 return 0;

 53 }

(program output continues)

M12_GADD6253_07_SE_C12 Page 689 Friday, January 7, 2011 8:10 PM

690 Chapter 12 Advanced File Operations

Rewinding a Sequential-Access File with seekg

Sometimes when processing a sequential le, it is necessary for a program to read the con-

tents of the le more than one time. For example, suppose a program searches a le for an

item speci ed by the user. The program must open the le, read its contents, and deter-

mine if the speci ed item is in the le. If the user needs to search the le again for another

item, the program must read the le s contents again.

One simple approach for reading a le s contents more than once is to close and reopen

the le, as shown in the following code example.

dataFile.open("file.txt", ios::in); // Open the file.

//

// Read and process the file's contents.

//

dataFile.close(); // Close the file.

dataFile.open("file.txt", ios::in); // Open the file again.

//

// Read and process the file's contents again.

//

dataFile.close(); // Close the file.

Each time the le is reopened, its read position is located at the beginning of the le. The

read position is the byte in the le that will be read with the next read operation.

Another approach is to rewind the le. This means moving the read position to the

beginning of the le without closing and reopening it. This is accomplished with the le

stream object s seekg member function to move the read position back to the beginning

of the le. The following example code demonstrates.

dataFile.open("file.txt", ios::in); // Open the file.

//

// Read and process the file's contents.

//

Program 12-19 (continued)

Program Output with Example Input Shown in Bold

The file has 26 bytes.

Currently at position 0

Enter an offset from the beginning of the file: 5 [Enter]
Character read: f

Do it again? y [Enter]
Currently at position 6

Enter an offset from the beginning of the file: 0 [Enter]
Character read: a

Do it again? y [Enter]
Currently at position 1

Enter an offset from the beginning of the file: 26 [Enter]
Cannot read past the end of the file.

Do it again? n [Enter]

M12_GADD6253_07_SE_C12 Page 690 Friday, January 7, 2011 8:10 PM

12.10 Opening a File for Both Input and Output 691

dataFile.clear(); // Clear the eof flag.

dataFile.seekg(0L, ios::beg); // Rewind the read position.

//

// Read and process the file's contents again.

//

dataFile.close(); // Close the file.

Notice that prior to calling the seekg member function, the clear member function is

called. As previously mentioned this clears the le object s eof ag and is necessary only if

the program has read to the end of the le. This approach eliminates the need to close and

reopen the le each time the le s contents are processed.

12.10 Opening a File for Both Input and Output

CONCEPT: You may perform input and output on an fstream le without closing it

and reopening it.

Sometimes you ll need to perform both input and output on a le without closing and

reopening it. For example, consider a program that allows you to search for a record in a

le and then make changes to it. A read operation is necessary to copy the data from the

le to memory. After the desired changes have been made to the data in memory, a write

operation is necessary to replace the old data in the le with the new data in memory.

Such operations are possible with fstream objects. The ios::in and ios::out le access

ags may be joined with the | operator, as shown in the following statement.

fstream file("data.dat", ios::in | ios::out)

The same operation may be accomplished with the open member function:

file.open("data.dat", ios::in | ios::out);

You may also specify the ios::binary ag if binary data is to be written to the le. Here

is an example:

file.open("data.dat", ios::in | ios::out | ios::binary);

When an fstream le is opened with both the ios::in and ios::out ags, the le s cur-

rent contents are preserved and the read/write position is initially placed at the beginning

of the le. If the le does not exist, it is created.

Programs 12-20, 12-21, and 12-22 demonstrate many of the techniques we have discussed.

Program 12-20 sets up a le with ve blank inventory records. Each record is a structure

with members for holding a part description, quantity on hand, and price. Program 12-21

displays the contents of the le on the screen. Program 12-22 opens the le in both input

and output modes, and allows the user to change the contents of a speci c record.

M12_GADD6253_07_SE_C12 Page 691 Friday, January 7, 2011 8:10 PM

692 Chapter 12 Advanced File Operations

Program 12-21 simply displays the contents of the inventory le on the screen. It can be

used to verify that Program 12-20 successfully created the blank records, and that

Program 12-22 correctly modi ed the designated record.

Program 12-20

 1 // This program sets up a file of blank inventory records.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 // Constants

 7 const int DESC_SIZE = 31; // Description size

 8 const int NUM_RECORDS = 5; // Number of records

 9

 10 // Declaration of InventoryItem structure

 11 struct InventoryItem

 12 {

 13 char desc[DESC_SIZE];

 14 int qty;

 15 double price;

 16 };

 17

 18 int main()

 19 {

 20 // Create an empty InventoryItem structure.

 21 InventoryItem record = { "", 0, 0.0 };

 22

 23 // Open the file for binary output.

 24 fstream inventory("Inventory.dat", ios::out | ios::binary);

 25

 26 // Write the blank records

 27 for (int count = 0; count < NUM_RECORDS; count++)

 28 {

 29 cout << "Now writing record " << count << endl;

 30 inventory.write(reinterpret_cast<char *>(&record),

 31 sizeof(record));

 32 }

 33

 34 // Close the file.

 35 inventory.close();

 36 return 0;

 37 }

Program Output

Now writing record 0

Now writing record 1

Now writing record 2

Now writing record 3

Now writing record 4

M12_GADD6253_07_SE_C12 Page 692 Friday, January 7, 2011 8:10 PM

12.10 Opening a File for Both Input and Output 693

Here is the screen output of Program 12-21 if it is run immediately after Program 12-20

sets up the le of blank records.

Program 12-21

 1 // This program displays the contents of the inventory file.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 const int DESC_SIZE = 31; // Description size

 7

 8 // Declaration of InventoryItem structure

 9 struct InventoryItem

 10 {

 11 char desc[DESC_SIZE];

 12 int qty;

 13 double price;

 14 };

 15

 16 int main()

 17 {

 18 InventoryItem record; // To hold an inventory record

 19

 20 // Open the file for binary input.

 21 fstream inventory("Inventory.dat", ios::in | ios::binary);

 22

 23 // Now read and display the records

 24 inventory.read(reinterpret_cast<char *>(&record),

 25 sizeof(record));

 26 while (!inventory.eof())

 27 {

 28 cout << "Description: ";

 29 cout << record.desc << endl;

 30 cout << "Quantity: ";

 31 cout << record.qty << endl;

 32 cout << "Price: ";

 33 cout << record.price << endl << endl;

 34 inventory.read(reinterpret_cast<char *>(&record),

 35 sizeof(record));

 36 }

 37

 38 // Close the file.

 39 inventory.close();

 40 return 0;

 41 }

Program 12-21

Program Output

Description:

Quantity: 0

Price: 0.0

(program output continues)

M12_GADD6253_07_SE_C12 Page 693 Friday, January 7, 2011 8:10 PM

694 Chapter 12 Advanced File Operations

Program 12-22 allows the user to change the contents of an individual record in the inven-

tory le.

Description:

Quantity: 0

Price: 0.0

Description:

Quantity: 0

Price: 0.0

Description:

Quantity: 0

Price: 0.0

Description:

Quantity: 0

Price: 0.0

Program 12-22

 1 // This program allows the user to edit a specific record.

 2 #include <iostream>

 3 #include <fstream>

 4 using namespace std;

 5

 6 const int DESC_SIZE = 31; // Description size

 7

 8 // Declaration of InventoryItem structure

 9 struct InventoryItem

 10 {

 11 char desc[DESC_SIZE];

 12 int qty;

 13 double price;

 14 };

 15

 16 int main()

 17 {

 18 InventoryItem record; // To hold an inventory record

 19 long recNum; // To hold a record number

 20

 21 // Open the file in binary mode for input and output

 22 fstream inventory("Inventory.dat",

 23 ios::in | ios::out | ios::binary);

 24

 25 // Get the record number of the desired record.

 26 cout << "Which record do you want to edit? ";

 27 cin >> recNum;

 28

 29 // Move to the record and read it.

 30 inventory.seekg(recNum * sizeof(record), ios::beg);

 31 inventory.read(reinterpret_cast<char *>(&record),

 32 sizeof(record));

Program 12-21 (continued)

M12_GADD6253_07_SE_C12 Page 694 Friday, January 7, 2011 8:10 PM

12.10 Opening a File for Both Input and Output 695

Checkpoint

 www.myprogramminglab.com

12.10 Describe the difference between the seekg and the seekp functions.

12.11 Describe the difference between the tellg and the tellp functions.

12.12 Describe the meaning of the following le access ags:

ios::beg

ios::end

ios::cur

12.13 What is the number of the rst byte in a le?

 33

 34 // Display the record contents.

 35 cout << "Description: ";

 36 cout << record.desc << endl;

 37 cout << "Quantity: ";

 38 cout << record.qty << endl;

 39 cout << "Price: ";

 40 cout << record.price << endl;

 41

 42 // Get the new record data.

 43 cout << "Enter the new data:\n";

 44 cout << "Description: ";

 45 cin.ignore();

 46 cin.getline(record.desc, DESC_SIZE);

 47 cout << "Quantity: ";

 48 cin >> record.qty;

 49 cout << "Price: ";

 50 cin >> record.price;

 51

 52 // Move back to the beginning of this record's position.

 53 inventory.seekp(recNum * sizeof(record), ios::beg);

 54

 55 // Write the new record over the current record.

 56 inventory.write(reinterpret_cast<char *>(&record),

 57 sizeof(record));

 58

 59 // Close the file.

 60 inventory.close();

 61 return 0;

 62 }

Program Output with Example Input Shown in Bold

Which record do you want to edit? 2 [Enter]
Description:

Quantity: 0

Price: 0.0

Enter the new data:

Description: Wrench [Enter]
Quantity: 10 [Enter]
Price: 4.67 [Enter]

M12_GADD6253_07_SE_C12 Page 695 Friday, January 7, 2011 8:10 PM

696 Chapter 12 Advanced File Operations

12.14 Brie y describe what each of the following statements does:

file.seekp(100L, ios::beg);

file.seekp(-10L, ios::end);

file.seekg(-25L, ios::cur);

file.seekg(30L, ios::cur);

12.15 Describe the mode that each of the following statements causes a le to be opened in:

file.open("info.dat", ios::in | ios::out);

file.open("info.dat", ios::in | ios::app);

file.open("info.dat", ios::in | ios::out | ios::ate);

file.open("info.dat", ios::in | ios::out | ios::binary);

For another example of this chapter s topics, see the High Adventure Travel Part 3 Case

Study, available on the book s companion Web site at www.pearsonhighered.com/gaddis.

Review Questions and Exercises

Short Answer

1. What capability does the fstream data type provide that the ifstream and

ofstream data types do not?

2. Which file access flag do you use to open a file when you want all output written to
the end of the file s existing contents?

3. Assume that the file data.txt already exists, and the following statement executes.
What happens to the file?

fstream file("data.txt", ios::out);

4. How do you combine multiple file access flags when opening a file?

5. Should file stream objects be passed to functions by value or by reference? Why?

6. Under what circumstances is a file stream object s ios::hardfail bit set? What
member function reports the state of this bit?

7. Under what circumstances is a file stream object s ios::eofbit bit set? What mem-
ber function reports the state of this bit?

8. Under what circumstances is a file stream object s ios::badbit bit set? What mem-
ber function reports the state of this bit?

9. How do you read the contents of a text file that contains whitespace characters as
part of its data?

10. What arguments do you pass to a file stream object s write member function?

11. What arguments do you pass to a file stream object s read member function?

12. What type cast do you use to convert a pointer from one type to another?

13. What is the difference between the seekg and seekp member functions?

14. How do you get the byte number of a file s current read position? How do you get
the byte number of a file s current write position?

15. If a program has read to the end of a file, what must you do before using either the
seekg or seekp member functions?

16. How do you determine the number of bytes that a file contains?

17. How do you rewind a sequential-access file?

M12_GADD6253_07_SE_C12 Page 696 Friday, January 7, 2011 8:10 PM

Review Questions and Exercises 697

Fill-in-the-Blank

18. The __________ file stream data type is for output files, input files, or files that per-
form both input and output.

19. If a file fails to open, the file stream object will be set to __________.

20. The same formatting techniques used with __________ may also be used when writing
data to a file.

21. The __________ function reads a line of text from a file.

22. The __________ member function reads a single character from a file.

23. The __________ member function writes a single character to a file.

24. __________ files contain data that is unformatted and not necessarily stored as ASCII
text.

25. __________ files contain data formatted as __________.

26. A(n) __________ is a complete set of data about a single item and is made up
of __________.

27. In C++, __________ provide a convenient way to organize data into fields and records.

28. The __________ member function writes raw binary data to a file.

29. The __________ member function reads raw binary data from a file.

30. The __________ operator is necessary if you pass anything other than a pointer-to-
char as the first argument of the two functions mentioned in questions 26 and 27.

31. In __________ file access, the contents of the file are read in the order they appear in
the file, from the file s start to its end.

32. In __________ file access, the contents of a file may be read in any order.

33. The __________ member function moves a file s read position to a specified byte in the
file.

34. The __________ member function moves a file s write position to a specified byte in
the file.

35. The __________ member function returns a file s current read position.

36. The __________ member function returns a file s current write position.

37. The __________ mode flag causes an offset to be calculated from the beginning of a file.

38. The __________ mode flag causes an offset to be calculated from the end of a file.

39. The __________ mode flag causes an offset to be calculated from the current position
in the file.

40. A negative offset causes the file s read or write position to be moved __________ in
the file from the position specified by the mode.

Algorithm Workbench

41. Write a statement that defines a file stream object named places. The object will be
used for both output and input.

M12_GADD6253_07_SE_C12 Page 697 Friday, January 7, 2011 8:10 PM

698 Chapter 12 Advanced File Operations

42. Write two statements that use a file stream object named people to open a file named
people.dat. (Show how to open the file with a member function and at the defini-
tion of the file stream object.) The file should be opened for output.

43. Write two statements that use a file stream object named pets to open a file named
pets.dat. (Show how to open the file with a member function and at the definition
of the file stream object.) The file should be opened for input.

44. Write two statements that use a file stream object named places to open a file named
places.dat. (Show how to open the file with a member function and at the defini-
tion of the file stream object.) The file should be opened for both input and output.

45. Write a program segment that defines a file stream object named employees. The file
should be opened for both input and output (in binary mode). If the file fails to open,
the program segment should display an error message.

46. Write code that opens the file data.txt for both input and output, but first deter-
mines if the file exists. If the file does not exist, the code should create it, then open it
for both input and output.

47. Write code that determines the number of bytes contained in the file associated with
the file stream object dataFile.

48. The infoFile file stream object is used to sequentially access data. The program has
already read to the end of the file. Write code that rewinds the file.

True or False

49. T F Different operating systems have different rules for naming les.

50. T F fstream objects are only capable of performing le output operations.

51. T F ofstream objects, by default, delete the contents of a le if it already exists

when opened.

52. T F ifstream objects, by default, create a le if it doesn t exist when opened.

53. T F Several le access ags may be joined by using the | operator.

54. T F A le may be opened in the de nition of the le stream object.

55. T F If a le is opened in the de nition of the le stream object, no mode ags may

be speci ed.

56. T F A le stream object s fail member function may be used to determine if the le

was successfully opened.

57. T F The same output formatting techniques used with cout may also be used with

le stream objects.

58. T F The >> operator expects data to be delimited by whitespace characters.

59. T F The getline member function can be used to read text that contains

whitespaces.

60. T F It is not possible to have more than one le open at once in a program.

61. T F Binary les contain unformatted data, not necessarily stored as text.

62. T F Binary is the default mode in which les are opened.

63. T F The tellp member function tells a le stream object which byte to move its

write position to.

64. T F It is possible to open a le for both input and output.

M12_GADD6253_07_SE_C12 Page 698 Friday, January 7, 2011 8:10 PM

Review Questions and Exercises 699

Find the Error

Each of the following programs or program segments has errors. Find as many as you can.

65. fstream file(ios::in | ios::out);

file.open("info.dat");

if (!file)

{

 cout << "Could not open file.\n";

}

66. ofstream file;

file.open("info.dat", ios::in);

if (file)

{

 cout << "Could not open file.\n";

}

67. fstream file("info.dat");

if (!file)

{

 cout << "Could not open file.\n";

}

68. fstream dataFile("info.dat", ios:in | ios:binary);

int x = 5;

dataFile << x;

69. fstream dataFile("info.dat", ios:in);

char stuff[81];

dataFile.get(stuff);

70. fstream dataFile("info.dat", ios:in);

char stuff[81] = "abcdefghijklmnopqrstuvwxyz";

dataFile.put(stuff);

71. fstream dataFile("info.dat", ios:out);

struct Date

{

 int month;

 int day;

 int year;

};

Date dt = { 4, 2, 98 };

dataFile.write(&dt, sizeof(int));

72. fstream inFile("info.dat", ios:in);

int x;

inFile.seekp(5);

inFile >> x;

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. File Head Program

Write a program that asks the user for the name of a le. The program should display

the rst 10 lines of the le on the screen (the head of the le). If the le has fewer

Programming Challenges

M12_GADD6253_07_SE_C12 Page 699 Friday, January 7, 2011 8:10 PM

700 Chapter 12 Advanced File Operations

than 10 lines, the entire le should be displayed, with a message indicating the entire

le has been displayed.

2. File Display Program

Write a program that asks the user for the name of a le. The program should display

the contents of the le on the screen. If the le s contents won t t on a single screen,

the program should display 24 lines of output at a time, and then pause. Each time the

program pauses, it should wait for the user to strike a key before the next 24 lines are

displayed.

3. Punch Line

Write a program that reads and prints a joke and its punch line from two different

les. The rst le contains a joke, but not its punch line. The second le has the punch

line as its last line, preceded by garbage. The main function of your program should

open the two les and then call two functions, passing each one the le it needs. The

rst function should read and display each line in the le it is passed (the joke le).

The second function should display only the last line of the le it is passed (the punch

line le). It should nd this line by seeking to the end of the le and then backing up

to the beginning of the last line. Data to test your program can be found in the

joke.txt and punchline.txt les.

4. Tail Program

Write a program that asks the user for the name of a le. The program should display

the last 10 lines of the le on the screen (the tail of the le). If the le has fewer than

10 lines, the entire le should be displayed, with a message indicating the entire le

has been displayed.

5. Line Numbers

(This assignment could be done as a modi cation of the program in Programming

Challenge 2.) Write a program that asks the user for the name of a le. The program

should display the contents of the le on the screen. Each line of screen output should

be preceded with a line number, followed by a colon. The line numbering should start

at 1. Here is an example:

1:George Rolland

2:127 Academy Street

3:Brasstown, NC 28706

NOTE: Using an editor, you should create a simple text le that can be used to test this

program.

NOTE: Using an editor, you should create a simple text le that can be used to test this

program.

NOTE: Using an editor, you should create a simple text le that can be used to test this

program.

M12_GADD6253_07_SE_C12 Page 700 Friday, January 7, 2011 8:10 PM

Review Questions and Exercises 701

If the le s contents won t t on a single screen, the program should display 24 lines of

output at a time, and then pause. Each time the program pauses, it should wait for the

user to strike a key before the next 24 lines are displayed.

6. String Search

Write a program that asks the user for a le name and a string to search for. The pro-

gram should search the le for every occurrence of a speci ed string. When the string

is found, the line that contains it should be displayed. After all the occurrences have

been located, the program should report the number of times the string appeared in

the le.

7. Sentence Filter

Write a program that asks the user for two le names. The rst le will be opened for

input and the second le will be opened for output. (It will be assumed that the rst le

contains sentences that end with a period.) The program will read the contents of the rst

le and change all the letters to lowercase except the rst letter of each sentence, which

should be made uppercase. The revised contents should be stored in the second le.

8. Array/File Functions

Write a function named arrayToFile. The function should accept three arguments:

the name of a le, a pointer to an int array, and the size of the array. The function

should open the speci ed le in binary mode, write the contents of the array to the

le, and then close the le.

Write another function named fileToArray. This function should accept three argu-

ments: the name of a le, a pointer to an int array, and the size of the array. The

function should open the speci ed le in binary mode, read its contents into the array,

and then close the le.

Write a complete program that demonstrates these functions by using the arrayToFile

function to write an array to a le, and then using the fileToArray function to read

the data from the same le. After the data are read from the le into the array, display

the array s contents on the screen.

NOTE: Using an editor, you should create a simple text le that can be used to test this

program.

NOTE: Using an editor, you should create a simple text le that can be used to test this

program.

NOTE: Using an editor, you should create a simple text le that can be used to test this

program.

Programming Challenges

M12_GADD6253_07_SE_C12 Page 701 Friday, January 7, 2011 8:10 PM

702 Chapter 12 Advanced File Operations

9. File Encryption Filter

File encryption is the science of writing the contents of a le in a secret code. Your

encryption program should work like a lter, reading the contents of one le, modify-

ing the data into a code, and then writing the coded contents out to a second le. The

second le will be a version of the rst le, but written in a secret code.

Although there are complex encryption techniques, you should come up with a simple

one of your own. For example, you could read the rst le one character at a time,

and add 10 to the ASCII code of each character before it is written to the second le.

10. File Decryption Filter

Write a program that decrypts the le produced by the program in Programming

Challenge 9. The decryption program should read the contents of the coded le,

restore the data to its original state, and write it to another le.

11. Corporate Sales Data Output

Write a program that uses a structure to store the following data on a company

division:

Division Name (such as East, West, North, or South)

Quarter (1, 2, 3, or 4)

Quarterly Sales

The user should be asked for the four quarters sales gures for the East, West, North, and

South divisions. The data for each quarter for each division should be written to a le.

Input Validation: Do not accept negative numbers for any sales gures.

12. Corporate Sales Data Input

Write a program that reads the data in the le created by the program in Program-

ming Challenge 11. The program should calculate and display the following gures:

Total corporate sales for each quarter

Total yearly sales for each division

Total yearly corporate sales

Average quarterly sales for the divisions

The highest and lowest quarters for the corporation

13. Inventory Program

Write a program that uses a structure to store the following inventory data in a le:

Item Description

Quantity on Hand

Wholesale Cost

Retail Cost

Date Added to Inventory

The program should have a menu that allows the user to perform the following tasks:

Add new records to the file.

Display any record in the file.

Change any record in the file.

VideoNote

Solving

the File

Encryption

Filter Problem

M12_GADD6253_07_SE_C12 Page 702 Friday, January 7, 2011 8:10 PM

Review Questions and Exercises 703

Input Validation: The program should not accept quantities, or wholesale or retail

costs, less than 0. The program should not accept dates that the programmer deter-

mines are unreasonable.

14. Inventory Screen Report

Write a program that reads the data in the le created by the program in Program-

ming Challenge 13. The program should calculate and display the following data:

The total wholesale value of the inventory

The total retail value of the inventory

The total quantity of all items in the inventory

15. Average Number of Words

If you have downloaded this book s source code from the companion Web site, you

will nd a le named text.txt in the Chapter 12 folder. (The companion Web site is

at www.pearsonhighered.com/gaddis.) The text that is in the le is stored as one sen-

tence per line. Write a program that reads the le s contents and calculates the average

number of words per sentence.

Group Project

16. Customer Accounts

This program should be designed and written by a team of students. Here are some

suggestions:

One student should design function main, which will call other program functions.

The remainder of the functions will be designed by other members of the team.

The requirements of the program should be analyzed so each student is given

about the same workload.

Write a program that uses a structure to store the following data about a customer

account:

Name

Address

City, State, and ZIP

Telephone Number

Account Balance

Date of Last Payment

The structure should be used to store customer account records in a le. The program

should have a menu that lets the user perform the following operations:

Enter new records into the file.

Search for a particular customer s record and display it.

Search for a particular customer s record and delete it.

Search for a particular customer s record and change it.

Display the contents of the entire file.

Input Validation: When the data for a new account is entered, be sure the user enters

data for all the elds. No negative account balances should be entered.

Programming Challenges

M12_GADD6253_07_SE_C12 Page 703 Friday, January 7, 2011 8:10 PM

M12_GADD6253_07_SE_C12 Page 704 Friday, January 7, 2011 8:10 PM

705

C
H

A
P

T
E

R

13

Introduction
to Classes

13.1

Procedural and Object-Oriented Programming

CONCEPT:

Procedural programming is a method of writing software. It is a

programming practice centered on the procedures or actions that take place

in a program. Object-oriented programming is centered around the object.

Objects are created from abstract data types that encapsulate data and

functions together.

There are two common programming methods in practice today: procedural program-

ming and object-oriented programming (or OOP). Up to this chapter, you have learned to

write procedural programs.

TOPICS

13.1 Procedural and Object-Oriented

Programming

13.2 Introduction to Classes

13.3 De ning an Instance of a Class

13.4 Why Have Private Members?

13.5 Focus on Software Engineering:

Separating Class Speci cation

from Implementation

13.6 Inline Member Functions

13.7 Constructors

13.8 Passing Arguments to Constructors

13.9 Destructors

13.10 Overloading Constructors

13.11 Private Member Functions

13.12 Arrays of Objects

13.13 Focus on Problem Solving

and Program Design: An OOP

 Case Study

13.14 Focus on Object-Oriented

Programming: Creating

an Abstract Array Data Type

13.15 Focus on Object-Oriented

Design: The Uni ed Modeling

Language (UML)

13.16 Focus on Object-Oriented

Design: Finding the Classes

and Their Responsibilities

M13_GADD6253_07_SE_C13 Page 705 Saturday, January 8, 2011 4:39 PM

706

Chapter 13 Introduction to Classes

In a procedural program, you typically have data stored in a collection of variables and/or

structures, coupled with a set of functions that perform operations on the data. The data

and the functions are separate entities. For example, in a program that works with the

geometry of a rectangle you might have the variables in Table 13-1:

In addition to the variables listed in Table 13-1, you might also have the functions listed in

Table 13-2:

Usually the variables and data structures in a procedural program are passed to the func-

tions that perform the desired operations. As you might imagine, the focus of procedural

programming is on creating the functions that operate on the program s data.

Procedural programming has worked well for software developers for many years. How-

ever, as programs become larger and more complex, the separation of a program s data

and the code that operates on the data can lead to problems. For example, the data in a

procedural program are stored in variables, as well as more complex structures that are

created from variables. The procedures that operate on the data must be designed with

those variables and data structures in mind. But, what happens if the format of the data is

altered? Quite often, a program s speci cations change, resulting in redesigned data struc-

tures. When the structure of the data changes, the code that operates on the data must

also change to accept the new format. This results in additional work for programmers

and a greater opportunity for bugs to appear in the code.

This problem has helped in uence the shift from procedural programming to object-oriented

programming (OOP). Whereas procedural programming is centered on creating procedures

or functions, object-oriented programming is centered on creating objects. An

object

 is a

software entity that contains both data and procedures. The data that are contained in an

object are known as the object s

attributes

. The procedures that an object performs are

called

member functions

. The object is, conceptually, a self-contained unit consisting of

attributes (data) and procedures (functions). This is illustrated in Figure 13-1.

OOP addresses the problems that can result from the separation of code and data through

encapsulation

and data hiding.

Encapsulation

 refers to the combining of data and code

into a single object.

Data hiding

 refers to an object s ability to hide its data from code that

Table 13-1

Variable De nition Description

double width;

Holds the rectangle s width

double length;

Holds the rectangle s length

Table 13-2

Function Name Description

setData()

Stores values in

width

 and

length

displayWidth()

Displays the rectangle s width

displayLength()

Displays the rectangle s length

displayArea()

Displays the rectangle s area

M13_GADD6253_07_SE_C13 Page 706 Saturday, January 8, 2011 4:39 PM

13.1 Procedural and Object-Oriented Programming

707

is outside the object. Only the object s member functions may directly access and make

changes to the object s data. An object typically hides its data, but allows outside code to

access its member functions. As shown in Figure 13-2, the object s member functions pro-

vide programming statements outside the object with indirect access to the object s data.

Figure 13-1

NOTE:

In other programming languages, the procedures that an object performs are

often called

methods

.

Figure 13-2

Functions That

Operate on the Data

Data (Attributes)

Object

Functions That

Operate on the Data

Data (Attributes)

Object

Code

Outside the

Object

M13_GADD6253_07_SE_C13 Page 707 Saturday, January 8, 2011 4:39 PM

708

Chapter 13 Introduction to Classes

When an object s internal data are hidden from outside code, and access to that data is

restricted to the object s member functions, the data are protected from accidental corrup-

tion. In addition, the programming code outside the object does not need to know about

the format or internal structure of the object s data. The code only needs to interact with

the object s functions. When a programmer changes the structure of an object s internal

data, he or she also modi es the object s member functions so they may properly operate

on the data. The way in which outside code interacts with the member functions, however,

does not change.

An everyday example of object-oriented technology is the automobile. It has a rather sim-

ple interface that consists of an ignition switch, steering wheel, gas pedal, brake pedal, and

a gear shift. Vehicles with manual transmissions also provide a clutch pedal. If you want

to drive an automobile (to become its user), you only have to learn to operate these ele-

ments of its interface. To start the motor, you simply turn the key in the ignition switch.

What happens internally is irrelevant to the user. If you want to steer the auto to the left,

you rotate the steering wheel left. The movements of all the linkages connecting the steer-

ing wheel to the front tires occur transparently.

Because automobiles have simple user interfaces, they can be driven by people who have

no mechanical knowledge. This is good for the makers of automobiles because it means

more people are likely to become customers. It s good for the users of automobiles because

they can learn just a few simple procedures and operate almost any vehicle.

These are also valid concerns in software development. A real-world program is rarely

written by only one person. Even the programs you have created so far weren t written

entirely by you. If you incorporated C++ library functions, or objects like

cin

 and

cout

,

you used code written by someone else. In the world of professional software develop-

ment, programmers commonly work in teams, buy and sell their code, and collaborate on

projects. With OOP, programmers can create objects with powerful engines tucked away

under the hood, protected by simple interfaces that safeguard the object s algorithms.

Object Reusability

In addition to solving the problems of code/data separation, the use of OOP has also been

encouraged by the trend of

object reusability

. An object is not a stand-alone program, but

is used by programs that need its service. For example, Sharon is a programmer who has

developed an object for rendering 3D images. She is a math whiz and knows a lot about

computer graphics, so her object is coded to perform all the necessary 3D mathematical

operations and handle the computer s video hardware. Tom, who is writing a program for

an architectural rm, needs his application to display 3D images of buildings. Because he

is working under a tight deadline and does not possess a great deal of knowledge about

computer graphics, he can use Sharon s object to perform the 3D rendering (for a small

fee, of course!).

Classes and Objects

Now let s discuss how objects are created in software. Before an object can be created, it

must be designed by a programmer. The programmer determines the attributes and func-

tions that are necessary, and then creates a class. A

class

 is code that speci es the attributes

M13_GADD6253_07_SE_C13 Page 708 Saturday, January 8, 2011 4:39 PM

13.1 Procedural and Object-Oriented Programming

709

and member functions that a particular type of object may have. Think of a class as a

blueprint that objects may be created from. It serves a similar purpose as the blueprint

for a house. The blueprint itself is not a house, but is a detailed description of a house.

When we use the blueprint to build an actual house, we could say we are building an

instance of the house described by the blueprint. If we so desire, we can build several iden-

tical houses from the same blueprint. Each house is a separate instance of the house

described by the blueprint. This idea is illustrated in Figure 13-3.

So, a class is not an object, but it is a description of an object. When the program is run-

ning, it uses the class to create, in memory, as many objects of a speci c type as needed.

Each object that is created from a class is called an

instance

 of the class.

For example, Jessica is an entomologist (someone who studies insects) and she also enjoys

writing computer programs. She designs a program to catalog different types of insects. As

part of the program, she creates a class named

Insect

, which speci es attributes and

member functions for holding and manipulating data common to all types of insects. The

Insect

 class is not an object, but a speci cation that objects may be created from. Next,

she writes programming statements that create a

housefly

 object, which is an instance of

the

Insect

 class. The

housefly

 object is an entity that occupies computer memory and

stores data about a house y. It has the attributes and member functions speci ed by the

Insect

 class. Then she writes programming statements that create a

mosquito

 object.

The

mosquito

 object is also an instance of the

Insect

 class. It has its own area in mem-

ory, and stores data about a mosquito. Although the

housefly

 and

mosquito

 objects are

two separate entities in the computer s memory, they were both created from the

Insect

class. This means that each of the objects has the attributes and member functions

described by the

Insect

 class. This is illustrated in Figure 13-4.

Figure 13-3

House Plan

Living Room

Bedroom

Blueprint that describes a house.

Instances of the house described by the blueprint.

M13_GADD6253_07_SE_C13 Page 709 Saturday, January 8, 2011 4:39 PM

710

Chapter 13 Introduction to Classes

At the beginning of this section we discussed how a procedural program that works with

rectangles might have variables to hold the rectangle s width and length, and separate func-

tions to do things like store values in the variables and make calculations. The program

would pass the variables to the functions as needed. In an object-oriented program, we

would create a

Rectangle

 class which would encapsulate the data (width and length) and

the functions that work with the data. Figure 13-5 shows a representation of such a class.

In the object-oriented approach, the variables and functions are all members of the

Rectangle

 class. When we need to work with a rectangle in our program, we create a

Rectangle

 object, which is an instance of the

Rectangle

 class. When we need to per-

form an operation on the

Rectangle

 object s data, we use that object to call the appro-

priate member function. For example, if we need to get the area of the rectangle, we use

the object to call the

getArea

 member function. The

getArea

 member function would

be designed to calculate the area of that object s rectangle, and return the value.

Figure 13-4

Figure 13-5

Insect

class

housefly

object

mosquito

object

The Insect class describes

the attributes and

functions that a particular

type of object may have.

The housefly object is an

instance of the Insect class. It

has the attributes and

functions described by

the Insect class.

The mosquito object is an

instance of the Insect class. It

has the attributes and

functions described by

the Insect class.

Member Variables

 double width;

 double length;

Member Functions

 void setWidth(double w)

 { ... function code ...}

 void setLength(double len)

 { ... function code ...}

 double getWidth()

 { ... function code ...}

 double getLength()

 { ... function code ...}

 double getArea()

 { ... function code ...}

M13_GADD6253_07_SE_C13 Page 710 Saturday, January 8, 2011 4:39 PM

13.1 Procedural and Object-Oriented Programming

711

Using a Class You Already Know

Before we go any further, let s review the basics of a class that you have already learned

something about: the

string

 class. First, recall that you must have the following

#include

 directive in any program that uses the

string

 class:

#include <string>

This is necessary because the

string

 class is declared in the

string

 header le. Next, you

can de ne a

string

 object with a statement such as

string cityName;

This creates a

string

 object named

cityName

. The

cityName

 object is an instance of the

string

 class.

Once a

string

 object has been created, you can store data in it. Because the

string

 class

is designed to work with the assignment operator, you can assign a string literal to a

string

 object. Here is an example:

cityName = "Charleston";

After this statement executes, the string

"Charleston"

 will be stored in the

cityName

object.

"Charleston"

 will become the object s data.

The

string

 class speci es numerous member functions that perform operations on the

data that a

string

 object holds. For example, it has a member function named

length

,

which returns the length of the string stored in a

string

 object. The following code dem-

onstrates:

string cityName; // Create a string object named cityName

int strSize; // To hold the length of a string

cityName = "Charleston"; // Assign "Charleston" to cityName

strSize = cityName.length(); // Store the string length in strSize

The last statement calls the

length member function, which returns the length of a string.

The expression cityName.length() returns the length of the string stored in the

cityName object. After this statement executes, the strSize variable will contain the

value 10, which is the length of the string "Charleston".

The string class also speci es a member function named append, which appends an addi-

tional string onto the string already stored in an object. The following code demonstrates.

string cityName;

cityName = "Charleston";

cityName.append(" South Carolina");

In the second line, the string "Charleston" is assigned to the cityName object. In the

third line, the append member function is called and " South Carolina" is passed as an

argument. The argument is appended to the string that is already stored in cityName.

After this statement executes, the cityName object will contain the string "Charleston

South Carolina".

M13_GADD6253_07_SE_C13 Page 711 Saturday, January 8, 2011 4:39 PM

712 Chapter 13 Introduction to Classes

13.2 Introduction to Classes

CONCEPT: In C++, the class is the construct primarily used to create objects.

A class is similar to a structure. It is a data type de ned by the programmer, consisting of

variables and functions. Here is the general format of a class declaration:

class ClassName

{

 declaration;

 // ... more declarations

 // may follow...

};

The declaration statements inside a class declaration are for the variables and functions

that are members of that class. For example, the following code declares a class named

Rectangle with two member variables: width and length.

class Rectangle

{

 double width;

 double length;

}; // Don't forget the semicolon.

There is a problem with this class, however. Unlike structures, the members of a class are

private by default. Private class members cannot be accessed by programming statements

outside the class. So, no statements outside this Rectangle class can access the width and

length members.

Recall from our earlier discussion on object-oriented programming that an object can per-

form data hiding, which means that critical data stored inside the object are protected from

code outside the object. In C++, a class s private members are hidden, and can be accessed

only by functions that are members of the same class. A class s public members may be

accessed by code outside the class.

Access Speci ers

C++ provides the key words private and public which you may use in class declara-

tions. These key words are known as access speci ers because they specify how class

members may be accessed. The following is the general format of a class declaration that

uses the private and public access speci ers.

class ClassName

{

 private:

 // Declarations of private

 // members appear here.

 public:

 // Declarations of public

 // members appear here.

};

VideoNote

Writing

a Class

M13_GADD6253_07_SE_C13 Page 712 Saturday, January 8, 2011 4:39 PM

13.2 Introduction to Classes 713

Notice that the access speci ers are followed by a colon (:), and then followed by one or

more member declarations. In this general format, the private access speci er is used

rst. All of the declarations that follow it, up to the public access speci er, are for private

members. Then, all of the declarations that follow the public access speci er are for pub-

lic members.

Public Member Functions

To allow access to a class s private member variables, you create public member functions

that work with the private member variables. For example, consider the Rectangle class.

To allow access to a Rectangle object s width and length member variables, we will add

the member functions listed in Table 13-3.

For the moment we will not actually de ne the functions described in Table 13-3. We

leave that for later. For now we will only include declarations, or prototypes, for the func-

tions in the class declaration:

class Rectangle

{

 private:

 double width;

 double length;

 public:

 void setWidth(double);

 void setLength(double);

 double getWidth() const;

 double getLength() const;

 double getArea() const;

};

In this declaration, the member variables width and length are declared as private,

which means they can be accessed only by the class s member functions. The member

functions, however, are declared as public, which means they can be called from

statements outside the class. If code outside the class needs to store a width or a length in

a Rectangle object, it must do so by calling the object s setWidth or setLength member

functions. Likewise, if code outside the class needs to retrieve a width or length stored in a

Rectangle object, it must do so with the object s getWidth or getLength member

functions. These public functions provide an interface for code outside the class to use

Rectangle objects.

Table 13-3

Member Function Description

setWidth This function accepts an argument which is assigned to the width

member variable.

setLength This function accepts an argument which is assigned to the length

member variable.

getWidth This function returns the value stored in the width member variable.

getLength This function returns the value stored in the length member variable.

getArea This function returns the product of the width member variable multiplied

by the length member variable. This value is the area of the rectangle.

M13_GADD6253_07_SE_C13 Page 713 Saturday, January 8, 2011 4:39 PM

714 Chapter 13 Introduction to Classes

Using const with Member Functions

Notice that the key word const appears in the declarations of the getWidth, getLength,

and getArea member functions, as shown here:

double getWidth() const;

double getLength() const;

double getArea() const;

When the key word const appears after the parentheses in a member function declara-

tion, it speci es that the function will not change any data stored in the calling object. If

you inadvertently write code in the function that changes the calling object s data, the

compiler will generate an error. As you will see momentarily, the const key word must

also appear in the function header.

Placement of public and private Members

There is no rule requiring you to declare private members before public members. The

Rectangle class could be declared as follows:

class Rectangle

{

 public:

 void setWidth(double);

 void setLength(double);

 double getWidth() const;

 double getLength() const;

 double getArea() const;

 private:

 double width;

 double length;

};

In addition, it is not required that all members of the same access speci cation be declared

in the same place. Here is yet another declaration of the Rectangle class.

class Rectangle

{

 private:

 double width;

 public:

 void setWidth(double);

 void setLength(double);

 double getWidth() const;

 double getLength() const;

 double getArea() const;

 private:

 double length;

};

NOTE: Even though the default access of a class is private, it s still a good idea to use

the private key word to explicitly declare private members. This clearly documents the

access speci cation of all the members of the class.

M13_GADD6253_07_SE_C13 Page 714 Saturday, January 8, 2011 4:39 PM

13.2 Introduction to Classes 715

Although C++ gives you freedom in arranging class member declarations, you should

adopt a consistent standard. Most programmers choose to group member declarations of

the same access speci cation together.

De ning Member Functions

The Rectangle class declaration contains declarations or prototypes for ve member

functions: setWidth, setLength, getWidth, getLength, and getArea. The de nitions

of these functions are written outside the class declaration:

//***

// setWidth assigns its argument to the private member width. *

//***

void Rectangle::setWidth(double w)

{

 width = w;

}

//***

// setLength assigns its argument to the private member length. *

//***

void Rectangle::setLength(double len)

{

 length = len;

}

//**

// getWidth returns the value in the private member width. *

//**

double Rectangle::getWidth() const

{

 return width;

}

//**

// getLength returns the value in the private member length. *

//**

double Rectangle::getLength() const

{

 return length;

}

NOTE: Notice in our example that the rst character of the class name is written in

uppercase. This is not required, but serves as a visual reminder that the class name is not a

variable name.

M13_GADD6253_07_SE_C13 Page 715 Saturday, January 8, 2011 4:39 PM

716 Chapter 13 Introduction to Classes

//***

// getArea returns the product of width times length. *

//***

double Rectangle::getArea() const

{

 return width * length;

}

In each function de nition, the following precedes the name of each function:

Rectangle::

The two colons are called the scope resolution operator. When Rectangle:: appears

before the name of a function in a function header, it identi es the function as a member

of the Rectangle class.

Here is the general format of the function header of any member function de ned outside

the declaration of a class:

In the general format, ReturnType is the function s return type. ClassName is the name of

the class that the function is a member of. functionName is the name of the member func-

tion. ParameterList is an optional list of parameter variable declarations.

Accessors and Mutators

As mentioned earlier, it is a common practice to make all of a class s member variables pri-

vate and to provide public member functions for accessing and changing them. This

ensures that the object owning the member variables is in control of all changes being

made to them. A member function that gets a value from a class s member variable but

does not change it is known as an accessor. A member function that stores a value in mem-

ber variable or changes the value of member variable in some other way is known as a

mutator. In the Rectangle class, the member functions getLength and getWidth are

accessors, and the member functions setLength and setWidth are mutators.

Some programmers refer to mutators as setter functions because they set the value of an

attribute, and accessors as getter functions because they get the value of an attribute.

 ReturnType ClassName::functionName(ParameterList)

WARNING! Remember, the class name and scope resolution operator extends the

name of the function. They must appear after the return type and immediately before the

function name in the function header. The following would be incorrect:

 Rectangle::double getArea() //Incorrect!

In addition, if you leave the class name and scope resolution operator out of a member

function s header, the function will not become a member of the class.

 double getArea() // Not a member of the Rectangle class!

M13_GADD6253_07_SE_C13 Page 716 Saturday, January 8, 2011 4:39 PM

13.3 Defining an Instance of a Class 717

Using const with Accessors

Notice that the key word const appears in the headers of the getWidth, getLength, and

getArea member functions, as shown here:

double Rectangle::getWidth() const

double Rectangle::getLength() const

double Rectangle::getArea() const

Recall that these functions were also declared in the class with the const key word. When

you mark a member function as const, the const key word must appear in both the dec-

laration and the function header.

In essence, when you mark a member function as const, you are telling the compiler that

the calling object is a constant. The compiler will generate an error if you inadvertently write

code in the function that changes the calling object s data. Because this decreases the chances

of having bugs in your code, it is a good practice to mark all accessor functions as const.

The Importance of Data Hiding

As a beginning student, you might be wondering why you would want to hide the data that

is inside the classes you create. As you learn to program, you will be the user of your own

classes, so it might seem that you are putting forth a great effort to hide data from yourself.

If you write software in industry, however, the classes that you create will be used as compo-

nents in large software systems; programmers other than yourself will use your classes. By

hiding a class s data, and allowing it to be accessed through only the class s member func-

tions, you can better ensure that the class will operate as you intended it to.

13.3 De ning an Instance of a Class

CONCEPT: Class objects must be de ned after the class is declared.

Like structure variables, class objects are not created in memory until they are de ned.

This is because a class declaration by itself does not create an object, but is merely the

description of an object. We can use it to create one or more objects, which are instances

of the class.

Class objects are created with simple de nition statements, just like variables. Here is the

general format of a simple object de nition statement:

In the general format, ClassName is the name of a class and objectName is the name we

are giving the object.

For example, the following statement de nes box as an object of the Rectangle class:

Rectangle box;

De ning a class object is called the instantiation of a class. In this statement, box is an

instance of the Rectangle class.

 ClassName objectName;

VideoNote

De ning

an Instance

of a Class

M13_GADD6253_07_SE_C13 Page 717 Saturday, January 8, 2011 4:39 PM

718 Chapter 13 Introduction to Classes

Accessing an Object s Members

The box object that we previously de ned is an instance of the Rectangle class. Suppose

we want to change the value in the box object s width variable. To do so, we must use the

box object to call the setWidth member function, as shown here:

box.setWidth(12.7);

Just as you use the dot operator to access a structure s members, you use the dot operator

to call a class s member functions. This statement uses the box object to call the setWidth

member function, passing 12.7 as an argument. As a result, the box object s width vari-

able will be set to 12.7. Here are other examples of statements that use the box object to

call member functions:

box.setLength(4.8); // Set box's length to 4.8.

x = box.getWidth(); // Assign box's width to x.

cout << box.getLength(); // Display box's length.

cout << box.getArea(); // Display box's area.

A Class Demonstration Program

Program 13-1 is a complete program that demonstrates the Rectangle class.

NOTE: Notice that inside the Rectangle class s member functions, the dot operator is

not used to access any of the class s member variables. When an object is used to call a

member function, the member function has direct access to that object s member

variables.

Program 13-1

 1 // This program demonstrates a simple class.

 2 #include <iostream>

 3 using namespace std;

 4

 5 // Rectangle class declaration.

 6 class Rectangle

 7 {

 8 private:

 9 double width;

 10 double length;

 11 public:

 12 void setWidth(double);

 13 void setLength(double);

 14 double getWidth() const;

 15 double getLength() const;

 16 double getArea() const;

 17 };

 18

 19 //**

 20 // setWidth assigns a value to the width member. *

 21 //**

 22

M13_GADD6253_07_SE_C13 Page 718 Saturday, January 8, 2011 4:39 PM

13.3 Defining an Instance of a Class 719

 23 void Rectangle::setWidth(double w)

 24 {

 25 width = w;

 26 }

 27

 28 //**

 29 // setLength assigns a value to the length member. *

 30 //**

 31

 32 void Rectangle::setLength(double len)

 33 {

 34 length = len;

 35 }

 36

 37 //**

 38 // getWidth returns the value in the width member. *

 39 //**

 40

 41 double Rectangle::getWidth() const

 42 {

 43 return width;

 44 }

 45

 46 //**

 47 // getLength returns the value in the length member. *

 48 //**

 49

 50 double Rectangle::getLength() const

 51 {

 52 return length;

 53 }

 54

 55 //***

 56 // getArea returns the product of width times length. *

 57 //***

 58

 59 double Rectangle::getArea() const

 60 {

 61 return width * length;

 62 }

 63

 64 //***

 65 // Function main *

 66 //***

 67

 68 int main()

 69 {

 70 Rectangle box; // Define an instance of the Rectangle class

 71 double rectWidth; // Local variable for width

 72 double rectLength; // Local variable for length

 73

 74 // Get the rectangle's width and length from the user.

 75 cout << "This program will calculate the area of a\n";

 76 cout << "rectangle. What is the width? ";

(program continues)

M13_GADD6253_07_SE_C13 Page 719 Saturday, January 8, 2011 4:39 PM

720 Chapter 13 Introduction to Classes

The Rectangle class declaration, along with the class s member functions, appears in

lines 6 through 62. Inside the main function, in line 70, the following statement creates a

Rectangle object named box.

Rectangle box;

The box object is illustrated in Figure 13-6. Notice that the width and length member

variables do not yet hold meaningful values. An object s member variables are not auto-

matically initialized to 0. When an object s member variable is rst created, it holds what-

ever random value happens to exist at the variable s memory location. We commonly refer

to such a random value as garbage.

In lines 75 through 79 the program prompts the user to enter the width and length of a

rectangle. The width that is entered is stored in the rectWidth variable, and the length

that is entered is stored in the rectLength variable. In line 83 the following statement

Program 13-1 (continued)

 77 cin >> rectWidth;

 78 cout << "What is the length? ";

 79 cin >> rectLength;

 80

 81 // Store the width and length of the rectangle

 82 // in the box object.

 83 box.setWidth(rectWidth);

 84 box.setLength(rectLength);

 85

 86 // Display the rectangle's data.

 87 cout << "Here is the rectangle's data:\n";

 88 cout << "Width: " << box.getWidth() << endl;

 89 cout << "Length: " << box.getLength() << endl;

 90 cout << "Area: " << box.getArea() << endl;

 91 return 0;

 92 }

Program Output with Example Input Shown in Bold

This program will calculate the area of a

rectangle. What is the width? 10 [Enter]
What is the length? 5 [Enter]
Here is the rectangle's data:

Width: 10

Length: 5

Area: 50

Figure 13-6

The box object when first created

?

width:

length:

?

M13_GADD6253_07_SE_C13 Page 720 Saturday, January 8, 2011 4:39 PM

13.3 Defining an Instance of a Class 721

uses the box object to call the setWidth member function, passing the value of the

rectWidth variable as an argument:

box.setWidth(rectWidth);

This sets box s width member variable to the value in rectWidth. Assuming rectWidth

holds the value 10, Figure 13-7 shows the state of the box object after this statement

executes.

In line 84 the following statement uses the box object to call the setLength member func-

tion, passing the value of the rectLength variable as an argument.

box.setLength(rectLength);

This sets box s length member variable to the value in rectLength. Assuming

rectLength holds the value 5, Figure 13-8 shows the state of the box object after this

statement executes.

Lines 88, 89, and 90 use the box object to call the getWidth, getLength, and getArea

member functions, displaying their return values on the screen.

Program 13-1 creates only one Rectangle object. It is possible to create many instances

of the same class, each with its own data. For example, Program 13-2 creates three

Rectangle objects, named kitchen, bedroom, and den. Note that lines 6 through 62

have been left out of the listing because they contain the Rectangle class declaration and

the de nitions for the class s member functions. These lines are identical to those same

lines in Program 13-1.

Figure 13-7

Figure 13-8

NOTE: Figures 13-6 through 13-8 show the state of the box object at various times

during the execution of the program. An object s state is simply the data that is stored in

the object s attributes at any given moment.

The box object with width set to 10

?

width:

length:

10

The box object with width set to 10

and length set to 5

5

width:

length:

10

M13_GADD6253_07_SE_C13 Page 721 Saturday, January 8, 2011 4:39 PM

722 Chapter 13 Introduction to Classes

Program 13-2

 1 // This program creates three instances of the Rectangle class.

 2 #include <iostream>

 3 using namespace std;

 4

 5 // Rectangle class declaration.

Lines 6 through 62 have been left out.

 63

 64 //***

 65 // Function main *

 66 //***

 67

 68 int main()

 69 {

 70 double number; // To hold a number

 71 double totalArea; // The total area

 72 Rectangle kitchen; // To hold kitchen dimensions

 73 Rectangle bedroom; // To hold bedroom dimensions

 74 Rectangle den; // To hold den dimensions

 75

 76 // Get the kitchen dimensions.

 77 cout << "What is the kitchen's length? ";

 78 cin >> number; // Get the length

 79 kitchen.setLength(number); // Store in kitchen object

 80 cout << "What is the kitchen's width? ";

 81 cin >> number; // Get the width

 82 kitchen.setWidth(number); // Store in kitchen object

 83

 84 // Get the bedroom dimensions.

 85 cout << "What is the bedroom's length? ";

 86 cin >> number; // Get the length

 87 bedroom.setLength(number); // Store in bedroom object

 88 cout << "What is the bedroom's width? ";

 89 cin >> number; // Get the width

 90 bedroom.setWidth(number); // Store in bedroom object

 91

 92 // Get the den dimensions.

 93 cout << "What is the den's length? ";

 94 cin >> number; // Get the length

 95 den.setLength(number); // Store in den object

 96 cout << "What is the den's width? ";

 97 cin >> number; // Get the width

 98 den.setWidth(number); // Store in den object

 99

 100 // Calculate the total area of the three rooms.

 101 totalArea = kitchen.getArea() + bedroom.getArea()

 102 + den.getArea();

 103

 104 // Display the total area of the three rooms.

 105 cout << "The total area of the three rooms is "

 106 << totalArea << endl;

 107

 108 return 0;

 109 }

M13_GADD6253_07_SE_C13 Page 722 Saturday, January 8, 2011 4:39 PM

13.3 Defining an Instance of a Class 723

In lines 72, 73, and 74, the following code de nes three Rectangle variables. This creates

three objects, each an instance of the Rectangle class:

Rectangle kitchen; // To hold kitchen dimensions

Rectangle bedroom; // To hold bedroom dimensions

Rectangle den; // To hold den dimensions

In the example output, the user enters 10 and 14 as the length and width of the kitchen, 15

and 12 as the length and width of the bedroom, and 20 and 30 as the length and width of

the den. Figure 13-9 shows the states of the objects after these values are stored in them.

Notice from Figure 13-9 that each instance of the Rectangle class has its own length

and width variables. Every instance of a class has its own set of member variables that can

hold their own values. The class s member functions can perform operations on speci c

instances of the class. For example, look at the following statement in line 79 of

Program 13-2:

kitchen.setLength(number);

This statement calls the setLength member function, which stores a value in the kitchen

object s length variable. Now look at the following statement in line 87:

bedroom.setLength(number);

This statement also calls the setLength member function, but this time it stores a value in

the bedroom object s length variable. Likewise, the following statement in line 95 calls

the setLength member function to store a value in the den object s length variable:

den.setLength(number);

The setLength member function stores a value in a speci c instance of the Rectangle

class. All of the other Rectangle class member functions work in a similar way. They

access one or more member variables of a speci c Rectangle object.

Program Output with Example Input Shown in Bold

What is the kitchen's length? 10 [Enter]
What is the kitchen's width? 14 [Enter]
What is the bedroom's length? 15 [Enter]
What is the bedroom's width? 12 [Enter]
What is the den's length? 20 [Enter]
What is the den's width? 30 [Enter]
The total area of the three rooms is 920

Figure 13-9

The kitchen object

width: 14.0

length: 10.0

The bedroom object

width: 12.0

length: 15.0

The den object

width: 30.0

length: 20.0

M13_GADD6253_07_SE_C13 Page 723 Saturday, January 8, 2011 4:39 PM

724 Chapter 13 Introduction to Classes

Avoiding Stale Data

In the Rectangle class, the getLength and getWidth member functions return the values

stored in member variables, but the getArea member function returns the result of a cal-

culation. You might be wondering why the area of the rectangle is not stored in a member

variable, like the length and the width. The area is not stored in a member variable

because it could potentially become stale. When the value of an item is dependent on other

data and that item is not updated when the other data are changed, it is said that the item

has become stale. If the area of the rectangle were stored in a member variable, the value

of the member variable would become incorrect as soon as either the length or width

member variables changed.

When designing a class, you should take care not to store in a member variable calculated

data that could potentially become stale. Instead, provide a member function that returns

the result of the calculation.

Pointers to Objects

You can also de ne pointers to class objects. For example, the following statement de nes

a pointer variable named rectPtr:

Rectangle *rectPtr;

The rectPtr variable is not an object, but it can hold the address of a Rectangle object.

The following code shows an example.

Rectangle myRectangle; // A Rectangle object

Rectangle *rectPtr; // A Rectangle pointer

rectPtr = &myRectangle; // rectPtr now points to myRectangle

The rst statement creates a Rectangle object named myRectangle. The second statement

creates a Rectangle pointer named rectPtr. The third statement stores the address of the

myRectangle object in the rectPtr pointer. This is illustrated in Figure 13-10.

The rectPtr pointer can then be used to call member functions by using the -> operator.

The following statements show examples.

rectPtr->setWidth(12.5);

rectPtr->setLength(4.8);

The rst statement calls the setWidth member function, passing 12.5 as an argument.

Because rectPtr points to the myRectangle object, this will cause 12.5 to be stored in

the myRectangle object s width variable. The second statement calls the setLength

member function, passing 4.8 as an argument. This will cause 4.8 to be stored in the

Figure 13-10

The myRectangle object

The rectPtr pointer variable

holds the address of the

myRectangle object

?

width:

length:

?
address

M13_GADD6253_07_SE_C13 Page 724 Saturday, January 8, 2011 4:39 PM

13.3 Defining an Instance of a Class 725

myRectangle object s length variable. Figure 13-11 shows the state of the myRectangle

object after these statements have executed.

Class object pointers can be used to dynamically allocate objects. The following code

shows an example.

 1 // Define a Rectangle pointer.

 2 Rectangle *rectPtr;

 3

 4 // Dynamically allocate a Rectangle object.

 5 rectPtr = new Rectangle;

 6

 7 // Store values in the object's width and length.

 8 rectPtr->setWidth(10.0);

 9 rectPtr->setLength(15.0);

10

11 // Delete the object from memory.

12 delete rectPtr;

13 rectPtr = 0;

Line 2 de nes rectPtr as a Rectangle pointer. Line 5 uses the new operator to dynami-

cally allocate a Rectangle object and assign its address to rectPtr. Lines 8 and 9 store

values in the dynamically allocated object s width and length variables. Figure 13-12

shows the state of the dynamically allocated object after these statements have executed.

Line 12 deletes the object from memory and line 13 stores the address 0 in rectPtr.

Recall from Chapter 9 that this prevents code from inadvertently using the pointer to

access the area of memory that has been freed. It also prevents errors from occurring if

delete is accidentally called on the pointer again.

Program 13-3 is a modi cation of Program 13-2. In this program, kitchen, bedroom, and

den are Rectangle pointers. They are used to dynamically allocate Rectangle objects.

The output is the same as Program 13-2.

Figure 13-11

Figure 13-12

The myRectangle object

The rectPtr pointer variable

holds the address of the

myRectangle object

4.8

width:

length:

12.5

address

A Rectangle object

The rectPtr pointer variable

holds the address of a dynamically

allocated Rectangle object

15.0

width:

length:

10.0

address

M13_GADD6253_07_SE_C13 Page 725 Saturday, January 8, 2011 4:39 PM

726 Chapter 13 Introduction to Classes

Program 13-3

 1 // This program creates three instances of the Rectangle class.

 2 #include <iostream>

 3 using namespace std;

 4

 5 // Rectangle class declaration.

Lines 6 through 62 have been left out.

 63

 64 //***

 65 // Function main *

 66 //***

 67

 68 int main()

 69 {

 70 double number; // To hold a number

 71 double totalArea; // The total area

 72 Rectangle *kitchen; // To point to kitchen dimensions

 73 Rectangle *bedroom; // To point to bedroom dimensions

 74 Rectangle *den; // To point to den dimensions

 75

 76 // Dynamically allocate the objects.

 77 kitchen = new Rectangle;

 78 bedroom = new Rectangle;

 79 den = new Rectangle;

 80

 81 // Get the kitchen dimensions.

 82 cout << "What is the kitchen's length? ";

 83 cin >> number; // Get the length

 84 kitchen->setLength(number); // Store in kitchen object

 85 cout << "What is the kitchen's width? ";

 86 cin >> number; // Get the width

 87 kitchen->setWidth(number); // Store in kitchen object

 88

 89 // Get the bedroom dimensions.

 90 cout << "What is the bedroom's length? ";

 91 cin >> number; // Get the length

 92 bedroom->setLength(number); // Store in bedroom object

 93 cout << "What is the bedroom's width? ";

 94 cin >> number; // Get the width

 95 bedroom->setWidth(number); // Store in bedroom object

 96

 97 // Get the den dimensions.

 98 cout << "What is the den's length? ";

 99 cin >> number; // Get the length

 100 den->setLength(number); // Store in den object

 101 cout << "What is the den's width? ";

 102 cin >> number; // Get the width

 103 den->setWidth(number); // Store in den object

 104

 105 // Calculate the total area of the three rooms.

 106 totalArea = kitchen->getArea() + bedroom->getArea()

 107 + den->getArea();

 108

M13_GADD6253_07_SE_C13 Page 726 Saturday, January 8, 2011 4:39 PM

13.3 Defining an Instance of a Class 727

Checkpoint

 www.myprogramminglab.com

13.1 True or False: You must declare all private members of a class before the public

members.

13.2 Assume that RetailItem is the name of a class, and the class has a void member

function named setPrice which accepts a double argument. Which of the fol-

lowing shows the correct use of the scope resolution operator in the member

function de nition?

A) RetailItem::void setPrice(double p)

B) void RetailItem::setPrice(double p)

13.3 An object s private member variables are accessed from outside the object by

A) public member functions

B) any function

C) the dot operator

D) the scope resolution operator

13.4 Assume that RetailItem is the name of a class, and the class has a void member

function named setPrice which accepts a double argument. If soap is an

instance of the RetailItem class, which of the following statements properly uses

the soap object to call the setPrice member function?

A) RetailItem::setPrice(1.49);

B) soap::setPrice(1.49);

C) soap.setPrice(1.49);

D) soap:setPrice(1.49);

13.5 Complete the following code skeleton to declare a class named Date. The class

should contain variables and functions to store and retrieve a date in the form

4/2/2012.

class Date

{

 private:

 public:

}

 109 // Display the total area of the three rooms.

 110 cout << "The total area of the three rooms is "

 111 << totalArea << endl;

 112

 113 // Delete the objects from memory.

 114 delete kitchen;

 115 delete bedroom;

 116 delete den;

 117 kitchen = 0; // Make kitchen point to null.

 118 bedroom = 0; // Make bedroom point to null.

 119 den = 0; // Make den point to null.

 120

 121 return 0;

 122 }

M13_GADD6253_07_SE_C13 Page 727 Saturday, January 8, 2011 4:39 PM

728 Chapter 13 Introduction to Classes

13.4 Why Have Private Members?

CONCEPT: In object-oriented programming, an object should protect its important data

by making it private and providing a public interface to access that data.

You might be questioning the rationale behind making the member variables in the

Rectangle class private. You might also be questioning why member functions were

de ned for such simple tasks as setting variables and getting their contents. After all, if the

member variables were declared as public, the member functions wouldn t be needed.

As mentioned earlier in this chapter, classes usually have variables and functions that are

meant only to be used internally. They are not intended to be accessed by statements out-

side the class. This protects critical data from being accidentally modi ed or used in a way

that might adversely affect the state of the object. When a member variable is declared as

private, the only way for an application to store values in the variable is through a pub-

lic member function. Likewise, the only way for an application to retrieve the contents of

a private member variable is through a public member function. In essence, the public

members become an interface to the object. They are the only members that may be

accessed by any application that uses the object.

In the Rectangle class, the width and length member variables hold critical data.

Therefore they are declared as private and an interface is constructed with public mem-

ber functions. If a program creates a Rectangle object, the program must use the

setWidth and getWidth member functions to access the object s width member. To

access the object s length member, the program must use the setLength and getLength

member functions. This idea is illustrated in Figure 13-13.

The public member functions can be written to lter out invalid data. For example, look

at the following version of the setWidth member function.

void Rectangle::setWidth(double w)

{

 if (w >= 0)

 width = w;

Figure 13-13

Rectangle Class

Code

Outside the

Class

width length

setWidth

getWidth

setLength

getLength

M13_GADD6253_07_SE_C13 Page 728 Saturday, January 8, 2011 4:39 PM

13.5 Focus on Software Engineering: Separating Class Specification from Implementation 729

 else

 {

 cout << "Invalid width\n";

 exit(EXIT_FAILURE);

 }

}

Notice that this version of the function doesn t just assign the parameter value to the

width variable. It rst tests the parameter to make sure it is 0 or greater. If a negative

number was passed to the function, an error message is displayed and then the standard

library function exit is called to abort the program. The setLength function could be

written in a similar way:

void Rectangle::setLength(double len)

{

 if (len >= 0)

 length = len;

 else

 {

 cout << "Invalid length\n";

 exit(EXIT_FAILURE);

 }

}

The point being made here is that mutator functions can do much more than simply store

values in attributes. They can also validate those values to ensure that only acceptable

data is stored in the object s attributes. Keep in mind, however, that calling the exit func-

tion, as we have done in these examples, is not the best way to deal with invalid data. In

reality, you would not design a class to abort the entire program just because invalid data

were passed to a mutator function. In Chapter 15 we will discuss exceptions, which pro-

vide a much better way for classes to handle errors. Until we discuss exceptions, however,

we will keep our code simple by using only rudimentary data validation techniques.

13.5
Focus on Software Engineering: Separating Class
Speci cation from Implementation

CONCEPT: Usually class declarations are stored in their own header les. Member

function de nitions are stored in their own .cpp les.

In the programs we ve looked at so far, the class declaration, member function de nitions,

and application program are all stored in one le. A more conventional way of designing

C++ programs is to store class declarations and member function de nitions in their own

separate les. Typically, program components are stored in the following fashion:

Class declarations are stored in their own header files. A header file that contains

a class declaration is called a class specification file. The name of the class specifi-

cation file is usually the same as the name of the class, with a .h extension. For

example, the Rectangle class would be declared in the file Rectangle.h.

M13_GADD6253_07_SE_C13 Page 729 Saturday, January 8, 2011 4:39 PM

730 Chapter 13 Introduction to Classes

The member function definitions for a class are stored in a separate .cpp file

called the class implementation file. The file usually has the same name as the

class, with the .cpp extension. For example, the Rectangle class s member func-

tions would be defined in the file Rectangle.cpp.

Any program that uses the class should #include the class s header file. The

class s .cpp file (that which contains the member function definitions) should be

compiled and linked with the main program. This process can be automated with

a project or make utility. Integrated development environments such as Visual

Studio also provide the means to create the multi-file projects.

Let s see how we could rewrite Program 13-1 using this design approach. First, the

Rectangle class declaration would be stored in the following Rectangle.h le. (This le

is stored in the Student Source Code Folder Chapter 13\Rectangle Version 1.)

Contents of Rectangle.h (Version 1)

 1 // Specification file for the Rectangle class.

 2 #ifndef RECTANGLE_H

 3 #define RECTANGLE_H

 4

 5 // Rectangle class declaration.

 6

 7 class Rectangle

 8 {

 9 private:

10 double width;

11 double length;

12 public:

13 void setWidth(double);

14 void setLength(double);

15 double getWidth() const;

16 double getLength() const;

17 double getArea() const;

18 };

19

20 #endif

This is the speci cation le for the Rectangle class. It contains only the declaration of the

Rectangle class. It does not contain any member function de nitions. When we write

other programs that use the Rectangle class, we can have an #include directive that

includes this le. That way, we won t have to write the class declaration in every program

that uses the Rectangle class.

This le also introduces two new preprocessor directives: #ifndef and #endif. The

#ifndef directive that appears in line 2 is called an include guard. It prevents the header

le from accidentally being included more than once. When your main program le has an

#include directive for a header le, there is always the possibility that the header le will

have an #include directive for a second header le. If your main program le also has an

#include directive for the second header le, then the preprocessor will include the sec-

ond header le twice. Unless an include guard has been written into the second header le,

an error will occur because the compiler will process the declarations in the second header

le twice. Let s see how an include guard works.

M13_GADD6253_07_SE_C13 Page 730 Saturday, January 8, 2011 4:39 PM

13.5 Focus on Software Engineering: Separating Class Specification from Implementation 731

The word ifndef stands for if not de ned. It is used to determine whether a speci c

constant has not been de ned with a #define directive. When the Rectangle.h le is

being compiled, the #ifndef directive checks for the existence of a constant named

RECTANGLE_H. If the constant has not been de ned, it is immediately de ned in line 3 and

the rest of the le is included. If the constant has been de ned, it means that the le has

already been included. In that case, everything between the #ifndef and #endif direc-

tives is skipped. This is illustrated in Figure 13-14.

Next we need an implementation le that contains the class s member function de nitions.

The implementation le for the Rectangle class is Rectangle.cpp. (This le is stored in

the Student Source Code Folder Chapter 13\Rectangle Version 1.)

Contents of Rectangle.cpp (Version 1)

 1 // Implementation file for the Rectangle class.

 2 #include "Rectangle.h" // Needed for the Rectangle class

 3 #include <iostream> // Needed for cout

 4 #include <cstdlib> // Needed for the exit function

 5 using namespace std;

 6

 7 //***

 8 // setWidth sets the value of the member variable width. *

 9 //***

10

Figure 13-14

#ifndef RECTANGLE_H

#endif

#define RECTANGLE_H

class Rectangle

{

 // Member declarations

 // appear here.

 };

This directive tells the preprocessor to

see if a constant named RECTANGLE_H

has not been previously created with a

#define directive.

If the RECTANGLE_H constant has not

been defined, these lines are included

in the program. Otherwise, these lines

are not included in the program.

#ifndef RECTANGLE_H

#endif

#define RECTANGLE_H

class Rectangle

{

 // Member declarations

 // appear here.

 };

The first included line defines the

RECTANGLE_H constant. If this file

is included again, the include guard

will skip its contents.

M13_GADD6253_07_SE_C13 Page 731 Saturday, January 8, 2011 4:39 PM

732 Chapter 13 Introduction to Classes

11 void Rectangle::setWidth(double w)

12 {

13 if (w >= 0)

14 width = w;

15 else

16 {

17 cout << "Invalid width\n";

18 exit(EXIT_FAILURE);

19 }

20 }

21

22 //***

23 // setLength sets the value of the member variable length. *

24 //***

25

26 void Rectangle::setLength(double len)

27 {

28 if (len >= 0)

29 length = len;

30 else

31 {

32 cout << "Invalid length\n";

33 exit(EXIT_FAILURE);

34 }

35 }

36

37 //***

38 // getWidth returns the value in the member variable width. *

39 //***

40

41 double Rectangle::getWidth() const

42 {

43 return width;

44 }

45

46 //***

47 // getLength returns the value in the member variable length. *

48 //***

49

50 double Rectangle::getLength() const

51 {

52 return length;

53 }

54

55 //**

56 // getArea returns the product of width times length. *

57 //**

58

59 double Rectangle::getArea() const

60 {

61 return width * length;

62 }

M13_GADD6253_07_SE_C13 Page 732 Saturday, January 8, 2011 4:39 PM

13.5 Focus on Software Engineering: Separating Class Specification from Implementation 733

Look at line 2, which has the following #include directive:

#include "Rectangle.h"

This directive includes the Rectangle.h le, which contains the Rectangle class declara-

tion. Notice that the name of the header le is enclosed in double-quote characters (" ")

instead of angled brackets (< >). When you are including a C++ system header le, such as

iostream, you enclose the name of the le in angled brackets. This indicates that the le

is located in the compiler s include le directory. The include le directory is the directory

or folder where all of the standard C++ header les are located. When you are including a

header le that you have written, such as a class speci cation le, you enclose the name of

the le in double-quote marks. This indicates that the le is located in the current project

directory.

Any le that uses the Rectangle class must have an #include directive for the Rectangle.h

le. We need to include Rectangle.h in the class speci cation le because the functions

in this le belong to the Rectangle class. Before the compiler can process a function

with Rectangle:: in its name, it must have already processed the Rectangle class

declaration.

Now that we have the Rectangle class stored in its own speci cation and implementation

les, we can see how to use them in a program. Program 13-4 shows a modi ed version of

Program 13-1. This version of the program does not contain the Rectangle class declara-

tion, or the de nitions of any of the class s member functions. Instead, it is designed to be

compiled and linked with the class speci cation and implementation les. (This le is

stored in the Student Source Code Folder Chapter 13\Rectangle Version 1.)

Program 13-4

 1 // This program uses the Rectangle class, which is declared in

 2 // the Rectangle.h file. The member Rectangle class's member

 3 // functions are defined in the Rectangle.cpp file. This program

 4 // should be compiled with those files in a project.

 5 #include <iostream>

 6 #include "Rectangle.h" // Needed for Rectangle class

 7 using namespace std;

 8

 9 int main()

 10 {

 11 Rectangle box; // Define an instance of the Rectangle class

 12 double rectWidth; // Local variable for width

 13 double rectLength; // Local variable for length

 14

 15 // Get the rectangle's width and length from the user.

 16 cout << "This program will calculate the area of a\n";

 17 cout << "rectangle. What is the width? ";

 18 cin >> rectWidth;

 19 cout << "What is the length? ";

 20 cin >> rectLength;

 21

(program continues)

M13_GADD6253_07_SE_C13 Page 733 Saturday, January 8, 2011 4:39 PM

734 Chapter 13 Introduction to Classes

Notice that Program 13-4 has an #include directive for the Rectangle.h le in line 6.

This causes the declaration for the Rectangle class to be included in the le. To create an

executable program from this le, the following steps must be taken:

The implementation file, Rectangle.cpp, must be compiled. Rectangle.cpp is

not a complete program, so you cannot create an executable file from it alone.

Instead, you compile Rectangle.cpp to an object file which contains the com-

piled code for the Rectangle class. This file would typically be named

Rectangle.obj.

The main program file, Pr13-4.cpp, must be compiled. This file is not a com-

plete program either, because it does not contain any of the implementation code

for the Rectangle class. So, you compile this file to an object file such as

Pr13-4.obj.

The object files, Pr13-4.obj and Rectangle.obj, are linked together to create

an executable file, which would be named something like Pr13-4.exe.

This process is illustrated in Figure 13-15.

The exact details on how these steps take place are different for each C++ development

system. Fortunately, most systems perform all of these steps automatically for you. For

example, in Microsoft Visual C++ you create a project, and then you simply add all of the

les to the project. When you compile the project, the steps are taken care of for you and

an executable le is generated.

Separating a class into a speci cation le and an implementation le provides a great deal of

exibility. First, if you wish to give your class to another programmer, you don t have to

share all of your source code with that programmer. You can give him or her the speci ca-

tion le and the compiled object le for the class s implementation. The other programmer

simply inserts the necessary #include directive into his or her program, compiles it, and

links it with your class s object le. This prevents the other programmer, who might not

know all the details of your code, from making changes that will introduce bugs.

 22 // Store the width and length of the rectangle

 23 // in the box object.

 24 box.setWidth(rectWidth);

 25 box.setLength(rectLength);

 26

 27 // Display the rectangle's data.

 28 cout << "Here is the rectangle's data:\n";

 29 cout << "Width: " << box.getWidth() << endl;

 30 cout << "Length: " << box.getLength() << endl;

 31 cout << "Area: " << box.getArea() << endl;

 32 return 0;

 33 }

NOTE: Appendix M gives step-by-step instructions for creating multi- le projects in

Microsoft Visual C++ 2010 Express Edition. You can download Appendix M from the

book s companion Web site at www.pearsonhighered.com/gaddis.

Program 13-4 (continued)

M13_GADD6253_07_SE_C13 Page 734 Saturday, January 8, 2011 4:39 PM

13.6 Inline Member Functions 735

Separating a class into speci cation and implementation les also makes things easier

when the class s member functions must be modi ed. It is only necessary to modify the

implementation le and recompile it to a new object le. Programs that use the class don t

have to be completely recompiled, just linked with the new object le.

13.6 Inline Member Functions

CONCEPT: When the body of a member function is written inside a class declaration,

it is declared inline.

When the body of a member function is small, it is usually more convenient to place the func-

tion s de nition, instead of its prototype, in the class declaration. For example, in the

Rectangle class the member functions getWidth, getLength, and getArea each have only

one statement. The Rectangle class could be revised as shown in the following listing. (This

le is stored in the Student Source Code Folder Chapter 13\Rectangle Version 2.)

Contents of Rectangle.h (Version 2)

 1 // Specification file for the Rectangle class

 2 // This version uses some inline member functions.

 3 #ifndef RECTANGLE_H

 4 #define RECTANGLE_H

 5

 6 class Rectangle

 7 {

 8 private:

 9 double width;

10 double length;

Figure 13-15

Rectangle.h

(Specification File)

Rectangle.cpp

(Implementation

File)

Rectangle.h is

included in
Rectangle.cpp

Pr13-4.cpp

(Main Program

File)

Rectangle.h is

included in
Pr13-4.cpp

Rectangle.obj

(Object File)

Pr13-4.obj

(Object File)

Rectangle.cpp is compiled

and Rectangle.obj is created

Pr13-4.cpp is compiled

and Pr13-4.obj is created

Pr13-4.exe
(Executable File)

Rectangle.obj and Pr13-4.obj

are linked and Pr13-4.exe

is created

M13_GADD6253_07_SE_C13 Page 735 Saturday, January 8, 2011 4:39 PM

736 Chapter 13 Introduction to Classes

11 public:

12 void setWidth(double);

13 void setLength(double);

14

15 double getWidth() const

16 { return width; }

17

18 double getLength() const

19 { return length; }

20

21 double getArea() const

22 { return width * length; }

23 };

24 #endif

When a member function is de ned in the declaration of a class, it is called an inline func-

tion. Notice that because the function de nitions are part of the class, there is no need to

use the scope resolution operator and class name in the function header.

Notice that the getWidth, getLength, and getArea functions are declared inline, but the

setWidth and setLength functions are not. They are still de ned outside the class

declaration. The following listing shows the implementation le for the revised

Rectangle class. (This le is also stored in the Student Source Code Folder Chapter 13\

Rectangle Version 2.)

Contents of Rectangle.cpp (Version 2)

 1 // Implementation file for the Rectangle class.

 2 // In this version of the class, the getWidth, getLength,

 3 // and getArea functions are written inline in Rectangle.h.

 4 #include "Rectangle.h" // Needed for the Rectangle class

 5 #include <iostream> // Needed for cout

 6 #include <cstdlib> // Needed for the exit function

 7 using namespace std;

 8

 9 //***

10 // setWidth sets the value of the member variable width. *

11 //***

12

13 void Rectangle::setWidth(double w)

14 {

15 if (w >= 0)

16 width = w;

17 else

18 {

19 cout << "Invalid width\n";

20 exit(EXIT_FAILURE);

21 }

22 }

23

24 //***

25 // setLength sets the value of the member variable length. *

26 //***

27

M13_GADD6253_07_SE_C13 Page 736 Saturday, January 8, 2011 4:39 PM

13.6 Inline Member Functions 737

28 void Rectangle::setLength(double len)

29 {

30 if (len >= 0)

31 length = len;

32 else

33 {

34 cout << "Invalid length\n";

35 exit(EXIT_FAILURE);

36 }

37 }

Inline Functions and Performance

A lot goes on behind the scenes each time a function is called. A number of special

items, such as the function s return address in the program and the values of arguments,

are stored in a section of memory called the stack. In addition, local variables are created

and a location is reserved for the function s return value. All this overhead, which sets the

stage for a function call, takes precious CPU time. Although the time needed is minuscule,

it can add up if a function is called many times, as in a loop.

Inline functions are compiled differently than other functions. In the executable code,

inline functions aren t called in the conventional sense. In a process known as inline

expansion, the compiler replaces the call to an inline function with the code of the func-

tion itself. This means that the overhead needed for a conventional function call isn t nec-

essary for an inline function, and can result in improved performance.* Because the inline

function s code can appear multiple times in the executable program, however, the size of

the program can increase.

Checkpoint

 www.myprogramminglab.com

13.6 Why would you declare a class s member variables private?

13.7 When a class s member variables are declared private, how does code outside

the class store values in, or retrieve values from, the member variables?

13.8 What is a class speci cation le? What is a class implementation le?

13.9 What is the purpose of an include guard?

13.10 Assume the following class components exist in a program:

BasePay class declaration

BasePay member function de nitions

Overtime class declaration

Overtime member function de nitions

In what les would you store each of these components?

13.11 What is an inline member function?

* Because inline functions cause code to increase in size, they can decrease performance on sys-
tems that use paging.
 Writing a function inline is a request to the compiler. The compiler will ignore the request if

inline expansion is not possible or practical.

M13_GADD6253_07_SE_C13 Page 737 Saturday, January 8, 2011 4:39 PM

738 Chapter 13 Introduction to Classes

13.7 Constructors

CONCEPT: A constructor is a member function that is automatically called when a

class object is created.

A constructor is a member function that has the same name as the class. It is automatically

called when the object is created in memory, or instantiated. It is helpful to think of con-

structors as initialization routines. They are very useful for initializing member variables

or performing other setup operations.

To illustrate how constructors work, look at this Demo class declaration:

class Demo

{

public:

 Demo(); // Constructor

};

Demo::Demo()

{

 cout << "Welcome to the constructor!\n";
}

The class Demo only has one member: a function also named Demo. This function is the

constructor. When an instance of this class is de ned, the function Demo is automatically

called. This is illustrated in Program 13-5.

Program 13-5

 1 // This program demonstrates a constructor.

 2 #include <iostream>

 3 using namespace std;

 4

 5 // Demo class declaration.

 6

 7 class Demo

 8 {

 9 public:

 10 Demo(); // Constructor

 11 };

 12

 13 Demo::Demo()

 14 {

 15 cout << "Welcome to the constructor!\n";

 16 }

 17

M13_GADD6253_07_SE_C13 Page 738 Saturday, January 8, 2011 4:39 PM

13.7 Constructors 739

Notice that the constructor s function header looks different than that of a regular mem-

ber function. There is no return type not even void. This is because constructors are not

executed by explicit function calls and cannot return a value. The function header of a

constructor s external de nition takes the following form:

In the general format, ClassName is the name of the class and ParameterList is an

optional list of parameter variable declarations.

In Program 13-5, demoObject s constructor executes automatically when the object is

de ned. Because the object is de ned before the cout statements in function main, the

constructor displays its message rst. Suppose we had de ned the Demo object between

two cout statements, as shown here.

cout << "This is displayed before the object is created.\n";

Demo demoObject;// Define a Demo object.

cout << "\nThis is displayed after the object is created.\n";

This code would produce the following output:

This is displayed before the object is created.

Welcome to the constructor!

This is displayed after the object is created.

This simple Demo example illustrates when a constructor executes. More importantly, you

should understand why a class should have a constructor. A constructor s purpose is to

initialize an object s attributes. Because the constructor executes as soon as the object is

created, it can initialize the object s data members to valid values before those members

are used by other code. It is a good practice to always write a constructor for every class.

 18 //***

 19 // Function main. *

 20 //***

 21

 22 int main()

 23 {

 24 Demo demoObject; // Define a Demo object;

 25

 26 cout << "This program demonstrates an object\n";

 27 cout << "with a constructor.\n";

 28 return 0;

 29 }

Program Output

Welcome to the constructor!

This program demonstrates an object

with a constructor.

 ClassName::ClassName(ParameterList)

M13_GADD6253_07_SE_C13 Page 739 Saturday, January 8, 2011 4:39 PM

740 Chapter 13 Introduction to Classes

For example, the Rectangle class that we looked at earlier could bene t from having a

constructor. A program could de ne a Rectangle object and then use that object to call

the getArea function before any values were stored in width and length. Because the

width and length member variables are not initialized, the function would return gar-

bage. The following code shows a better version of the Rectangle class, equipped with a

constructor. The constructor initializes both width and length to 0.0. (These les are

stored in the Student Source Code Folder Chapter 13\Rectangle Version 3.)

Contents of Rectangle.h (Version 3)

 1 // Specification file for the Rectangle class

 2 // This version has a constructor.

 3 #ifndef RECTANGLE_H

 4 #define RECTANGLE_H

 5

 6 class Rectangle

 7 {

 8 private:

 9 double width;

10 double length;

11 public:

12 Rectangle(); // Constructor

13 void setWidth(double);

14 void setLength(double);

15

16 double getWidth() const

17 { return width; }

18

19 double getLength() const

20 { return length; }

21

22 double getArea() const

23 { return width * length; }

24 };

25 #endif

Contents of Rectangle.cpp (Version 3)

 1 // Implementation file for the Rectangle class.

 2 // This version has a constructor.

 3 #include "Rectangle.h" // Needed for the Rectangle class

 4 #include <iostream> // Needed for cout

 5 #include <cstdlib> // Needed for the exit function

 6 using namespace std;

 7

 8 //***

 9 // The constructor initializes width and length to 0.0. *

10 //***

11

12 Rectangle::Rectangle()

13 {

14 width = 0.0;

15 length = 0.0;

16 }

M13_GADD6253_07_SE_C13 Page 740 Saturday, January 8, 2011 4:39 PM

13.7 Constructors 741

17

18 //***

19 // setWidth sets the value of the member variable width. *

20 //***

21

22 void Rectangle::setWidth(double w)

23 {

24 if (w >= 0)

25 width = w;

26 else

27 {

28 cout << "Invalid width\n";

29 exit(EXIT_FAILURE);

30 }

31 }

32

33 //***

34 // setLength sets the value of the member variable length. *

35 //***

36

37 void Rectangle::setLength(double len)

38 {

39 if (len >= 0)

40 length = len;

41 else

42 {

43 cout << "Invalid length\n";

44 exit(EXIT_FAILURE);

45 }

46 }

Program 13-6 demonstrates this new version of the class. It creates a Rectangle object and

then displays the values returned by the getWidth, getLength, and getArea member func-

tions. (This le is also stored in the Student Source Code Folder Chapter 13\Rectangle

Version 3.)

Program 13-6

 1 // This program uses the Rectangle class's constructor.

 2 #include <iostream>

 3 #include "Rectangle.h" // Needed for Rectangle class

 4 using namespace std;

 5

 6 int main()

 7 {

 8 Rectangle box; // Define an instance of the Rectangle class

 9

 10 // Display the rectangle's data.

 11 cout << "Here is the rectangle's data:\n";

 12 cout << "Width: " << box.getWidth() << endl;

 13 cout << "Length: " << box.getLength() << endl;

 14 cout << "Area: " << box.getArea() << endl;

 15 return 0;

 16 }

(program output continues)

M13_GADD6253_07_SE_C13 Page 741 Saturday, January 8, 2011 4:39 PM

742 Chapter 13 Introduction to Classes

The Default Constructor

All of the examples we have looked at in this section demonstrate default constructors. A

default constructor is a constructor that takes no arguments. Like regular functions, con-

structors may accept arguments, have default arguments, be declared inline, and be over-

loaded. We will see examples of these as we progress through the chapter.

If you write a class with no constructor whatsoever, when the class is compiled C++ will

automatically write a default constructor that does nothing. For example, the rst version

of the Rectangle class had no constructor; so, when the class was compiled C++ gener-

ated the following constructor:

Rectangle::Rectangle()

{ }

Default Constructors and Dynamically Allocated Objects

Earlier we discussed how class objects may be dynamically allocated in memory. For

example, assume the following pointer is de ned in a program:

Rectangle *rectPtr;

This statement de nes rectPtr as a Rectangle pointer. It can hold the address of any

Rectangle object. But because this statement does not actually create a Rectangle

object, the constructor does not execute. Suppose we use the pointer in a statement that

dynamically allocates a Rectangle object, as shown in the following code.

rectPtr = new Rectangle;

This statement creates a Rectangle object. When the Rectangle object is created by the

new operator, its default constructor is automatically executed.

13.8 Passing Arguments to Constructors

CONCEPT: A constructor can have parameters, and can accept arguments when an object

is created.

Constructors may accept arguments in the same way as other functions. When a class has

a constructor that accepts arguments, you can pass initialization values to the constructor

when you create an object. For example, the following code shows yet another version of

the Rectangle class. This version has a constructor that accepts arguments for the rectan-

gle s width and length. (These les are stored in the Student Source Code Folder Chapter

13\Rectangle Version 4.)

Program Output

Here is the rectangle's data:

Width: 0

Length: 0

Area: 0

Program 13-6 (continued)

M13_GADD6253_07_SE_C13 Page 742 Saturday, January 8, 2011 4:39 PM

13.8 Passing Arguments to Constructors 743

Contents of Rectangle.h (Version 4)

 1 // Specification file for the Rectangle class

 2 // This version has a constructor.

 3 #ifndef RECTANGLE_H

 4 #define RECTANGLE_H

 5

 6 class Rectangle

 7 {

 8 private:

 9 double width;

10 double length;

11 public:

12 Rectangle(double, double); // Constructor

13 void setWidth(double);

14 void setLength(double);

15

16 double getWidth() const

17 { return width; }

18

19 double getLength() const

20 { return length; }

21

22 double getArea() const

23 { return width * length; }

24 };

25 #endif

Contents of Rectangle.cpp (Version 4)

 1 // Implementation file for the Rectangle class.

 2 // This version has a constructor that accepts arguments.

 3 #include "Rectangle.h" // Needed for the Rectangle class

 4 #include <iostream> // Needed for cout

 5 #include <cstdlib> // Needed for the exit function

 6 using namespace std;

 7

 8 //***

 9 // The constructor accepts arguments for width and length. *

10 //***

11

12 Rectangle::Rectangle(double w, double len)

13 {

14 width = w;

15 length = len;

16 }

17

18 //***

19 // setWidth sets the value of the member variable width. *

20 //***

21

22 void Rectangle::setWidth(double w)

23 {

24 if (w >= 0)

25 width = w;

M13_GADD6253_07_SE_C13 Page 743 Saturday, January 8, 2011 4:39 PM

744 Chapter 13 Introduction to Classes

26 else

27 {

28 cout << "Invalid width\n";

29 exit(EXIT_FAILURE);

30 }

31 }

32

33 //***

34 // setLength sets the value of the member variable length. *

35 //***

36

37 void Rectangle::setLength(double len)

38 {

39 if (len >= 0)

40 length = len;

41 else

42 {

43 cout << "Invalid length\n";

44 exit(EXIT_FAILURE);

45 }

46 }

The constructor, which appears in lines 12 through 16 of Rectangle.cpp, accepts two

arguments, which are passed into the w and len parameters. The parameters are assigned

to the width and length member variables. Because the constructor is automatically

called when a Rectangle object is created, the arguments are passed to the constructor as

part of the object de nition. Here is an example:

Rectangle box(10.0, 12.0);

This statement de nes box as an instance of the Rectangle class. The constructor is

called with the value 10.0 passed into the w parameter and 12.0 passed into the len

parameter. As a result, the object s width member variable will be assigned 10.0 and the

length member variable will be assigned 12.0. This is illustrated in Figure 13-16.

Program 13-7 demonstrates the class. (This le is also stored in the Student Source Code

Folder Chapter 13\Rectangle Version 4.)

Figure 13-16

The box object is initialized

with width set to 10.0 and

length set to 12.0

width:

length:

10.0

12.0

Rectangle box(10.0, 12.0);

M13_GADD6253_07_SE_C13 Page 744 Saturday, January 8, 2011 4:39 PM

13.8 Passing Arguments to Constructors 745

The statement in line 21 creates a Rectangle object, passing the values in houseWidth

and houseLength as arguments.

The following code shows another example: the Sale class. This class might be used in a

retail environment where sales transactions take place. An object of the Sale class repre-

sents the sale of an item. (This le is stored in the Student Source Code Folder Chapter 13\

Sale Version 1.)

Program 13-7

 1 // This program calls the Rectangle class constructor.

 2 #include <iostream>

 3 #include <iomanip>

 4 #include "Rectangle.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 double houseWidth, // To hold the room width

 10 houseLength; // To hold the room length

 11

 12 // Get the width of the house.

 13 cout << "In feet, how wide is your house? ";

 14 cin >> houseWidth;

 15

 16 // Get the length of the house.

 17 cout << "In feet, how long is your house? ";

 18 cin >> houseLength;

 19

 20 // Create a Rectangle object.

 21 Rectangle house(houseWidth, houseLength);

 22

 23 // Display the house's width, length, and area.

 24 cout << setprecision(2) << fixed;

 25 cout << "The house is " << house.getWidth()

 26 << " feet wide.\n";

 27 cout << "The house is " << house.getLength()

 28 << " feet long.\n";

 29 cout << "The house is " << house.getArea()

 30 << " square feet in area.\n";

 31 return 0;

 32 }

Program Output with Example Input Shown in Bold

In feet, how wide is your house? 30 [Enter]
In feet, how long is your house? 60 [Enter]
The house is 30.00 feet wide.

The house is 60.00 feet long.

The house is 1800.00 square feet in area.

M13_GADD6253_07_SE_C13 Page 745 Saturday, January 8, 2011 4:39 PM

746 Chapter 13 Introduction to Classes

Contents of Sale.h (Version 1)

 1 // Specification file for the Sale class.

 2 #ifndef SALE_H

 3 #define SALE_H

 4

 5 class Sale

 6 {

 7 private:

 8 double itemCost; // Cost of the item

 9 double taxRate; // Sales tax rate

10 public:

11 Sale(double cost, double rate)

12 { itemCost = cost;

13 taxRate = rate; }

14

15 double getItemCost() const

16 { return itemCost; }

17

18 double getTaxRate() const

19 { return taxRate; }

20

21 double getTax() const

22 { return (itemCost * taxRate); }

23

24 double getTotal() const

25 { return (itemCost + getTax()); }

26 };

27 #endif

The itemCost member variable, declared in line 8, holds the selling price of the item. The

taxRate member variable, declared in line 9, holds the sales tax rate. The constructor

appears in lines 11 through 13. Notice that the constructor is written inline. It accepts two

arguments, the item cost and the sales tax rate. These arguments are used to initialize the

itemCost and taxRate member variables. The getItemCost member function, in lines

15 through 16, returns the value in itemCost, and the getTaxRate member function, in

lines 18 through 19, returns the value in taxRate. The getTax member function, in lines

21 through 22, calculates and returns the amount of sales tax for the purchase. The

getTotal member function, in lines 24 through 25, calculates and returns the total of the

sale. The total is the item cost plus the sales tax. Program 13-8 demonstrates the class.

(This le is stored in the Student Source Code Folder Chapter 13\Sale Version 1.)

Program 13-8

 1 // This program demonstrates passing an argument to a constructor.

 2 #include <iostream>

 3 #include <iomanip>

 4 #include "Sale.h"

 5 using namespace std;

 6

M13_GADD6253_07_SE_C13 Page 746 Saturday, January 8, 2011 4:39 PM

13.8 Passing Arguments to Constructors 747

In the example run of the program the user enters 10.00 as the cost of the item. This value

is stored in the local variable cost. In line 17 the itemSale object is created. The values

of the cost variable and the TAX_RATE constant are passed as arguments to the construc-

tor. As a result, the object s cost member variable is initialized with the value 10.0 and the

rate member variable is initialized with the value 0.06. This is illustrated in Figure 13-17.

 7 int main()

 8 {

 9 const double TAX_RATE = 0.06; // 6 percent sales tax rate

 10 double cost; // To hold the item cost

 11

 12 // Get the cost of the item.

 13 cout << "Enter the cost of the item: ";

 14 cin >> cost;

 15

 16 // Create a Sale object for this transaction.

 17 Sale itemSale(cost, TAX_RATE);

 18

 19 // Set numeric output formatting.

 20 cout << fixed << showpoint << setprecision(2);

 21

 22 // Display the sales tax and total.

 23 cout << "The amount of sales tax is $"

 24 << itemSale.getTax() << endl;

 25 cout << "The total of the sale is $";

 26 cout << itemSale.getTotal() << endl;

 27 return 0;

 28 }

Program Output with Example Input Shown in Bold

Enter the cost of the item: 10.00 [Enter]
The amount of sales tax is $0.60

The total of the sale is $10.60

Figure 13-17

The itemSale object is initialized

with the cost member set to 10.0

and the rate member set to 0.06

cost:

rate:

10.0

0.06

Sale itemSale(cost, TAX_RATE);

The local variable

cost is set to 10.0.

The constant TAX_RATE

is set to 0.06.

M13_GADD6253_07_SE_C13 Page 747 Saturday, January 8, 2011 4:39 PM

748 Chapter 13 Introduction to Classes

Using Default Arguments with Constructors

Like other functions, constructors may have default arguments. Recall from Chapter 6

that default arguments are passed to parameters automatically if no argument is provided

in the function call. The default value is listed in the parameter list of the function s decla-

ration or the function header. The following code shows a modi ed version of the Sale

class. This version s constructor uses a default argument for the tax rate. (This le is

stored in the Student Source Code Folder Chapter 13\Sale Version 2.)

Contents of Sale.h (Version 2)

 1 // This version of the Sale class uses a default argument

 2 // in the constructor.

 3 #ifndef SALE_H

 4 #define SALE_H

 5

 6 class Sale

 7 {

 8 private:

 9 double itemCost; // Cost of the item

10 double taxRate; // Sales tax rate

11 public:

12 Sale(double cost, double rate = 0.05)

13 { itemCost = cost;

14 taxRate = rate; }

15

16 double getItemCost() const

17 { return itemCost; }

18

19 double getTaxRate() const

20 { return taxRate; }

21

22 double getTax() const

23 { return (itemCost * taxRate); }

24

25 double getTotal() const

26 { return (itemCost + getTax()); }

27 };

28 #endif

If an object of this Sale class is de ned with only one argument (for the cost parameter)

passed to the constructor, the default argument 0.05 will be provided for the rate param-

eter. This is demonstrated in Program 13-9. (This le is stored in the Student Source Code

Folder Chapter 13\Sale Version 2.)

Program 13-9

 1 // This program uses a constructor's default argument.

 2 #include <iostream>

 3 #include <iomanip>

 4 #include "Sale.h"

 5 using namespace std;

 6

M13_GADD6253_07_SE_C13 Page 748 Saturday, January 8, 2011 4:39 PM

13.8 Passing Arguments to Constructors 749

More About the Default Constructor

It was mentioned earlier that when a constructor doesn t accept arguments, it is known as

the default constructor. If a constructor has default arguments for all its parameters, it can

be called with no explicit arguments. It then becomes the default constructor. For exam-

ple, suppose the constructor for the Sale class had been written as the following:

Sale(double cost = 0.0, double rate = 0.05)

 { itemCost = cost;

 taxRate = rate; }

This constructor has default arguments for each of its parameters. As a result, the con-

structor can be called with no arguments, as shown here:

Sale itemSale;

This statement de nes a Sale object. No arguments were passed to the constructor, so the

default arguments for both parameters are used. Because this constructor can be called

with no arguments, it is the default constructor.

 7 int main()

 8 {

 9 double cost; // To hold the item cost

 10

 11 // Get the cost of the item.

 12 cout << "Enter the cost of the item: ";

 13 cin >> cost;

 14

 15 // Create a Sale object for this transaction.

 16 // Specify the item cost, but use the default

 17 // tax rate of 5 percent.

 18 Sale itemSale(cost);

 19

 20 // Set numeric output formatting.

 21 cout << fixed << showpoint << setprecision(2);

 22

 23 // Display the sales tax and total.

 24 cout << "The amount of sales tax is $"

 25 << itemSale.getTax() << endl;

 26 cout << "The total of the sale is $";

 27 cout << itemSale.getTotal() << endl;

 28 return 0;

 29 }

Program Output with Example Input Shown in Bold

Enter the cost of the item: 10.00 [Enter]
The amount of sales tax is $0.50

The total of the sale is $10.50

M13_GADD6253_07_SE_C13 Page 749 Saturday, January 8, 2011 4:39 PM

750 Chapter 13 Introduction to Classes

Classes with No Default Constructor

When all of a class s constructors require arguments, then the class does not have a default

constructor. In such a case you must pass the required arguments to the constructor when

creating an object. Otherwise, a compiler error will result.

13.9 Destructors

CONCEPT: A destructor is a member function that is automatically called when an

object is destroyed.

Destructors are member functions with the same name as the class, preceded by a tilde

character (~). For example, the destructor for the Rectangle class would be named

~Rectangle.

Destructors are automatically called when an object is destroyed. In the same way that

constructors set things up when an object is created, destructors perform shutdown proce-

dures when the object goes out of existence. For example, a common use of destructors is

to free memory that was dynamically allocated by the class object.

Program 13-10 shows a simple class with a constructor and a destructor. It illustrates

when, during the program s execution, each is called.

Program 13-10

 1 // This program demonstrates a destructor.

 2 #include <iostream>

 3 using namespace std;

 4

 5 class Demo

 6 {

 7 public:

 8 Demo(); // Constructor

 9 ~Demo(); // Destructor

 10 };

 11

 12 Demo::Demo()

 13 {

 14 cout << "Welcome to the constructor!\n";

 15 }

 16

 17 Demo::~Demo()

 18 {

 19 cout << "The destructor is now running.\n";

 20 }

 21

M13_GADD6253_07_SE_C13 Page 750 Saturday, January 8, 2011 4:39 PM

13.9 Destructors 751

The following code shows a more practical example of a class with a destructor. The

ContactInfo class holds the following data about a contact:

The contact s name

The contact s phone number

The constructor accepts arguments for both items. The name and phone number are

passed as a pointer to a C-string. Rather than storing the name and phone number in a

char array with a xed size, the constructor gets the length of the C-string and

dynamically allocates just enough memory to hold it. The destructor frees the allocated

memory when the object is destroyed. (This le is stored in the Student Source Code Folder

Chapter 13\ContactInfo Version 1.)

Contents of ContactInfo.h (Version 1)

 1 // Specification file for the Contact class.

 2 #ifndef CONTACTINFO_H

 3 #define CONTACTINFO_H

 4 #include <cstring> // Needed for strlen and strcpy

 5

 6 // ContactInfo class declaration.

 7 class ContactInfo

 8 {

 9 private:

10 char *name; // The name

11 char *phone; // The phone number

12 public:

13 // Constructor

14 ContactInfo(char *n, char *p)

15 { // Allocate just enough memory for the name and phone number.

16 name = new char[strlen(n) + 1];

17 phone = new char[strlen(p) + 1];

18

 22 //***

 23 // Function main. *

 24 //***

 25

 26 int main()

 27 {

 28 Demo demoObject; // Define a demo object;

 29

 30 cout << "This program demonstrates an object\n";

 31 cout << "with a constructor and destructor.\n";

 32 return 0;

 33 }

Program Output

Welcome to the constructor!

This program demonstrates an object

with a constructor and destructor.

The destructor is now running.

M13_GADD6253_07_SE_C13 Page 751 Saturday, January 8, 2011 4:39 PM

752 Chapter 13 Introduction to Classes

19 // Copy the name and phone number to the allocated memory.

20 strcpy(name, n);

21 strcpy(phone, p); }

22

23 // Destructor

24 ~ContactInfo()

25 { delete [] name;

26 delete [] phone; }

27

28 const char *getName() const

29 { return name; }

30

31 const char *getPhoneNumber() const

32 { return phone; }

33 };

34 #endif

Notice that the return type of the getName and getPhoneNumber functions in lines 28

through 32 is const char *. This means that each function returns a pointer to a con-

stant char. This is a security measure. It prevents any code that calls the functions from

changing the string that the pointer points to.

Program 13-11 demonstrates the class. (This le is also stored in the Student Source Code

Folder Chapter 13\ContactInfo Version 1.)

In addition to the fact that destructors are automatically called when an object is

destroyed, the following points should be mentioned:

Like constructors, destructors have no return type.

Destructors cannot accept arguments, so they never have a parameter list.

Program 13-11

 1 // This program demonstrates a class with a destructor.

 2 #include <iostream>

 3 #include "ContactInfo.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 // Define a ContactInfo object with the following data:

 9 // Name: Kristen Lee Phone Number: 555-2021

 10 ContactInfo entry("Kristen Lee", "555-2021");

 11

 12 // Display the object's data.

 13 cout << "Name: " << entry.getName() << endl;

 14 cout << "Phone Number: " << entry.getPhoneNumber() << endl;

 15 return 0;

 16 }

Program Output

Name: Kristen Lee

Phone Number: 555-2021

M13_GADD6253_07_SE_C13 Page 752 Saturday, January 8, 2011 4:39 PM

13.9 Destructors 753

Destructors and Dynamically Allocated Class Objects

If a class object has been dynamically allocated by the new operator, its memory should be

released when the object is no longer needed. For example, in the following code

objectPtr is a pointer to a dynamically allocated ContactInfo class object.

// Define a ContactInfo pointer.

ContactInfo *objectPtr;

// Dynamically create a ContactInfo object.

objectPtr = new ContactInfo("Kristen Lee", "555-2021");

The following statement shows the delete operator being used to destroy the dynami-

cally created object.

delete objectPtr;

When the object pointed to by objectPtr is destroyed, its destructor is automatically

called.

Checkpoint

 www.myprogramminglab.com

13.12 Brie y describe the purpose of a constructor.

13.13 Brie y describe the purpose of a destructor.

13.14 A member function that is never declared with a return data type, but that may

have arguments is

A) The constructor

B) The destructor

C) Both the constructor and the destructor

D) Neither the constructor nor the destructor

13.15 A member function that is never declared with a return data type and can never

have arguments is

A) The constructor

B) The destructor

C) Both the constructor and the destructor

D) Neither the constructor nor the destructor

13.16 Destructor function names always start with

A) A number

B) Tilde character (~)

C) A data type name

D) None of the above

13.17 A constructor that requires no arguments is called

A) A default constructor

B) An overloaded constructor

C) A null constructor

D) None of the above

M13_GADD6253_07_SE_C13 Page 753 Saturday, January 8, 2011 4:39 PM

754 Chapter 13 Introduction to Classes

13.18 TRUE or FALSE: Constructors are never declared with a return data type.

13.19 TRUE or FALSE: Destructors are never declared with a return type.

13.20 TRUE or FALSE: Destructors may take any number of arguments.

13.10 Overloading Constructors

CONCEPT: A class can have more than one constructor.

Recall from Chapter 6 that when two or more functions share the same name, the func-

tion is said to be overloaded. Multiple functions with the same name may exist in a C++

program, as long as their parameter lists are different.

A class s member functions may be overloaded, including the constructor. One constructor

might take an integer argument, for example, while another constructor takes a double.

There could even be a third constructor taking two integers. As long as each constructor

takes a different list of parameters, the compiler can tell them apart. For example, the

string class has several overloaded constructors. The following statement creates a

string object with no arguments passed to the constructor:

string str;

This executes the string class s default constructor, which stores an empty string in the

object. Another way to create a string object is to pass a string literal as an argument to

the constructor, as shown here:

string str("Hello");

This executes an overloaded constructor, which stores the string Hello in the object.

Let s look at an example of how you can create overloaded constructors. The InventoryItem

class holds the following data about an item that is stored in inventory:

Item s description (a string object)

Item s cost (a double)

Number of units in inventory (an int)

The following code shows the class. To simplify the code, all the member functions are written

inline. (This le is stored in the Student Source Code Folder Chapter 13\InventoryItem.)

Contents of InventoryItem.h

 1 // This class has overloaded constructors.

 2 #ifndef INVENTORYITEM_H

 3 #define INVENTORYITEM_H

 4 #include <string>

 5 using namespace std;

 6

 7 class InventoryItem

M13_GADD6253_07_SE_C13 Page 754 Saturday, January 8, 2011 4:39 PM

13.10 Overloading Constructors 755

 8 {

 9 private:

10 string description; // The item description

11 double cost; // The item cost

12 int units; // Number of units on hand

13 public:

14 // Constructor #1

15 InventoryItem()

16 { // Initialize description, cost, and units.

17 description = "";

18 cost = 0.0;

19 units = 0; }

20

21 // Constructor #2

22 InventoryItem(string desc)

23 { // Assign the value to description.

24 description = desc;

25

26 // Initialize cost and units.

27 cost = 0.0;

28 units = 0; }

29

30 // Constructor #3

31 InventoryItem(string desc, double c, int u)

32 { // Assign values to description, cost, and units.

33 description = desc;

34 cost = c;

35 units = u; }

36

37 // Mutator functions

38 void setDescription(string d)

39 { description = d; }

40

41 void setCost(double c)

42 { cost = c; }

43

44 void setUnits(int u)

45 { units = u; }

46

47 // Accessor functions

48 string getDescription() const

49 { return description; }

50

51 double getCost() const

52 { return cost; }

53

54 int getUnits() const

55 { return units; }

56 };

57 #endif

The rst constructor appears in lines 15 through 19. It takes no arguments, so it is the

default constructor. It initializes the description variable to an empty string. The cost

and units variables are initialized to 0.

M13_GADD6253_07_SE_C13 Page 755 Saturday, January 8, 2011 4:39 PM

756 Chapter 13 Introduction to Classes

The second constructor appears in lines 22 through 28. This constructor accepts only one

argument, the item description. The cost and units variables are initialized to 0.

The third constructor appears in lines 31 through 35. This constructor accepts arguments

for the description, cost, and units.

The mutator functions set values for description, cost, and units. Program 13-12

demonstrates the class. (This le is also stored in the Student Source Code Folder Chapter

13\InventoryItem.)

Program 13-12

 1 // This program demonstrates a class with overloaded constructors.

 2 #include <iostream>

 3 #include <iomanip>

 4 #include "InventoryItem.h"

 5

 6 int main()

 7 {

 8 // Create an InventoryItem object and call

 9 // the default constructor.

 10 InventoryItem item1;

 11 item1.setDescription("Hammer"); // Set the description

 12 item1.setCost(6.95); // Set the cost

 13 item1.setUnits(12); // Set the units

 14

 15 // Create an InventoryItem object and call

 16 // constructor #2.

 17 InventoryItem item2("Pliers");

 18

 19 // Create an InventoryItem object and call

 20 // constructor #3.

 21 InventoryItem item3("Wrench", 8.75, 20);

 22

 23 cout << "The following items are in inventory:\n";

 24 cout << setprecision(2) << fixed << showpoint;

 25

 26 // Display the data for item 1.

 27 cout << "Description: " << item1.getDescription() << endl;

 28 cout << "Cost: $" << item1.getCost() << endl;

 29 cout << "Units on Hand: " << item1.getUnits() << endl << endl;

 30

 31 // Display the data for item 2.

 32 cout << "Description: " << item2.getDescription() << endl;

 33 cout << "Cost: $" << item2.getCost() << endl;

 34 cout << "Units on Hand: " << item2.getUnits() << endl << endl;

 35

 36 // Display the data for item 3.

 37 cout << "Description: " << item3.getDescription() << endl;

 38 cout << "Cost: $" << item3.getCost() << endl;

 39 cout << "Units on Hand: " << item3.getUnits() << endl;

 40 return 0;

 41 }

M13_GADD6253_07_SE_C13 Page 756 Saturday, January 8, 2011 4:39 PM

13.10 Overloading Constructors 757

Only One Default Constructor and One Destructor

When an object is de ned without an argument list for its constructor, the compiler auto-

matically calls the default constructor. For this reason, a class may have only one default

constructor. If there were more than one constructor that could be called without an argu-

ment, the compiler would not know which one to call by default.

Remember, a constructor whose parameters all have a default argument is considered a

default constructor. It would be an error to create a constructor that accepts no parame-

ters along with another constructor that has default arguments for all its parameters. In

such a case the compiler would not be able to resolve which constructor to execute.

Classes may also only have one destructor. Because destructors take no arguments, the

compiler has no way to distinguish different destructors.

Other Overloaded Member Functions

Member functions other than constructors can also be overloaded. This can be useful

because sometimes you need several different ways to perform the same operation. For

example, in the InventoryItem class we could have overloaded the setCost function as

shown here:

void setCost(double c)

 { cost = c; }

void setCost(string c)

 { cost = atof(c.c_str()); }

The rst version of the function accepts a double argument and assigns it to cost. The

second version of the function accepts a string object. This could be used where you

have the cost of the item stored in a string object. The function calls the atof function

to convert the string to a double, and assigns its value to cost.

Program Output

The following items are in inventory:

Description: Hammer

Cost: $6.95

Units on Hand: 12

Description: Pliers

Cost: $0.00

Units on Hand: 0

Description: Wrench

Cost: $8.75

Units on Hand: 20

M13_GADD6253_07_SE_C13 Page 757 Saturday, January 8, 2011 4:39 PM

758 Chapter 13 Introduction to Classes

13.11 Private Member Functions

CONCEPT: A private member function may only be called from a function that is a

member of the same class.

Sometimes a class will contain one or more member functions that are necessary for inter-

nal processing, but should not be called by code outside the class. For example, a class

might have a member function that performs a calculation only when a value is stored in a

particular member variable, and should not be performed at any other time. That function

should not be directly accessible by code outside the class because it might get called at the

wrong time. In this case, the member function should be declared private. When a mem-

ber function is declared private, it may only be called internally.

For example, consider the following version of the ContactInfo class. (This le is stored

in the Student Source Code Folder Chapter 13\ContactInfo Version 2.)

Contents of ContactInfo.h (Version 2)

 1 // Contact class specification file (version 2)

 2 #ifndef CONTACTINFO_H

 3 #define CONTACTINFO_H

 4 #include <cstring> // Needed for strlen and strcpy

 5

 6 // ContactInfo class declaration.

 7 class ContactInfo

 8 {

 9 private:

10 char *name; // The contact's name

11 char *phone; // The contact's phone number

12

13 // Private member function: initName

14 // This function initializes the name attribute.

15 void initName(char *n)

16 { name = new char[strlen(n) + 1];

17 strcpy(name, n); }

18

19 // Private member function: initPhone

20 // This function initializes the phone attribute.

21 void initPhone(char *p)

22 { phone = new char[strlen(p) + 1];

23 strcpy(phone, p); }

24 public:

25 // Constructor

26 ContactInfo(char *n, char *p)

27 { // Initialize the name attribute.

28 initName(n);

29

30 // Initialize the phone attribute.

31 initPhone(n); }

32

M13_GADD6253_07_SE_C13 Page 758 Saturday, January 8, 2011 4:39 PM

13.12 Arrays of Objects 759

33 // Destructor

34 ~ContactInfo()

35 { delete [] name;

36 delete [] phone; }

37

38 const char *getName() const

39 { return name; }

40

41 const char *getPhoneNumber() const

42 { return phone; }

43 };

44 #endif

In this version of the class, the logic in the constructor is modularized. It calls two private

member functions, initName and initPhone. The initName function allocates memory

for the name attribute and initializes it with the value pointed to by the n parameter. The

initPhone function allocates memory for the phone attribute and initializes it with the

value pointed to by the p parameter. These functions are private because they should be

called only from the constructor. If they were ever called by code outside the class, they

would change the values of the name and phone pointers without deallocating the memory

that they currently point to.

13.12 Arrays of Objects

CONCEPT: You may de ne and work with arrays of class objects.

As with any other data type in C++, you can de ne arrays of class objects. An array of

InventoryItem objects could be created to represent a business s inventory records. Here

is an example of such a de nition:

const int ARRAY_SIZE = 40;

InventoryItem inventory[ARRAY_SIZE];

This statement de nes an array of 40 InventoryItem objects. The name of the array is

inventory, and the default constructor is called for each object in the array.

If you wish to de ne an array of objects and call a constructor that requires arguments,

you must specify the arguments for each object individually in an initializer list. Here is an

example:

InventoryItem inventory[] = {"Hammer", "Wrench", "Pliers"};

The compiler treats each item in the initializer list as an argument for an array element s

constructor. Recall that the second constructor in the InventoryItem class declaration

takes the item description as an argument. So, this statement de nes an array of three

objects and calls that constructor for each object. The constructor for inventory[0] is

called with Hammer as its argument, the constructor for inventory[1] is called with

Wrench as its argument, and the constructor for inventory[2] is called with Pliers

as its argument.

M13_GADD6253_07_SE_C13 Page 759 Saturday, January 8, 2011 4:39 PM

760 Chapter 13 Introduction to Classes

If a constructor requires more than one argument, the initializer must take the form of a

function call. For example, look at the following de nition statement.

InventoryItem inventory[] = { InventoryItem("Hammer", 6.95, 12),

 InventoryItem("Wrench", 8.75, 20),

 InventoryItem("Pliers", 3.75, 10) };

This statement calls the third constructor in the InventoryItem class declaration for each

object in the inventory array.

It isn t necessary to call the same constructor for each object in an array. For example,

look at the following statement.

InventoryItem inventory[] = { "Hammer",

 InventoryItem("Wrench", 8.75, 20),

 "Pliers" };

This statement calls the second constructor for inventory[0] and inventory[2], and

calls the third constructor for inventory[1].

If you do not provide an initializer for all of the objects in an array, the default constructor

will be called for each object that does not have an initializer. For example, the following

statement de nes an array of three objects, but only provides initializers for the rst two.

The default constructor is called for the third object.

const int SIZE = 3;

InventoryItem inventory [SIZE] = { "Hammer",

 InventoryItem("Wrench", 8.75, 20) };

In summary, if you use an initializer list for class object arrays, there are three things to

remember:

If there is no default constructor you must furnish an initializer for each object in

the array.

If there are fewer initializers in the list than objects in the array, the default con-

structor will be called for all the remaining objects.

If a constructor requires more than one argument, the initializer takes the form of

a constructor function call.

Accessing Members of Objects in an Array

Objects in an array are accessed with subscripts, just like any other data type in an array.

For example, to call the setUnits member function of inventory[2], the following

statement could be used:

inventory[2].setUnits(30);

This statement sets the units variable of inventory[2] to the value 30. Program 13-13

shows an array of InventoryItem objects being used in a complete program. (This le is

stored in the Student Source Code Folder Chapter 13\InventoryItem.)

WARNING! If the class does not have a default constructor you must provide an

initializer for each object in the array.

M13_GADD6253_07_SE_C13 Page 760 Saturday, January 8, 2011 4:39 PM

13.12 Arrays of Objects 761

Checkpoint

 www.myprogramminglab.com

13.21 What will the following program display on the screen?

#include <iostream>

using namespace std;

class Tank

Program 13-13

 1 // This program demonstrates an array of class objects.

 2 #include <iostream>

 3 #include <iomanip>

 4 #include "InventoryItem.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 const int NUM_ITEMS = 5;

 10 InventoryItem inventory[NUM_ITEMS] = {

 11 InventoryItem("Hammer", 6.95, 12),

 12 InventoryItem("Wrench", 8.75, 20),

 13 InventoryItem("Pliers", 3.75, 10),

 14 InventoryItem("Ratchet", 7.95, 14),

 15 InventoryItem("Screwdriver", 2.50, 22) };

 16

 17 cout << setw(14) <<"Inventory Item"

 18 << setw(8) << "Cost" << setw(8)

 19 << setw(16) << "Units on Hand\n";

 20 cout << "-------------------------------------\n";

 21

 22 for (int i = 0; i < NUM_ITEMS; i++)

 23 {

 24 cout << setw(14) << inventory[i].getDescription();

 25 cout << setw(8) << inventory[i].getCost();

 26 cout << setw(7) << inventory[i].getUnits() << endl;

 27 }

 28

 29 return 0;

 30 }

Program Output

Inventory Item Cost Units on Hand

 Hammer 6.95 12

 Wrench 8.75 20

 Pliers 3.75 10

 Ratchet 7.95 14

 Screwdriver 2.5 22

M13_GADD6253_07_SE_C13 Page 761 Saturday, January 8, 2011 4:39 PM

762 Chapter 13 Introduction to Classes

{

private:

 int gallons;
public:

 Tank()
 { gallons = 50; }
 Tank(int gal)
 { gallons = gal; }
 int getGallons()
 { return gallons; }
};

int main()

{

 Tank storage[3] = { 10, 20 };

 for (int index = 0; index < 3; index++)
 cout << storage[index].getGallons() << endl;
 return 0;
}

13.22 What will the following program display on the screen?

#include <iostream>

using namespace std;

class Package

{

private:

 int value;
public:

 Package()
 { value = 7; cout << value << endl; }
 Package(int v)
 { value = v; cout << value << endl; }
 ~Package()
 { cout << value << endl; }
};

int main()

{

 Package obj1(4);
 Package obj2();
 Package obj3(2);
 return 0;
}

13.23 In your answer for Checkpoint 13.22 indicate for each line of output whether the

line is displayed by constructor #1, constructor #2, or the destructor.

13.24 Why would a member function be declared private?

13.25 De ne an array of three InventoryItem objects.

13.26 Complete the following program so it de nes an array of Yard objects. The pro-

gram should use a loop to ask the user for the length and width of each Yard.

#include <iostream>

using namespace std;

M13_GADD6253_07_SE_C13 Page 762 Saturday, January 8, 2011 4:39 PM

13.13 Focus on Problem Solving and Program Design: An OOP Case Study 763

class Yard

{

private:

 int length, width;
public:

 Yard()
 { length = 0; width = 0; }
 setLength(int len)
 { length = len; }
 setWidth(int w)
 { width = w; }
};

int main()

{

 // Finish this program
}

13.13
Focus on Problem Solving and Program Design:
An OOP Case Study

You are a programmer for the Home Software Company. You have been assigned to

develop a class that models the basic workings of a bank account. The class should per-

form the following tasks:

Save the account balance.

Save the number of transactions performed on the account.

Allow deposits to be made to the account.

Allow withdrawals to be taken from the account.

Calculate interest for the period.

Report the current account balance at any time.

Report the current number of transactions at any time.

Private Member Variables

Table 13-4 lists the private member variables needed by the class.

Public Member Functions

Table 13-5 lists the public member functions needed by the class.

Table 13-4

Variable Description

balance A double that holds the current account balance.

interestRate A double that holds the interest rate for the period.

interest A double that holds the interest earned for the current period.

transactions An integer that holds the current number of transactions.

M13_GADD6253_07_SE_C13 Page 763 Saturday, January 8, 2011 4:39 PM

764 Chapter 13 Introduction to Classes

The Class Declaration

The following listing shows the class declaration.

Contents of Account.h

 1 // Specification file for the Account class.

 2 #ifndef ACCOUNT_H

 3 #define ACCOUNT_H

 4

 5 class Account

 6 {

 7 private:

 8 double balance; // Account balance

 9 double interestRate; // Interest rate for the period

10 double interest; // Interest earned for the period

11 int transactions; // Number of transactions

12 public:

13 Account(double iRate = 0.045, double bal = 0)

14 { balance = bal;

15 interestRate = iRate;

16 interest = 0;

17 transactions = 0; }

18

Table 13-5

Function Description

Constructor Takes arguments to be initially stored in the balance and interestRate

members. The default value for the balance is zero and the default value for the

interest rate is 0.045.

setInterestRate Takes a double argument which is stored in the interestRate member.

makeDeposit Takes a double argument, which is the amount of the deposit. This argument

is added to balance.

withdraw Takes a double argument which is the amount of the withdrawal. This value is

subtracted from the balance, unless the withdrawal amount is greater than the

balance. If this happens, the function reports an error.

calcInterest Takes no arguments. This function calculates the amount of interest for the

current period, stores this value in the interest member, and then adds it to

the balance member.

getInterestRate Returns the current interest rate (stored in the interestRate member).

getBalance Returns the current balance (stored in the balance member).

getInterest Returns the interest earned for the current period (stored in the interest

member).

getTransactions Returns the number of transactions for the current period (stored in the

transactions member).

M13_GADD6253_07_SE_C13 Page 764 Saturday, January 8, 2011 4:39 PM

13.13 Focus on Problem Solving and Program Design: An OOP Case Study 765

19 void setInterestRate(double iRate)

20 { interestRate = iRate; }

21

22 void makeDeposit(double amount)

23 { balance += amount; transactions++; }

24

25 void withdraw(double amount); // Defined in Account.cpp

26

27 void calcInterest()

28 { interest = balance * interestRate; balance += interest; }

29

30 double getInterestRate() const

31 { return interestRate; }

32

33 double getBalance() const

34 { return balance; }

35

36 double getInterest() const

37 { return interest; }

38

39 int getTransactions() const

40 { return transactions; }

41 };

42 #endif

The withdraw Member Function

The only member function not written inline in the class declaration is withdraw. The

purpose of that function is to subtract the amount of a withdrawal from the balance

member. If the amount to be withdrawn is greater than the current balance, however, no

withdrawal is made. The function returns true if the withdrawal is made, or false if there

is not enough in the account.

Contents of Account.cpp

 1 // Implementation file for the Account class.

 2 #include "Account.h"

 3

 4 bool Account::withdraw(double amount)

 5 {

 6 if (balance < amount)

 7 return false; // Not enough in the account

 8 else

 9 {

10 balance -= amount;

11 transactions++;

12 return true;

13 }

14 }

The Class s Interface

The balance, interestRate, interest, and transactions member variables are

private, so they are hidden from the world outside the class. The reason is that a

M13_GADD6253_07_SE_C13 Page 765 Saturday, January 8, 2011 4:39 PM

766 Chapter 13 Introduction to Classes

programmer with direct access to these variables might unknowingly commit any of

the following errors:

A deposit or withdrawal might be made without the transactions member

being incremented.

A withdrawal might be made for more than is in the account. This will cause the

balance member to have a negative value.

The interest rate might be calculated and the balance member adjusted, but the

amount of interest might not get recorded in the interest member.

The wrong interest rate might be used.

Because of the potential for these errors, the class contains public member functions that

ensure the proper steps are taken when the account is manipulated.

Implementing the Class

Program 13-14 shows an implementation of the Account class. It presents a menu for dis-

playing a savings account s balance, number of transactions, and interest earned. It also

allows the user to deposit an amount into the account, make a withdrawal from the

account, and calculate the interest earned for the current period.

Program 13-14

 1 // This program demonstrates the Account class.

 2 #include <iostream>

 3 #include <cctype>

 4 #include <iomanip>

 5 #include "Account.h"

 6 using namespace std;

 7

 8 // Function prototypes

 9 void displayMenu();

 10 void makeDeposit(Account &);

 11 void withdraw(Account &);

 12

 13 int main()

 14 {

 15 Account savings; // Savings account object

 16 char choice; // Menu selection

 17

 18 // Set numeric output formatting.

 19 cout << fixed << showpoint << setprecision(2);

 20

 21 do

 22 {

 23 // Display the menu and get a valid selection.

 24 displayMenu();

 25 cin >> choice;

M13_GADD6253_07_SE_C13 Page 766 Saturday, January 8, 2011 4:39 PM

13.13 Focus on Problem Solving and Program Design: An OOP Case Study 767

 26 while (toupper(choice) < 'A' || toupper(choice) > 'G')

 27 {

 28 cout << "Please make a choice in the range "

 29 << "of A through G:";

 30 cin >> choice;

 31 }

 32

 33 // Process the user's menu selection.

 34 switch(choice)

 35 {

 36 case 'a':

 37 case 'A': cout << "The current balance is $";

 38 cout << savings.getBalance() << endl;

 39 break;

 40 case 'b':

 41 case 'B': cout << "There have been ";

 42 cout << savings.getTransactions()

 43 << " transactions.\n";

 44 break;

 45 case 'c':

 46 case 'C': cout << "Interest earned for this period: $";

 47 cout << savings.getInterest() << endl;

 48 break;

 49 case 'd':

 50 case 'D': makeDeposit(savings);

 51 break;

 52 case 'e':

 53 case 'E': withdraw(savings);

 54 break;

 55 case 'f':

 56 case 'F': savings.calcInterest();

 57 cout << "Interest added.\n";

 58 }

 59 } while (toupper(choice) != 'G');

 60

 61 return 0;

 62 }

 63

 64 //**

 65 // Definition of function displayMenu. This function *

 66 // displays the user's menu on the screen. *

 67 //**

 68

(program continues)

M13_GADD6253_07_SE_C13 Page 767 Saturday, January 8, 2011 4:39 PM

768 Chapter 13 Introduction to Classes

Program 13-14 (continued)

 69 void displayMenu()

 70 {

 71 cout << "\n MENU\n";

 72 cout << "---\n";

 73 cout << "A) Display the account balance\n";

 74 cout << "B) Display the number of transactions\n";

 75 cout << "C) Display interest earned for this period\n";

 76 cout << "D) Make a deposit\n";

 77 cout << "E) Make a withdrawal\n";

 78 cout << "F) Add interest for this period\n";

 79 cout << "G) Exit the program\n\n";

 80 cout << "Enter your choice: ";

 81 }

 82

 83 //***

 84 // Definition of function makeDeposit. This function accepts *

 85 // a reference to an Account object. The user is prompted for *

 86 // the dollar amount of the deposit, and the makeDeposit *

 87 // member of the Account object is then called. *

 88 //***

 89

 90 void makeDeposit(Account &acnt)

 91 {

 92 double dollars;

 93

 94 cout << "Enter the amount of the deposit: ";

 95 cin >> dollars;

 96 cin.ignore();

 97 acnt.makeDeposit(dollars);

 98 }

 99

 100 //***

 101 // Definition of function withdraw. This function accepts *

 102 // a reference to an Account object. The user is prompted for *

 103 // the dollar amount of the withdrawal, and the withdraw *

 104 // member of the Account object is then called. *

 105 //***

 106

 107 void withdraw(Account &acnt)

 108 {

 109 double dollars;

 110

 111 cout << "Enter the amount of the withdrawal: ";

 112 cin >> dollars;

 113 cin.ignore();

 114 if (!acnt.withdraw(dollars))

 115 cout << "ERROR: Withdrawal amount too large.\n\n";

 116 }

M13_GADD6253_07_SE_C13 Page 768 Saturday, January 8, 2011 4:39 PM

13.13 Focus on Problem Solving and Program Design: An OOP Case Study 769

Program Output with Example Input Shown in Bold

 MENU

A) Display the account balance

B) Display the number of transactions

C) Display interest earned for this period

D) Make a deposit

E) Make a withdrawal

F) Add interest for this period

G) Exit the program

Enter your choice: d [Enter]
Enter the amount of the deposit: 500 [Enter]

 MENU

A) Display the account balance

B) Display the number of transactions

C) Display interest earned for this period

D) Make a deposit

E) Make a withdrawal

F) Add interest for this period

G) Exit the program

Enter your choice: a [Enter]
The current balance is $500.00

 MENU

A) Display the account balance

B) Display the number of transactions

C) Display interest earned for this period

D) Make a deposit

E) Make a withdrawal

F) Add interest for this period

G) Exit the program

Enter your choice: e [Enter]
Enter the amount of the withdrawal: 700 [Enter]
ERROR: Withdrawal amount too large.

 MENU

A) Display the account balance

B) Display the number of transactions

C) Display interest earned for this period

D) Make a deposit

E) Make a withdrawal

F) Add interest for this period

G) Exit the program

Enter your choice: e [Enter]
Enter the amount of the withdrawal: 200 [Enter]

(program output continues)

M13_GADD6253_07_SE_C13 Page 769 Saturday, January 8, 2011 4:39 PM

770 Chapter 13 Introduction to Classes

13.14 Focus on Object-Oriented Programming:
Creating an Abstract Array Data Type

CONCEPT: The absence of array bounds checking in C++ is a source of potential

hazard. In this section we examine a simple integer list class that provides

bounds checking.

One of the bene ts of object-oriented programming is the ability to create abstract data

types that are improvements on built-in data types. As you know, arrays provide no bounds

checking in C++. You can, however, create a class that has array-like characteristics and per-

forms bounds checking. For example, look at the following IntegerList class.

Program 13-14 (continued)

 MENU

A) Display the account balance

B) Display the number of transactions

C) Display interest earned for this period

D) Make a deposit

E) Make a withdrawal

F) Add interest for this period

G) Exit the program

Enter your choice: f [Enter]
Interest added.

 MENU

A) Display the account balance

B) Display the number of transactions

C) Display interest earned for this period

D) Make a deposit

E) Make a withdrawal

F) Add interest for this period

G) Exit the program

Enter your choice: a [Enter]
The current balance is $313.50

 MENU

A) Display the account balance

B) Display the number of transactions

C) Display interest earned for this period

D) Make a deposit

E) Make a withdrawal

F) Add interest for this period

G) Exit the program

Enter your choice: g [Enter]

M13_GADD6253_07_SE_C13 Page 770 Saturday, January 8, 2011 4:39 PM

13.14 Focus on Object-Oriented Programming: Creating an Abstract Array Data Type 771

Contents of IntegerList.h

 1 // Specification file for the IntegerList class.

 2 #ifndef INTEGERLIST_H

 3 #define INTEGERLIST_H

 4

 5 class IntegerList

 6 {

 7 private:

 8 int *list; // Pointer to the array.

 9 int numElements; // Number of elements.

10 bool isValid(int); // Validates subscripts.

11 public:

12 IntegerList(int); // Constructor

13 ~IntegerList(); // Destructor

14 void setElement(int, int); // Sets an element to a value.

15 void getElement(int, int&); // Returns an element.

16 };

17 #endif

Contents of IntegerList.cpp

 1 // Implementation file for the IntegerList class.

 2 #include <iostream>

 3 #include <cstdlib>

 4 #include "IntegerList.h"

 5 using namespace std;

 6

 7 //***

 8 // The constructor sets each element to zero. *

 9 //***

10

11 IntegerList::IntegerList(int size)

12 {

13 list = new int[size];

14 numElements = size;

15 for (int ndx = 0; ndx < size; ndx++)

16 list[ndx] = 0;

17 }

18

19 //***

20 // The destructor releases allocated memory. *

21 //***

22

23 IntegerList::~IntegerList()

24 {

25 delete [] list;

26 }

27

M13_GADD6253_07_SE_C13 Page 771 Saturday, January 8, 2011 4:39 PM

772 Chapter 13 Introduction to Classes

28 //**

29 // isValid member function. *

30 // This private member function returns true if the argument *

31 // is a valid subscript, or false otherwise. *

32 //**

33

34 bool IntegerList::isValid(int element) const

35 {

36 bool status;

37

38 if (element < 0 || element >= numElements)

39 status = false;

40 else

41 status = true;

42 return status;

43 }

44

45 //***

46 // setElement member function. *

47 // Stores a value in a specific element of the list. If an *

48 // invalid subscript is passed, the program aborts. *

49 //***

50

51 void IntegerList::setElement(int element, int value)

52 {

53 if (isValid(element))

54 list[element] = value;

55 else

56 {

57 cout << "Error: Invalid subscript\n";

58 exit(EXIT_FAILURE);

59 }

60 }

61

62 //***

63 // getElement member function. *

64 // Returns the value stored at the specified element. *

65 // If an invalid subscript is passed, the program aborts. *

66 //***

67

68 int IntegerList::getElement(int element) const

69 {

70 if (isValid(element))

71 return list[element];

72 else

73 {

74 cout << "Error: Invalid subscript\n";

75 exit(EXIT_FAILURE);

76 }

77 }

M13_GADD6253_07_SE_C13 Page 772 Saturday, January 8, 2011 4:39 PM

13.14 Focus on Object-Oriented Programming: Creating an Abstract Array Data Type 773

The IntegerList class allows you to store and retrieve numbers in a dynamically allo-

cated array of integers. Here is a synopsis of the members.

list A pointer to an int. This member points to the dynamically allocated

array of integers.

numElements An integer that holds the number of elements in the dynamically allo-

cated array.

isValid This function validates a subscript into the array. It accepts a subscript

value as an argument, and returns boolean true if the subscript is in the

range 0 through numElements - 1. If the value is outside that range,

boolean false is returned.

Constructor The class constructor accepts an int argument that is the number of

elements to allocate for the array. The array is allocated and each ele-

ment is set to zero.

setElement The setElement member function sets a speci c element of the list

array to a value. The rst argument is the element subscript, and the

second argument is the value to be stored in that element. The function

uses isValid to validate the subscript. If an invalid subscript is passed

to the function, the program aborts.

getElement The getElement member function retrieves a value from a speci c ele-

ment in the list array. The argument is the subscript of the element

whose value is to be retrieved. The function uses isValid to validate

the subscript. If the subscript is valid, the value is returned. If the sub-

script is invalid, the program aborts.

Program 13-15 demonstrates the class. A loop uses the setElement member to ll the

array with 9s and prints an asterisk on the screen each time a 9 is successfully stored. Then

another loop uses the getElement member to retrieve the values from the array and

prints them on the screen. Finally, a statement uses the setElement member to demon-

strate the subscript validation by attempting to store a value in element 50.

Program 13-15

 1 // This program demonstrates the IntegerList class.

 2 #include <iostream>

 3 #include "IntegerList.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int SIZE = 20;

 9 IntegerList numbers(SIZE);

 10 int val, x;

 11

(program continues)

M13_GADD6253_07_SE_C13 Page 773 Saturday, January 8, 2011 4:39 PM

774 Chapter 13 Introduction to Classes

13.15
Focus on Object-Oriented Design:
The Uni ed Modeling Language (UML)

CONCEPT: The Uni ed Modeling Language provides a standard method for

graphically depicting an object-oriented system.

When designing a class it is often helpful to draw a UML diagram. UML stands for Uni-

ed Modeling Language. The UML provides a set of standard diagrams for graphically

depicting object-oriented systems. Figure 13-18 shows the general layout of a UML dia-

gram for a class. Notice that the diagram is a box that is divided into three sections. The

top section is where you write the name of the class. The middle section holds a list of the

class s member variables. The bottom section holds a list of the class s member functions.

 12 // Store 9s in the list and display an asterisk

 13 // each time a 9 is successfully stored.

 14 for (x = 0; x < SIZE; x++)

 15 {

 16 numbers.setElement(x, 9);

 17 cout << "* ";

 18 }

 19 cout << endl;

 20

 21 // Display the 9s.

 22 for (x = 0; x < SIZE; x++)

 23 {

 24 val = numbers.getElement(x);

 25 cout << val << " ";

 26 }

 27 cout << endl;

 28

 29 // Attempt to store a value outside the list's bounds.

 30 numbers.setElement(50, 9);

 31

 32 // Will this message display?

 33 cout << "Element 50 successfully set.\n";

 34 return 0;

 35 }

Program Output

* * * * * * * * * * * * * * * * * * * *

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Error: Invalid subscript

Program 13-15 (continued)

M13_GADD6253_07_SE_C13 Page 774 Saturday, January 8, 2011 4:39 PM

13.15 Focus on Object-Oriented Design: The Unified Modeling Language (UML) 775

Earlier in this chapter you studied a Rectangle class that could be used in a program that

works with rectangles. The rst version of the Rectangle class that you studied had the

following member variables:

width

length

The class also had the following member functions:

setWidth

setLength

getWidth

getLength

getArea

From this information alone we can construct a simple UML diagram for the class, as

shown in Figure 13-19.

The UML diagram in Figure 13-19 tells us the name of the class, the names of the member

variables, and the names of the member functions. The UML diagram in Figure 13-19

does not convey many of the class details, however, such as access speci cation, member

variable data types, parameter data types, and function return types. The UML provides

optional notation for these types of details.

Showing Access Speci cation in UML Diagrams

The UML diagram in Figure 13-19 lists all of the members of the Rectangle class but

does not indicate which members are private and which are public. In a UML diagram

you may optionally place a - character before a member name to indicate that it is private,

or a + character to indicate that it is public. Figure 13-20 shows the UML diagram modi-

ed to include this notation.

Figure 13-18

Figure 13-19

Class name goes here

Member variables are listed here

Member functions are listed here

Rectangle

width

length

setWidth()

setLength()

getWidth()

getLength()

getArea()

M13_GADD6253_07_SE_C13 Page 775 Saturday, January 8, 2011 4:39 PM

776 Chapter 13 Introduction to Classes

Data Type and Parameter Notation in UML Diagrams

The Uni ed Modeling Language also provides notation that you may use to indicate the

data types of member variables, member functions, and parameters. To indicate the data

type of a member variable, place a colon followed by the name of the data type after the

name of the variable. For example, the width variable in the Rectangle class is a double.

It could be listed as follows in the UML diagram:

- width : double

The return type of a member function can be listed in the same manner: After the func-

tion s name, place a colon followed by the return type. The Rectangle class s getLength

function returns a double, so it could be listed as follows in the UML diagram:

+ getLength() : double

Parameter variables and their data types may be listed inside a member function s paren-

theses. For example, the Rectangle class s setLength function has a double parameter

named len, so it could be listed as follows in the UML diagram:

+ setLength(len : double) : void

Figure 13-21 shows a UML diagram for the Rectangle class with parameter and data

type notation.

Figure 13-20

NOTE: In UML notation the variable name is listed rst, then the data type. This is the

opposite of C++ syntax, which requires the data type to appear rst.

Figure 13-21

Rectangle

- width

- length

+ setWidth()

+ setLength()

+ getWidth()

+ getLength()

+ getArea()

Rectangle

- width : double

- length : double

+ setWidth(w : double) : void

+ setLength(len : double) : void

+ getWidth() : double

+ getLength() : double

+ getArea() : double

M13_GADD6253_07_SE_C13 Page 776 Saturday, January 8, 2011 4:39 PM

13.16 Focus on Object-Oriented Design: Finding the Classes and Their Responsibilities 777

Showing Constructors and Destructors in a UML Diagram

There is more than one accepted way of showing a class constructor in a UML diagram.

In this book we will show a constructor just as any other function, except we will list no

return type. For example, Figure 13-22 shows a UML diagram for the InventoryItem

class that we looked at previously in this chapter.

13.16
Focus on Object-Oriented Design: Finding
the Classes and Their Responsibilities

CONCEPT: One of the rst steps in creating an object-oriented application is determining

the classes that are necessary, and their responsibilities within the application.

So far you have learned the basics of writing a class, creating an object from the class, and

using the object to perform operations. This knowledge is necessary to create an object-

oriented application, but it is not the rst step in designing the application. The rst step is

to analyze the problem that you are trying to solve and determine the classes that you will

need. In this section we will discuss a simple technique for nding the classes in a problem

and determining their responsibilities.

Finding the Classes

When developing an object-oriented application, one of your rst tasks is to identify the

classes that you will need to create. Typically, your goal is to identify the different types of

real-world objects that are present in the problem, and then create classes for those types

of objects within your application.

Figure 13-22

InventoryItem

- description : string

- cost : double

- units : int

+ InventoryItem() :

+ InventoryItem(desc : string) :

+ InventoryItem(desc : string,

 c : double, u : int) :

+ setDescription(d : string) : void

+ setCost(c : double) : void

+ setUnits(u : int) : void

+ getDescription() : string

+ getCost() : double

+ getUnits() : int

M13_GADD6253_07_SE_C13 Page 777 Saturday, January 8, 2011 4:39 PM

778 Chapter 13 Introduction to Classes

Over the years, software professionals have developed numerous techniques for nding the

classes in a given problem. One simple and popular technique involves the following steps.

1. Get a written description of the problem domain.

2. Identify all the nouns (including pronouns and noun phrases) in the description. Each
of these is a potential class.

3. Refine the list to include only the classes that are relevant to the problem.

Let s take a closer look at each of these steps.

Write a Description of the Problem Domain

The problem domain is the set of real-world objects, parties, and major events related to

the problem. If you adequately understand the nature of the problem you are trying to

solve, you can write a description of the problem domain yourself. If you do not thor-

oughly understand the nature of the problem, you should have an expert write the

description for you.

For example, suppose we are programming an application that the manager of Joe s Auto-

motive Shop will use to print service quotes for customers. Here is a description that an

expert, perhaps Joe himself, might have written:

Joe s Automotive Shop services foreign cars and specializes in servicing cars made by Mer-

cedes, Porsche, and BMW. When a customer brings a car to the shop, the manager gets the

customer s name, address, and telephone number. The manager then determines the make,

model, and year of the car, and gives the customer a service quote. The service quote shows

the estimated parts charges, estimated labor charges, sales tax, and total estimated charges.

The problem domain description should include any of the following:

Physical objects such as vehicles, machines, or products

Any role played by a person, such as manager, employee, customer, teacher,

student, etc.

The results of a business event, such as a customer order, or in this case a service

quote

Recordkeeping items, such as customer histories and payroll records

Identify All of the Nouns

The next step is to identify all of the nouns and noun phrases. (If the description contains

pronouns, include them too.) Here s another look at the previous problem domain

description. This time the nouns and noun phrases appear in bold.

Joe s Automotive Shop services foreign cars, and specializes in servicing cars made by

Mercedes, Porsche, and BMW. When a customer brings a car to the shop, the manager

gets the customer s name, address, and telephone number. The manager then determines

the make, model, and year of the car, and gives the customer a service quote. The service

quote shows the estimated parts charges, estimated labor charges, sales tax, and total esti-

mated charges.

M13_GADD6253_07_SE_C13 Page 778 Saturday, January 8, 2011 4:39 PM

13.16 Focus on Object-Oriented Design: Finding the Classes and Their Responsibilities 779

Notice that some of the nouns are repeated. The following list shows all of the nouns

without duplicating any of them.

Re ne the List of Nouns

The nouns that appear in the problem description are merely candidates to become

classes. It might not be necessary to make classes for them all. The next step is to re ne the

list to include only the classes that are necessary to solve the particular problem at hand.

We will look at the common reasons that a noun can be eliminated from the list of poten-

tial classes.

1. Some of the nouns really mean the same thing.

In this example, the following sets of nouns refer to the same thing:

cars and foreign cars

These both refer to the general concept of a car.

Joe s Automotive Shop and shop

Both of these refer to the company Joe s Automotive Shop.

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges
foreign cars
Joe's Automotive Shop
make
manager
Mercedes
model
name
Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

M13_GADD6253_07_SE_C13 Page 779 Saturday, January 8, 2011 4:39 PM

780 Chapter 13 Introduction to Classes

We can settle on a single class for each of these. In this example we will arbitrarily eliminate

foreign cars from the list, and use the word cars. Likewise we will eliminate Joe's Automo-

tive Shop from the list and use the word shop. The updated list of potential classes is:

2. Some nouns might represent items that we do not need to be concerned with in order
to solve the problem.

A quick review of the problem description reminds us of what our application should do:

print a service quote. In this example we can eliminate two unnecessary classes from the list:

We can cross shop off the list because our application only needs to be concerned

with individual service quotes. It doesn t need to work with or determine any

company-wide information. If the problem description asked us to keep a total of

all the service quotes, then it would make sense to have a class for the shop.

We will not need a class for the manager because the problem statement does not

direct us to process any information about the manager. If there were multiple

shop managers, and the problem description had asked us to record which man-

ager generated each service quote, then it would make sense to have a class for the

manager.

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges
foreign cars
Joe's Automotive Shop
make
manager
Mercedes
model
name
Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

Because cars and foreign cars mean the same thing in this
problem, we have eliminated foreign cars. Also, because
Joe's Automotive Shop and shop mean the same thing, we
have eliminated Joe's Automotive Shop.

M13_GADD6253_07_SE_C13 Page 780 Saturday, January 8, 2011 4:39 PM

13.16 Focus on Object-Oriented Design: Finding the Classes and Their Responsibilities 781

The updated list of potential classes at this point is:

3. Some of the nouns might represent objects, not classes.

We can eliminate Mercedes, Porsche, and BMW as classes because, in this example, they

all represent speci c cars, and can be considered instances of a cars class. Also, we can

eliminate the word car from the list. In the description it refers to a speci c car brought to

the shop by a customer. Therefore, it would also represent an instance of a cars class. At

this point the updated list of potential classes is:

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges
foreign cars
Joe's Automotive Shop
make
manager
Mercedes
model
name
Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

Our problem description does not direct us to process any
information about the shop, or any information about the
manager, so we have eliminated those from the list.

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges
foreign cars
Joe's Automotive Shop
manager
make
Mercedes
model
name
Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

We have eliminated Mercedes, Porsche, BMW, and car
because they are all instances of a cars class. That means that
these nouns identify objects, not classes.

M13_GADD6253_07_SE_C13 Page 781 Saturday, January 8, 2011 4:39 PM

782 Chapter 13 Introduction to Classes

4. Some of the nouns might represent simple values that can be stored in a variable and
do not require a class.

Remember, a class contains attributes and member functions. Attributes are related items

that are stored within an object of the class, and de ne the object s state. Member func-

tions are actions or behaviors that may be performed by an object of the class. If a noun

represents a type of item that would not have any identi able attributes or member func-

tions, then it can probably be eliminated from the list. To help determine whether a noun

represents an item that would have attributes and member functions, ask the following

questions about it:

Would you use a group of related values to represent the item s state?

Are there any obvious actions to be performed by the item?

If the answers to both of these questions are no, then the noun probably represents a value

that can be stored in a simple variable. If we apply this test to each of the nouns that

remain in our list, we can conclude that the following are probably not classes: address,

estimated labor charges, estimated parts charges, make, model, name, sales tax, telephone

number, total estimated charges and year. These are all simple string or numeric values

that can be stored in variables. Here is the updated list of potential classes:

As you can see from the list, we have eliminated everything except cars, customer, and ser-

vice quote. This means that in our application, we will need classes to represent cars, cus-

tomers, and service quotes. Ultimately, we will write a Car class, a Customer class, and a

ServiceQuote class.

NOTE: Some object-oriented designers take note of whether a noun is plural or singular.

Sometimes a plural noun will indicate a class and a singular noun will indicate an object.

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges
foreign cars
Joe's Automotive Shop
make
manager
Mercedes
model
name
Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

We have eliminated address, estimated labor charges,
estimated parts charges, make, model, name, sales
tax, telephone number, total estimated charges, and
year as classes because they represent simple values that can
be stored in variables.

M13_GADD6253_07_SE_C13 Page 782 Saturday, January 8, 2011 4:39 PM

13.16 Focus on Object-Oriented Design: Finding the Classes and Their Responsibilities 783

Identifying a Class s Responsibilities

Once the classes have been identi ed, the next task is to identify each class s responsibili-

ties. A class s responsibilities are

the things that the class is responsible for knowing

the actions that the class is responsible for doing

When you have identi ed the things that a class is responsible for knowing, then you have

identi ed the class s attributes. Likewise, when you have identi ed the actions that a class

is responsible for doing, you have identi ed its member functions.

It is often helpful to ask the questions In the context of this problem, what must the class

know? What must the class do? The rst place to look for the answers is in the descrip-

tion of the problem domain. Many of the things that a class must know and do will be

mentioned. Some class responsibilities, however, might not be directly mentioned in the

problem domain, so brainstorming is often required. Let s apply this methodology to the

classes we previously identi ed from our problem domain.

The Customer class

In the context of our problem domain, what must the Customer class know? The descrip-

tion directly mentions the following items, which are all attributes of a customer:

the customer s name

the customer s address

the customer s telephone number

These are all values that can be represented as strings and stored in the class s member

variables. The Customer class can potentially know many other things. One mistake that

can be made at this point is to identify too many things that an object is responsible for

knowing. In some applications, a Customer class might know the customer s email

address. This particular problem domain does not mention that the customer s email

address is used for any purpose, so we should not include it as a responsibility.

Now let s identify the class s member functions. In the context of our problem domain,

what must the Customer class do? The only obvious actions are to

create an object of the Customer class

set and get the customer s name

set and get the customer s address

set and get the customer s telephone number

From this list we can see that the Customer class will have a constructor, as well as acces-

sor and mutator functions for each of its attributes. Figure 13-23 shows a UML diagram

for the Customer class.

M13_GADD6253_07_SE_C13 Page 783 Saturday, January 8, 2011 4:39 PM

784 Chapter 13 Introduction to Classes

The Car Class

In the context of our problem domain, what must an object of the Car class know? The

following items are all attributes of a car, and are mentioned in the problem domain:

the car s make

the car s model

the car s year

Now let s identify the class s member functions. In the context of our problem domain,

what must the Car class do? Once again, the only obvious actions are the standard set of

member functions that we will nd in most classes (constructors, accessors, and muta-

tors). Speci cally, the actions are:

create an object of the Car class

set and get the car s make

set and get the car s model

set and get the car s year

Figure 13-24 shows a UML diagram for the Car class at this point.

Figure 13-23

Figure 13-24

Customer

- name : String

- address : String

- phone : String

+ Customer() :

+ setName(n : String) : void

+ setAddress(a : String) : void

+ setPhone(p : String) : void

+ getName() : String

+ getAddress() : String

+ getPhone() : String

Car

- make : string

- model : string

- year : int

+ Car() :

+ setMake(m : string) : void

+ setModel(m : string) : void

+ setYear(y : int) : void

+ getMake() : string

+ getModel() : string

+ getYear() : int

M13_GADD6253_07_SE_C13 Page 784 Saturday, January 8, 2011 4:39 PM

13.16 Focus on Object-Oriented Design: Finding the Classes and Their Responsibilities 785

The ServiceQuote Class

In the context of our problem domain, what must an object of the ServiceQuote class

know? The problem domain mentions the following items:

the estimated parts charges

the estimated labor charges

the sales tax

the total estimated charges

Careful thought and a little brainstorming will reveal that two of these items are the

results of calculations: sales tax and total estimated charges. These items are dependent on

the values of the estimated parts and labor charges. In order to avoid the risk of holding

stale data, we will not store these values in member variables. Rather, we will provide

member functions that calculate these values and return them. The other member func-

tions that we will need for this class are a constructor and the accessors and mutators for

the estimated parts charges and estimated labor charges attributes. Figure 13-25 shows a

UML diagram for the ServiceQuote class.

This Is Only the Beginning

You should look at the process that we have discussed in this section as merely a starting

point. It s important to realize that designing an object-oriented application is an iterative

process. It may take you several attempts to identify all of the classes that you will need, and

determine all of their responsibilities. As the design process unfolds, you will gain a deeper

understanding of the problem, and consequently you will see ways to improve the design.

Checkpoint

 www.myprogramminglab.com

13.27 What is a problem domain?

13.28 When designing an object-oriented application, who should write a description of

the problem domain?

13.29 How do you identify the potential classes in a problem domain description?

Figure 13-25

ServiceQuote

- partsCharges : double

- laborCharges : double

+ ServiceQuote() :

+ setPartsCharges(c : double) :

 void

+ setLaborCharges(c : double) :

 void

+ getPartsCharges() : double

+ getLaborCharges() : double

+ getSalesTax() : double

+ getTotalCharges() : double

M13_GADD6253_07_SE_C13 Page 785 Saturday, January 8, 2011 4:39 PM

786 Chapter 13 Introduction to Classes

13.30 What are a class s responsibilities?

13.31 What two questions should you ask to determine a class s responsibilities?

13.32 Will all of a class s actions always be directly mentioned in the problem domain

description?

13.33 Look at the following description of a problem domain:

A doctor sees patients in her practice. When a patient comes to the practice, the

doctor performs one or more procedures on the patient. Each procedure that the

doctor performs has a description and a standard fee. As the patient leaves the

practice, he or she receives a statement from the of ce manager. The statement

shows the patient s name and address, as well as the procedures that were per-

formed, and the total charge for the procedures.

Assume that you are writing an application to generate a statement that can be

printed and given to the patient.

A) Identify all of the potential classes in this problem domain.

B) Re ne the list to include only the necessary class or classes for this problem.

C) Identify the responsibilities of the class or classes that you identi ed in step B.

Review Questions and Exercises

Short Answer

1. What is the difference between a class and an instance of the class?

2. What is the difference between the following Person structure and Person class?

struct Person

{

string name;

int age;

};

class Person

{

string name;

int age;

};

3. What is the default access specification of class members?

4. Look at the following function header for a member function.

void Circle::getRadius()

What is the name of the function?

What class is the function a member of?

5. A contractor uses a blueprint to build a set of identical houses. Are classes analogous
to the blueprint or the houses?

6. What is a mutator function? What is an accessor function?

7. Is it a good idea to make member variables private? Why or why not?

8. Can you think of a good reason to avoid writing statements in a class member func-
tion that use cout or cin?

M13_GADD6253_07_SE_C13 Page 786 Saturday, January 8, 2011 4:39 PM

Review Questions and Exercises 787

9. Under what circumstances should a member function be private?

10. What is a constructor? What is a destructor?

11. What is a default constructor? Is it possible to have more than one default constructor?

12. Is it possible to have more than one constructor? Is it possible to have more than
one destructor?

13. If a class object is dynamically allocated in memory, does its constructor execute? If
so, when?

14. When defining an array of class objects, how do you pass arguments to the construc-
tor for each object in the array?

15. What are a class s responsibilities?

16. How do you identify the classes in a problem domain description?

Fill-in-the-Blank

17. The two common programming methods in practice today are _________ and _________.

18. _________ programming is centered around functions or procedures.

19. _________ programming is centered around objects.

20. _________ is an object s ability to contain and manipulate its own data.

21. In C++ the _________ is the construct primarily used to create objects.

22. A class is very similar to a(n) _________.

23. A(n) _________ is a key word inside a class declaration that establishes a member s
accessibility.

24. The default access specification of class members is _________.

25. The default access specification of a struct in C++ is _________.

26. Defining a class object is often called the _________ of a class.

27. Members of a class object may be accessed through a pointer to the object by using
the _________ operator.

28. If you were writing the declaration of a class named Canine, what would you name
the file it was stored in? _________

29. If you were writing the external definitions of the Canine class s member functions,
you would save them in a file named _________.

30. When a member function s body is written inside a class declaration, the function is
_________.

31. A(n) _________ is automatically called when an object is created.

32. A(n) _________ is a member function with the same name as the class.

33. _________ are useful for performing initialization or setup routines in a class object.

34. Constructors cannot have a(n) _________ type.

35. A(n) _________ constructor is one that requires no arguments.

36. A(n) _________ is a member function that is automatically called when an object is
destroyed.

M13_GADD6253_07_SE_C13 Page 787 Saturday, January 8, 2011 4:39 PM

788 Chapter 13 Introduction to Classes

37. A destructor has the same name as the class, but is preceded by a(n) _________ character.

38. Like constructors, destructors cannot have a(n) _________ type.

39. A constructor whose arguments all have default values is a(n) _________ constructor.

40. A class may have more than one constructor, as long as each has a different
_________.

41. A class may only have one default _________ and one _________.

42. A(n) _________ may be used to pass arguments to the constructors of elements in an
object array.

Algorithm Workbench

43. Write a class declaration named Circle with a private member variable named
radius. Write set and get functions to access the radius variable, and a function
named getArea that returns the area of the circle. The area is calculated as

3.14159 * radius * radius

44. Add a default constructor to the Circle class in question 43. The constructor should
initialize the radius member to 0.

45. Add an overloaded constructor to the Circle class in question 44. The constructor
should accept an argument and assign its value to the radius member variable.

46. Write a statement that defines an array of five objects of the Circle class in question
45. Let the default constructor execute for each element of the array.

47. Write a statement that defines an array of five objects of the Circle class in question
45. Pass the following arguments to the elements constructor: 12, 7, 9, 14, and 8.

48. Write a for loop that displays the radius and area of the circles represented by the
array you defined in question 47.

49. If the items on the following list appeared in a problem domain description, which
would be potential classes?

50. Look at the following description of a problem domain:

The bank offers the following types of accounts to its customers: savings accounts,

checking accounts, and money market accounts. Customers are allowed to deposit

money into an account (thereby increasing its balance), withdraw money from an

account (thereby decreasing its balance), and earn interest on the account. Each

account has an interest rate.

Assume that you are writing an application that will calculate the amount of interest

earned for a bank account.

A) Identify the potential classes in this problem domain.

B) Re ne the list to include only the necessary class or classes for this problem.

C) Identify the responsibilities of the class or classes.

Animal Medication Nurse

Inoculate Operate Advertise

Doctor Invoice Measure

Patient Client Customer

M13_GADD6253_07_SE_C13 Page 788 Saturday, January 8, 2011 4:39 PM

Review Questions and Exercises 789

True or False

51. T F Private members must be declared before public members.

52. T F Class members are private by default.

53. T F Members of a struct are private by default.

54. T F Classes and structures in C++ are very similar.

55. T F All private members of a class must be declared together.

56. T F All public members of a class must be declared together.

57. T F It is legal to de ne a pointer to a class object.

58. T F You can use the new operator to dynamically allocate an instance of a class.

59. T F A private member function may be called from a statement outside the class, as

long as the statement is in the same program as the class declaration.

60. T F Constructors do not have to have the same name as the class.

61. T F Constructors may not have a return type.

62. T F Constructors cannot take arguments.

63. T F Destructors cannot take arguments.

64. T F Destructors may return a value.

65. T F Constructors may have default arguments.

66. T F Member functions may be overloaded.

67. T F Constructors may not be overloaded.

68. T F A class may not have a constructor with no parameter list, and a constructor

whose arguments all have default values.

69. T F A class may only have one destructor.

70. T F When an array of objects is de ned, the constructor is only called for the rst

element.

71. T F To nd the classes needed for an object-oriented application, you identify all of

the verbs in a description of the problem domain.

72. T F A class s responsibilities are the things the class is responsible for knowing, and

actions the class must perform.

Find the Errors

Each of the following class declarations or programs contain errors. Find as many as possible.

73. class Circle:

{

private

 double centerX;

 double centerY;

 double radius;

public

 setCenter(double, double);

 setRadius(double);

}

M13_GADD6253_07_SE_C13 Page 789 Saturday, January 8, 2011 4:39 PM

790 Chapter 13 Introduction to Classes

74. #include <iostream>

using namespace std;

Class Moon;

{

Private;

 double earthWeight;

 double moonWeight;

Public;

 moonWeight(double ew);

 { earthWeight = ew; moonWeight = earthWeight / 6; }

 double getMoonWeight();

 { return moonWeight; }

}

int main()

{

 double earth;

 cout >> "What is your weight? ";

 cin << earth;

 Moon lunar(earth);

 cout << "On the moon you would weigh "

 <<lunar.getMoonWeight() << endl;

 return 0;

}

75. #include <iostream>

using namespace std;

class DumbBell;

{

 int weight;

public:

 void setWeight(int);

};

void setWeight(int w)

{

 weight = w;

}

int main()

{

 DumbBell bar;

 DumbBell(200);

 cout << "The weight is " << bar.weight << endl;

 return 0;

}

76. class Change

{

public:

 int pennies;

 int nickels;

 int dimes;

 int quarters;

 Change()

M13_GADD6253_07_SE_C13 Page 790 Saturday, January 8, 2011 4:39 PM

Review Questions and Exercises 791

 { pennies = nickels = dimes = quarters = 0; }

 Change(int p = 100, int n = 50, d = 50, q = 25);

};

void Change::Change(int p, int n, d, q)

{

 pennies = p;

 nickels = n;

 dimes = d;

 quarters = q;

}

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. Date

Design a class called Date. The class should store a date in three integers: month, day,

and year. There should be member functions to print the date in the following forms:

12/25/2012

December 25, 2012

25 December 2012

Demonstrate the class by writing a complete program implementing it.

Input Validation: Do not accept values for the day greater than 31 or less than 1. Do

not accept values for the month greater than 12 or less than 1.

2. Employee Class

Write a class named Employee that has the following member variables:

name. A string that holds the employee s name.

idNumber. An int variable that holds the employee s ID number.

department. A string that holds the name of the department where the employee

works.

position. A string that holds the employee s job title.

The class should have the following constructors:

A constructor that accepts the following values as arguments and assigns them to

the appropriate member variables: employee s name, employee s ID number,

department, and position.

A constructor that accepts the following values as arguments and assigns them to

the appropriate member variables: employee s name and ID number. The

department and position fields should be assigned an empty string ("").

A default constructor that assigns empty strings ("") to the name, department,

and position member variables, and 0 to the idNumber member variable.

Write appropriate mutator functions that store values in these member variables and

accessor functions that return the values in these member variables. Once you have

written the class, write a separate program that creates three Employee objects to

hold the following data.

VideoNote

Solving the

Employee

Class Problem

Programming Challenges

M13_GADD6253_07_SE_C13 Page 791 Saturday, January 8, 2011 4:39 PM

792 Chapter 13 Introduction to Classes

The program should store this data in the three objects and then display the data for

each employee on the screen.

3. Car Class

Write a class named Car that has the following member variables:

* yearModel. An int that holds the car s year model.

* make. A string that holds the make of the car.

* speed. An int that holds the car s current speed.

In addition, the class should have the following constructor and other member functions.

* Constructor. The constructor should accept the car s year model and make as

arguments. These values should be assigned to the object s yearModel and make

member variables. The constructor should also assign 0 to the speed member

variables.

* Accessor. Appropriate accessor functions to get the values stored in an object s

yearModel, make, and speed member variables.

* accelerate. The accelerate function should add 5 to the speed member vari-

able each time it is called.

* brake. The brake function should subtract 5 from the speed member variable

each time it is called.

Demonstrate the class in a program that creates a Car object, and then calls the

accelerate function ve times. After each call to the accelerate function, get the

current speed of the car and display it. Then, call the brake function ve times. After

each call to the brake function, get the current speed of the car and display it.

4. Personal Information Class

Design a class that holds the following personal data: name, address, age, and phone

number. Write appropriate accessor and mutator functions. Demonstrate the class by

writing a program that creates three instances of it. One instance should hold your infor-

mation, and the other two should hold your friends or family members information.

5. RetailItem Class

Write a class named RetailItem that holds data about an item in a retail store. The

class should have the following member variables:

* description. A string that holds a brief description of the item.

* unitsOnHand. An int that holds the number of units currently in inventory.

* price. A double that holds the item s retail price.

Write a constructor that accepts arguments for each member variable, appropriate

mutator functions that store values in these member variables, and accessor functions

that return the values in these member variables. Once you have written the class,

Name ID Number Department Position

Susan Meyers 47899 Accounting Vice President

Mark Jones 39119 IT Programmer

Joy Rogers 81774 Manufacturing Engineer

M13_GADD6253_07_SE_C13 Page 792 Saturday, January 8, 2011 4:39 PM

Review Questions and Exercises 793

write a separate program that creates three RetailItem objects and stores the follow-

ing data in them.

6. Inventory Class

Design an Inventory class that can hold information and calculate data for items in a

retail store s inventory. The class should have the following private member variables:

The class should have the following public member functions:

Demonstrate the class in a driver program.

Input Validation: Do not accept negative values for item number, quantity, or cost.

Description

Units

On Hand Price

Item #1 Jacket 12 59.95

Item #2 Designer Jeans 40 34.95

Item #3 Shirt 20 24.95

Variable Name Description

itemNumber An int that holds the item s item number.

quantity An int for holding the quantity of the items on hand.

cost A double for holding the wholesale per-unit cost of the item

totalCost A double for holding the total inventory cost of the item

(calculated as quantity times cost).

Member Function Description

Default

Constructor

Sets all the member variables to 0.

Constructor #2 Accepts an item s number, cost, and quantity as arguments. The

function should copy these values to the appropriate member

variables and then call the setTotalCost function.

setItemNumber Accepts an integer argument that is copied to the itemNumber

member variable.

setQuantity Accepts an integer argument that is copied to the quantity

member variable.

setCost Accepts a double argument that is copied to the cost member

variable.

setTotalCost Calculates the total inventory cost for the item (quantity times

cost) and stores the result in totalCost.

getItemNumber Returns the value in itemNumber.

getQuantity Returns the value in quantity.

getCost Returns the value in cost.

getTotalCost Returns the value in totalCost.

Programming Challenges

M13_GADD6253_07_SE_C13 Page 793 Saturday, January 8, 2011 4:39 PM

794 Chapter 13 Introduction to Classes

7. Widget Factory

Design a class for a widget manufacturing plant. Assuming that 10 widgets may be

produced each hour, the class object will calculate how many days it will take to pro-

duce any number of widgets. (The plant operates two shifts of eight hours each per

day.) Write a program that asks the user for the number of widgets that have been

ordered and then displays the number of days it will take to produce them.

Input Validation: Do not accept negative values for the number of widgets ordered.

8. TestScores Class

Design a TestScores class that has member variables to hold three test scores. The

class should have a constructor, accessor, and mutator functions for the test score

elds, and a member function that returns the average of the test scores. Demonstrate

the class by writing a separate program that creates an instance of the class. The pro-

gram should ask the user to enter three test scores, which are stored in the

TestScores object. Then the program should display the average of the scores, as

reported by the TestScores object.

9. Circle Class

Write a Circle class that has the following member variables:

* radius: a double

* pi: a double initialized with the value 3.14159

The class should have the following member functions:

* Default Constructor. A default constructor that sets radius to 0.0.

* Constructor. Accepts the radius of the circle as an argument.

* setRadius. A mutator function for the radius variable.

* getRadius. An accessor function for the radius variable.

* getArea. Returns the area of the circle, which is calculated as

area = pi * radius * radius

* getDiameter. Returns the diameter of the circle, which is calculated as

diameter = radius * 2

* getCircumference. Returns the circumference of the circle, which is calculated as

circumference = 2 * pi * radius

Write a program that demonstrates the Circle class by asking the user for the circle s

radius, creating a Circle object, and then reporting the circle s area, diameter, and

circumference.

10. Population

In a population, the birth rate and death rate are calculated as follows:

Birth Rate = Number of Births ÷ Population

Death Rate = Number of Deaths ÷ Population

For example, in a population of 100,000 that has 8,000 births and 6,000 deaths per

year, the birth rate and death rate are:

Birth Rate = 8,000 ÷ 100,000 = 0.08

Death Rate = 6,000 ÷ 100,000 = 0.06

M13_GADD6253_07_SE_C13 Page 794 Saturday, January 8, 2011 4:39 PM

Review Questions and Exercises 795

Design a Population class that stores a population, number of births, and number of

deaths for a period of time. Member functions should return the birth rate and death

rate. Implement the class in a program.

Input Validation: Do not accept population gures less than 1, or birth or death num-

bers less than 0.

11. Number Array Class

Design a class that has an array of oating-point numbers. The constructor should

accept an integer argument and dynamically allocate the array to hold that many

numbers. The destructor should free the memory held by the array. In addition, there

should be member functions to perform the following operations:

* Store a number in any element of the array

* Retrieve a number from any element of the array

* Return the highest value stored in the array

* Return the lowest value stored in the array

* Return the average of all the numbers stored in the array

Demonstrate the class in a program.

12. Payroll

Design a PayRoll class that has data members for an employee s hourly pay rate,

number of hours worked, and total pay for the week. Write a program with an array

of seven PayRoll objects. The program should ask the user for the number of hours

each employee has worked and will then display the amount of gross pay each has

earned.

Input Validation: Do not accept values greater than 60 for the number of hours

worked.

13. Mortgage Payment

Design a class that will determine the monthly payment on a home mortgage. The

monthly payment with interest compounded monthly can be calculated as follows:

where

Payment = the monthly payment

Loan = the dollar amount of the loan

Rate = the annual interest rate

Years = the number of years of the loan

The class should have member functions for setting the loan amount, interest rate,

and number of years of the loan. It should also have member functions for returning

Payment
Loan

Rate
12

------------ Term..

Term 1
--=

Term 1
Rate
12

------------+
* +
, -

12 Years.

=

Programming Challenges

M13_GADD6253_07_SE_C13 Page 795 Saturday, January 8, 2011 4:39 PM

796 Chapter 13 Introduction to Classes

the monthly payment amount and the total amount paid to the bank at the end of the

loan period. Implement the class in a complete program.

Input Validation: Do not accept negative numbers for any of the loan values.

14. Freezing and Boiling Points

The following table lists the freezing and boiling points of several substances.

Design a class that stores a temperature in a temperature member variable and has

the appropriate accessor and mutator functions. In addition to appropriate construc-

tors, the class should have the following member functions:

* isEthylFreezing. This function should return the bool value true if the tem-

perature stored in the temperature field is at or below the freezing point of ethyl

alcohol. Otherwise, the function should return false.

* isEthylBoiling. This function should return the bool value true if the temper-

ature stored in the temperature field is at or above the boiling point of ethyl

alcohol. Otherwise, the function should return false.

* isOxygenFreezing. This function should return the bool value true if the tem-

perature stored in the temperature field is at or below the freezing point of oxy-

gen. Otherwise, the function should return false.

* isOxygenBoiling. This function should return the bool value true if the tem-

perature stored in the temperature field is at or above the boiling point of oxy-

gen. Otherwise, the function should return false.

* isWaterFreezing. This function should return the bool value true if the tem-

perature stored in the temperature field is at or below the freezing point of

water. Otherwise, the function should return false.

* isWaterBoiling. This function should return the bool value true if the temper-

ature stored in the temperature field is at or above the boiling point of water.

Otherwise, the function should return false.

Write a program that demonstrates the class. The program should ask the user to

enter a temperature, and then display a list of the substances that will freeze at that

temperature and those that will boil at that temperature. For example, if the tempera-

ture is *20 the class should report that water will freeze and oxygen will boil at that

temperature.

15. Cash Register

Design a CashRegister class that can be used with the InventoryItem class dis-

cussed in this chapter. The CashRegister class should perform the following:

1. Ask the user for the item and quantity being purchased.

2. Get the item s cost from the InventoryItem object.

3. Add a 30% profit to the cost to get the item s unit price.

Substance Freezing Point Boiling Point

Ethyl Alcohol 173 172

Oxygen 362 306

Water 32 212

M13_GADD6253_07_SE_C13 Page 796 Saturday, January 8, 2011 4:39 PM

Review Questions and Exercises 797

4. Multiply the unit price times the quantity being purchased to get the purchase
subtotal.

5. Compute a 6% sales tax on the subtotal to get the purchase total.

6. Display the purchase subtotal, tax, and total on the screen.

7. Subtract the quantity being purchased from the onHand variable of the
InventoryItem class object.

Implement both classes in a complete program. Feel free to modify the

InventoryItem class in any way necessary.

Input Validation: Do not accept a negative value for the quantity of items being

purchased.

16. Trivia Game

In this programming challenge you will create a simple trivia game for two players.

The program will work like this:

Starting with player 1, each player gets a turn at answering five trivia questions.

(There are a total of 10 questions.) When a question is displayed, four possible

answers are also displayed. Only one of the answers is correct, and if the player

selects the correct answer he or she earns a point.

After answers have been selected for all of the questions, the program displays the

number of points earned by each player and declares the player with the highest

number of points the winner.

In this program you will design a Question class to hold the data for a trivia ques-

tion. The Question class should have member variables for the following data:

A trivia question

Possible answer #1

Possible answer #2

Possible answer #3

Possible answer #4

The number of the correct answer (1, 2, 3, or 4)

The Question class should have appropriate constructor(s), accessor, and mutator

functions.

The program should create an array of 10 Question objects, one for each trivia ques-

tion. Make up your own trivia questions on the subject or subjects of your choice for

the objects.

Group Project

17. Patient Fees

1. This program should be designed and written by a team of students. Here are

some suggestions:

One or more students may work on a single class.

The requirements of the program should be analyzed so each student is given

about the same workload.

Programming Challenges

M13_GADD6253_07_SE_C13 Page 797 Saturday, January 8, 2011 4:39 PM

798 Chapter 13 Introduction to Classes

The parameters and return types of each function and class member function

should be decided in advance.

The program will be best implemented as a multi- le program.

2. You are to write a program that computes a patient s bill for a hospital stay. The
different components of the program are

The PatientAccount class

The Surgery class

The Pharmacy class

The main program

The PatientAccount class will keep a total of the patient s charges. It will

also keep track of the number of days spent in the hospital. The group must

decide on the hospital s daily rate.

The Surgery class will have stored within it the charges for at least ve types

of surgery. It can update the charges variable of the PatientAccount class.

The Pharmacy class will have stored within it the price of at least ve types of

medication. It can update the charges variable of the PatientAccount class.

The student who designs the main program will design a menu that allows

the user to enter a type of surgery and a type of medication, and check the

patient out of the hospital. When the patient checks out, the total charges

should be displayed.

M13_GADD6253_07_SE_C13 Page 798 Saturday, January 8, 2011 4:39 PM

799

C
H

A
P

T
E

R

14

More About Classes

14.1

Instance and Static Members

CONCEPT:

Each instance of a class has its own copies of the class s instance

variables. If a member variable is declared

static

, however, all instances

of that class have access to that variable. If a member function is declared

static

, it may be called without any instances of the class being de ned.

Instance Variables

Each class object (an instance of a class) has its own copy of the class s member variables.

An object s member variables are separate and distinct from the member variables of

other objects of the same class. For example, recall that the

Rectangle

 class discussed in

Chapter 13 has two member variables:

width

 and

length

. Suppose that we de ne two

objects of the

Rectangle

 class and set their

width

 and

length

 member variables as

shown in the following code.

Rectangle box1, box2;

// Set the width and length for box1.

box1.setWidth(5);

box1.setLength(10);

TOPICS

14.1 Instance and Static Members

14.2 Friends of Classes

14.3 Memberwise Assignment

14.4 Copy Constructors

14.5 Operator Overloading

14.6 Object Conversion

14.7 Aggregation

14.8 Focus on Object-Oriented Design:

Class Collaborations

M14_GADD6253_07_SE_C14 Page 799 Saturday, January 8, 2011 9:46 PM

800

Chapter 14 More About Classes

// Set the width and length for box2.

box2.setWidth(500);

box2.setLength(1000);

This code creates

box1

 and

box2

, which are two distinct objects. Each has its own

width

and

length

 member variables, as illustrated in Figure 14-1.

When the

getWidth

 member function is called, it returns the value stored in the calling

object s

width

 member variable. For example, the following statement displays

5 500

.

cout << box1.getWidth() << " " << box2.getWidth() << endl;

In object-oriented programming, member variables such as the

Rectangle

 class s

width

and

length

 members are known as

instance variables

. They are called instance variables

because each instance of the class has its own copies of the variables.

Static Members

It is possible to create a member variable or member function that does not belong to any

instance of a class. Such members are known as a

static member variables

 and

static mem-

ber functions

. When a value is stored in a static member variable, it is not stored in an

instance of the class. In fact, an instance of the class doesn t even have to exist in order for

values to be stored in the class s static member variables. Likewise, static member func-

tions do not operate on instance variables. Instead, they can operate only on static mem-

ber variables. You can think of static member variables and static member functions as

belonging to the class instead of to an instance of the class. In this section, we will take a

closer look at static members. First we will examine static member variables.

Static Member Variables

When a member variable is declared with the key word

static

, there will be only one

copy of the member variable in memory, regardless of the number of instances of the class

that might exist. A single copy of a class s static member variable is shared by all instances

of the class. For example, the following

Tree

 class uses a static member variable to keep

count of the number of instances of the class that are created.

Contents of

Tree.h

 1 // Tree class

 2 class Tree

 3 {

 4 private:

 5 static int objectCount; // Static member variable.

Figure 14-1

width

length

5

10

box1 object

width

length

500

1000

box2 object

M14_GADD6253_07_SE_C14 Page 800 Saturday, January 8, 2011 9:46 PM

14.1 Instance and Static Members

801

 6 public:

 7 // Constructor

 8 Tree()

 9 { objectCount++; }

10

11 // Accessor function for objectCount

12 int getObjectCount() const

13 { return objectCount; }

14 };

15

16 // Definition of the static member variable, written

17 // outside the class.

18 int Tree::objectCount = 0;

First, notice in line 5 the declaration of the static member variable named

objectCount

:

A static member variable is created by placing the key word

static

 before the variable s

data type. Also notice that in line 18 we have written a de nition statement for the

objectCount

 variable, and that the statement is outside the class declaration. This exter-

nal de nition statement causes the variable to be created in memory, and is required. In

line 18 we have explicitly initialized the

objectCount

 variable with the value 0. We could

have left out the initialization because C++ automatically stores 0 in all uninitialized static

member variables. It is a good practice to initialize the variable anyway, so it is clear to

anyone reading the code that the variable starts out with the value 0.

Next, look at the constructor in lines 8 and 9. In line 9 the

++

 operator is used to incre-

ment

objectCount

. Each time an instance of the

Tree

 class is created, the constructor

will be called and the

objectCount

 member variable will be incremented. As a result, the

objectCount

 member variable will contain the number of instances of the

Tree

 class that

have been created. The

getObjectCount

 function, in lines 12 and 13, returns the value in

objectCount

. Program 14-1 demonstrates this class.

Program 14-1

 1 // This program demonstrates a static member variable.

 2 #include <iostream>

 3 #include "Tree.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 // Define three Tree objects.

 9 Tree oak;

 10 Tree elm;

 11 Tree pine;

 12

 13 // Display the number of Tree objects we have.

 14 cout << "We have " << pine.getObjectCount()

 15 << " trees in our program!\n";

 16 return 0;

 17 }

Program Output

We have 3 trees in our program!

M14_GADD6253_07_SE_C14 Page 801 Saturday, January 8, 2011 9:46 PM

802

Chapter 14 More About Classes

The program creates three instances of the

Tree

 class, stored in the variables

oak

,

elm

,

and

pine

. Although there are three instances of the class, there is only one copy of the

static

objectCount

 variable. This is illustrated in Figure 14-2.

In line 14 the program calls the

getObjectCount

 member function to retrieve the number

of instances that have been created. Although the program uses the

pine

 object to call the

member function, the same value would be returned if any of the objects had been used.

For example, all three of the following

cout

 statements would display the same thing.

cout << "We have " << oak.getObjectCount() << " trees\n";

cout << "We have " << elm.getObjectCount() << " trees\n";

cout << "We have " << pine.getObjectCount() << " trees\n";

A more practical use of a static member variable is demonstrated in Program 14-2. The

Budget

 class is used to gather the budget requests for all the divisions of a company. The

class uses a static member,

corpBudget

, to hold the amount of the overall corporate bud-

get. When the member function

addBudget

 is called, its argument is added to the current

contents of

corpBudget

. By the time the program is nished,

corpBudget

 will contain the

total of all the values placed there by all the

Budget

 class objects. (These les are stored in

the Student Source Code Folder

Chapter 14\Budget Version 1

.)

Contents of

Budget.h

 (Version 1)

 1 #ifndef BUDGET_H

 2 #define BUDGET_H

 3

 4 // Budget class declaration

 5 class Budget

 6 {

 7 private:

 8 static double corpBudget; // Static member

 9 double divisionBudget; // Instance member

10 public:

11 Budget()

12 { divisionBudget = 0; }

13

Figure 14-2

3

objectCount variable

(static)

oak pineelm

Instances of the Tree class

M14_GADD6253_07_SE_C14 Page 802 Saturday, January 8, 2011 9:46 PM

14.1 Instance and Static Members

803

14 void addBudget(double b)

15 { divisionBudget += b;

16 corpBudget += b; }

17

18 double getDivisionBudget() const

19 { return divisionBudget; }

20

21 double getCorpBudget() const

22 { return corpBudget; }

23 };

24

25 // Definition of static member variable corpBudget

26 double Budget::corpBudget = 0;

27

28 #endif

Program 14-2

 1 // This program demonstrates a static class member variable.

 2 #include <iostream>

 3 #include <iomanip>

 4 #include "Budget.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int count; // Loop counter

 10 const int NUM_DIVISIONS = 4; // Number of divisions

 11 Budget divisions[NUM_DIVISIONS]; // Array of Budget objects

 12

 13 // Get the budget requests for each division.

 14 for (count = 0; count < NUM_DIVISIONS; count++)

 15 {

 16 double budgetAmount;

 17 cout << "Enter the budget request for division ";

 18 cout << (count + 1) << ": ";

 19 cin >> budgetAmount;

 20 divisions[count].addBudget(budgetAmount);

 21 }

 22

 23 // Display the budget requests and the corporate budget.

 24 cout << fixed << showpoint << setprecision(2);

 25 cout << "\nHere are the division budget requests:\n";

 26 for (count = 0; count < NUM_DIVISIONS; count++)

 27 {

 28 cout << "\tDivision " << (count + 1) << "\t$ ";

 29 cout << divisions[count].getDivisionBudget() << endl;

 30 }

 31 cout << "\tTotal Budget Requests:\t$ ";

 32 cout << divisions[0].getCorpBudget() << endl;

 33

 34 return 0;

 35 }

(program output continues)

M14_GADD6253_07_SE_C14 Page 803 Saturday, January 8, 2011 9:46 PM

804

Chapter 14 More About Classes

Static Member Functions

You declare a static member function by placing the

static

 keyword in the function s

prototype. Here is the general form:

A function that is a static member of a class cannot access any nonstatic member data in its

class. With this limitation in mind, you might wonder what purpose static member functions

serve. The following two points are important for understanding their usefulness:

Even though static member variables are declared in a class, they are actually

defined outside the class declaration. The lifetime of a class s static member vari-

able is the lifetime of the program. This means that a class s static member vari-

ables come into existence before any instances of the class are created.

A class s static member functions can be called before any instances of the class are

created. This means that a class s static member functions can access the class s

static member variables

before any instances of the class are defined in memory.

This gives you the ability to create very specialized setup routines for class objects.

Program 14-3, a modi cation of Program 14-2, demonstrates this feature. It asks the user

to enter the main of ce s budget request before any division requests are entered. The

Budget class has been modi ed to include a static member function named mainOffice.

This function adds its argument to the static corpBudget variable, and is called before

any instances of the Budget class are de ned. (These les are stored in the Student Source

Code Folder Chapter 14\Budget Version 2.)

Contents of Budget.h (Version 2)

 1 #ifndef BUDGET_H

 2 #define BUDGET_H

 3

 4 // Budget class declaration

 5 class Budget

 6 {

 7 private:

 8 static double corpBudget; // Static member variable

 9 double divisionBudget; // Instance member variable

Program Output with Example Input Shown in Bold
Enter the budget request for division 1: 100000 [Enter]
Enter the budget request for division 2: 200000 [Enter]
Enter the budget request for division 3: 300000 [Enter]
Enter the budget request for division 4: 400000 [Enter]

Here are the division budget requests:

Division 1 $ 100000.00

Division 2 $ 200000.00

Division 3 $ 300000.00

Division 4 $ 400000.00

Total Budget Requests: $ 1000000.00

 static ReturnType FunctionName (ParameterTypeList);

Program 14-2 (continued)

M14_GADD6253_07_SE_C14 Page 804 Saturday, January 8, 2011 9:46 PM

14.1 Instance and Static Members 805

10 public:

11 Budget()

12 { divisionBudget = 0; }

13

14 void addBudget(double b)

15 { divisionBudget += b;

16 corpBudget += b; }

17

18 double getDivisionBudget() const

19 { return divisionBudget; }

20

21 double getCorpBudget() const

22 { return corpBudget; }

23

24 static void mainOffice(double); // Static member function

25 };

26

27 #endif

Contents of Budget.cpp

 1 #include "Budget.h"

 2

 3 // Definition of corpBudget static member variable

 4 double Budget::corpBudget = 0;

 5

 6 //**

 7 // Definition of static member function mainOffice. *

 8 // This function adds the main office's budget request to *

 9 // the corpBudget variable. *

10 //**

11

12 void Budget::mainOffice(double moffice)

13 {

14 corpBudget += moffice;

15 }

Program 14-3

 1 // This program demonstrates a static member function.

 2 #include <iostream>

 3 #include <iomanip>

 4 #include "Budget.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int count; // Loop counter

 10 double mainOfficeRequest; // Main office budget request

 11 const int NUM_DIVISIONS = 4; // Number of divisions

 12

(program continues)

M14_GADD6253_07_SE_C14 Page 805 Saturday, January 8, 2011 9:46 PM

806 Chapter 14 More About Classes

Notice in line 17 the statement that calls the static function mainOffice:

Budget::mainOffice(amount);

Calls to static member functions do not use the regular notation of connecting the function

name to an object name with the dot operator. Instead, static member functions are called

by connecting the function name to the class name with the scope resolution operator.

 13 // Get the main office's budget request.

 14 // Note that no instances of the Budget class have been defined.

 15 cout << "Enter the main office's budget request: ";

 16 cin >> mainOfficeRequest;

 17 Budget::mainOffice(mainOfficeRequest);

 18

 19 Budget divisions[NUM_DIVISIONS]; // An array of Budget objects.

 20

 21 // Get the budget requests for each division.

 22 for (count = 0; count < NUM_DIVISIONS; count++)

 23 {

 24 double budgetAmount;

 25 cout << "Enter the budget request for division ";

 26 cout << (count + 1) << ": ";

 27 cin >> budgetAmount;

 28 divisions[count].addBudget(budgetAmount);

 29 }

 30

 31 // Display the budget requests and the corporate budget.

 32 cout << fixed << showpoint << setprecision(2);

 33 cout << "\nHere are the division budget requests:\n";

 34 for (count = 0; count < NUM_DIVISIONS; count++)

 35 {

 36 cout << "\tDivision " << (count + 1) << "\t$ ";

 37 cout << divisions[count].getDivisionBudget() << endl;

 38 }

 39 cout << "\tTotal Budget Requests:\t$ ";

 40 cout << divisions[0].getCorpBudget() << endl;

 41

 42 return 0;

 43 }

Program Output with Example Input Shown in Bold
Enter the main office's budget request: 100000 [Enter]
Enter the budget request for division 1: 100000 [Enter]
Enter the budget request for division 2: 200000 [Enter]
Enter the budget request for division 3: 300000 [Enter]
Enter the budget request for division 4: 400000 [Enter]

Here are the division budget requests:

Division 1 $ 100000.00

Division 2 $ 200000.00

Division 3 $ 300000.00

Division 4 $ 400000.00

Total Requests (including main office): $ 1100000.00

Program 14-3 (continued)

M14_GADD6253_07_SE_C14 Page 806 Saturday, January 8, 2011 9:46 PM

14.2 Friends of Classes 807

14.2 Friends of Classes

CONCEPT: A friend is a function or class that is not a member of a class, but has

access to the private members of the class.

Private members are hidden from all parts of the program outside the class, and accessing

them requires a call to a public member function. Sometimes you will want to create an

exception to that rule. A friend function is a function that is not part of a class, but that

has access to the class s private members. In other words, a friend function is treated as if

it were a member of the class. A friend function can be a regular stand-alone function, or

it can be a member of another class. (In fact, an entire class can be declared a friend of

another class.)

In order for a function or class to become a friend of another class, it must be declared as

such by the class granting it access. Classes keep a list of their friends, and only the

external functions or classes whose names appear in the list are granted access. A function

is declared a friend by placing the key word friend in front of a prototype of the func-

tion. Here is the general format:

In the following declaration of the Budget class, the addBudget function of another class,

AuxiliaryOffice has been declared a friend. (This le is stored in the Student Source

Code Folder Chapter 14\Budget Version 3.)

Contents of Budget.h (Version 3)

 1 #ifndef BUDGET_H

 2 #define BUDGET_H

 3 #include "Auxil.h"

 4

 5 // Budget class declaration

 6 class Budget

 7 {

 8 private:

 9 static double corpBudget; // Static member variable

10 double divisionBudget; // Instance member variable

11 public:

12 Budget()

13 { divisionBudget = 0; }

14

15 void addBudget(double b)

16 { divisionBudget += b;

17 corpBudget += b; }

NOTE: If an instance of a class with a static member function exists, the static member

function can be called with the class object name and the dot operator, just like any other

member function.

 friend ReturnType FunctionName (ParameterTypeList)

M14_GADD6253_07_SE_C14 Page 807 Saturday, January 8, 2011 9:46 PM

808 Chapter 14 More About Classes

18

19 double getDivisionBudget() const

20 { return divisionBudget; }

21

22 double getCorpBudget() const

23 { return corpBudget; }

24

25 // Static member function

26 static void mainOffice(double);

27

28 // Friend function

29 friend void AuxiliaryOffice::addBudget(double, Budget &);

30 };

31

32 #endif

Let s assume another class, AuxiliaryOffice, represents a division s auxiliary of ce,

perhaps in another country. The auxiliary of ce makes a separate budget request,

which must be added to the overall corporate budget. The friend declaration of the

AuxiliaryOffice::addBudget function tells the compiler that the function is to be

granted access to Budget s private members. Notice the function takes two arguments:

a double and a reference object of the Budget class. The Budget class object that is to

be modi ed by the function is passed to it, by reference, as an argument. The follow-

ing code shows the declaration of the AuxillaryOffice class. (This le is stored in the

Student Source Code Folder Chapter 14\Budget Version 3.)

Contents of Auxil.h

 1 #ifndef AUXIL_H

 2 #define AUXIL_H

 3

 4 class Budget; // Forward declaration of Budget class

 5

 6 // Aux class declaration

 7

 8 class AuxiliaryOffice

 9 {

10 private:

11 double auxBudget;

12 public:

13 AuxiliaryOffice()

14 { auxBudget = 0; }

15

16 double getDivisionBudget() const

17 { return auxBudget; }

18

19 void addBudget(double, Budget &);

20 };

21

22 #endif

M14_GADD6253_07_SE_C14 Page 808 Saturday, January 8, 2011 9:46 PM

14.2 Friends of Classes 809

Contents of Auxil.cpp

 1 #include "Auxil.h"

 2 #include "Budget.h"

 3

 4 //***

 5 // Definition of member function mainOffice. *

 6 // This function is declared a friend by the Budget class. *

 7 // It adds the value of argument b to the static corpBudget *

 8 // member variable of the Budget class. *

 9 //***

10

11 void AuxiliaryOffice::addBudget(double b, Budget &div)

12 {

13 auxBudget += b;

14 div.corpBudget += b;

15 }

Notice the Auxil.h le contains the following statement in line 4:

class Budget; // Forward declaration of Budget class

This is a forward declaration of the Budget class. It simply tells the compiler that a class

named Budget will be declared later in the program. This is necessary because the com-

piler will process the Auxil.h le before it processes the Budget class declaration. When

it is processing the Auxil.h le it will see the following function declaration in line 19:

void addBudget(double, Budget &);

The addBudget function s second parameter is a Budget reference variable. At this point,

the compiler has not processed the Budget class declaration, so, without the forward dec-

laration, it wouldn t know what a Budget reference variable is.

The following code shows the de nition of the addBudget function. (This le is also

stored in the Student Source Code Folder Chapter 14\Budget Version 3.)

Contents of Auxil.cpp

 1 #include "Auxil.h"

 2 #include "Budget.h"

 3

 4 //***

 5 // Definition of member function mainOffice. *

 6 // This function is declared a friend by the Budget class. *

 7 // It adds the value of argument b to the static corpBudget *

 8 // member variable of the Budget class. *

 9 //***

10

11 void AuxiliaryOffice::addBudget(double b, Budget &div)

12 {

13 auxBudget += b;

14 div.corpBudget += b;

15 }

The parameter div, a reference to a Budget class object, is used in line 14. This statement

adds the parameter b to div.corpBudget. Program 14-4 demonstrates the classes.

M14_GADD6253_07_SE_C14 Page 809 Saturday, January 8, 2011 9:46 PM

810 Chapter 14 More About Classes

Program 14-4

 1 // This program demonstrates a static member function.

 2 #include <iostream>

 3 #include <iomanip>

 4 #include "Budget.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int count; // Loop counter

 10 double mainOfficeRequest; // Main office budget request

 11 const int NUM_DIVISIONS = 4; // Number of divisions

 12

 13 // Get the main office's budget request.

 14 cout << "Enter the main office's budget request: ";

 15 cin >> mainOfficeRequest;

 16 Budget::mainOffice(mainOfficeRequest);

 17

 18 Budget divisions[NUM_DIVISIONS]; // Array of Budget objects

 19 AuxiliaryOffice auxOffices[4]; // Array of AuxiliaryOffice

 20

 21 // Get the budget requests for each division

 22 // and their auxiliary offices.

 23 for (count = 0; count < NUM_DIVISIONS; count++)

 24 {

 25 double budgetAmount; // To hold input

 26

 27 // Get the request for the division office.

 28 cout << "Enter the budget request for division ";

 29 cout << (count + 1) << ": ";

 30 cin >> budgetAmount;

 31 divisions[count].addBudget(budgetAmount);

 32

 33 // Get the request for the auxiliary office.

 34 cout << "Enter the budget request for that division's\n";

 35 cout << "auxiliary office: ";

 36 cin >> budgetAmount;

 37 auxOffices[count].addBudget(budgetAmount, divisions[count]);

 38 }

 39

 40 // Display the budget requests and the corporate budget.

 41 cout << fixed << showpoint << setprecision(2);

 42 cout << "\nHere are the division budget requests:\n";

 43 for (count = 0; count < NUM_DIVISIONS; count++)

 44 {

 45 cout << "\tDivision " << (count + 1) << "\t\t$";

 46 cout << divisions[count].getDivisionBudget() << endl;

 47 cout << "\tAuxiliary office:\t$";

 48 cout << auxOffices[count].getDivisionBudget() << endl << endl;

 49 }

 50 cout << "Total Budget Requests:\t$ ";

 51 cout << divisions[0].getCorpBudget() << endl;

 52 return 0;

 53 }

M14_GADD6253_07_SE_C14 Page 810 Saturday, January 8, 2011 9:46 PM

14.2 Friends of Classes 811

As mentioned before, it is possible to make an entire class a friend of another class. The

Budget class could make the AuxiliaryOffice class its friend with the following

declaration:

friend class AuxiliaryOffice;

This may not be a good idea, however. Every member function of AuxiliaryOffice

(including ones that may be added later) would have access to the private members of

Budget. The best practice is to declare as friends only those functions that must have

access to the private members of the class.

Checkpoint

 www.myprogramminglab.com

14.1 What is the difference between an instance member variable and a static member

variable?

14.2 Static member variables are declared inside the class declaration. Where are static

member variables de ned?

14.3 Does a static member variable come into existence in memory before, at the same

time as, or after any instances of its class?

14.4 What limitation does a static member function have?

Program Output with Example Input Shown in Bold
Enter the main office's budget request: 100000 [Enter]
Enter the budget request for division 1: 100000 [Enter]
Enter the budget request for that division's

auxiliary office: 50000 [Enter]
Enter the budget request for division 2: 200000 [Enter]
Enter the budget request for that division's

auxiliary office: 40000 [Enter]
Enter the budget request for division 3: 300000 [Enter]
Enter the budget request for that division's

auxiliary office: 70000 [Enter]
Enter the budget request for division 4: 400000 [Enter]
Enter the budget request for that division's

auxiliary office: 65000 [Enter]

Here are the division budget requests:

 Division 1 $100000.00

 Auxiliary office: $50000.00

 Division 2 $200000.00

 Auxiliary office: $40000.00

 Division 3 $300000.00

 Auxiliary office: $70000.00

 Division 4 $400000.00

 Auxiliary office: $65000.00

Total Budget Requests: $ 1325000.00

M14_GADD6253_07_SE_C14 Page 811 Saturday, January 8, 2011 9:46 PM

812 Chapter 14 More About Classes

14.5 What action is possible with a static member function that isn t possible with an

instance member function?

14.6 If class X declares function f as a friend, does function f become a member of

class X?

14.7 Class Y is a friend of class X, which means the member functions of class Y have

access to the private members of class X. Does the friend key word appear in class

Y s declaration or in class X s declaration?

14.3 Memberwise Assignment

CONCEPT: The = operator may be used to assign one object s data to another object,

or to initialize one object with another object s data. By default, each

member of one object is copied to its counterpart in the other object.

Like other variables (except arrays), objects may be assigned to one another using the =

operator. As an example, consider Program 14-5 which uses the Rectangle class (version

4) that we discussed in Chapter 13. Recall that the Rectangle class has two member vari-

ables: width and length. The constructor accepts two arguments, one for width and one

for length.

Program 14-5

 1 // This program demonstrates memberwise assignment.

 2 #include <iostream>

 3 #include "Rectangle.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 // Define two Rectangle objects.

 9 Rectangle box1(10.0, 10.0); // width = 10.0, length = 10.0

 10 Rectangle box2 (20.0, 20.0); // width = 20.0, length = 20.0

 11

 12 // Display each object's width and length.

 13 cout << "box1's width and length: " << box1.getWidth()

 14 << " " << box1.getLength() << endl;

 15 cout << "box2's width and length: " << box2.getWidth()

 16 << " " << box2.getLength() << endl << endl;

 17

 18 // Assign the members of box1 to box2.

 19 box2 = box1;

 20

 21 // Display each object's width and length again.

 22 cout << "box1's width and length: " << box1.getWidth()

 23 << " " << box1.getLength() << endl;

 24 cout << "box2's width and length: " << box2.getWidth()

 25 << " " << box2.getLength() << endl;

 26

 27 return 0;

 28 }

M14_GADD6253_07_SE_C14 Page 812 Saturday, January 8, 2011 9:46 PM

14.4 Copy Constructors 813

The following statement, which appears in line 19, copies the width and length member

variables of box1 directly into the width and length member variables of box2:

box2 = box1;

Memberwise assignment also occurs when one object is initialized with another object s

values. Remember the difference between assignment and initialization: assignment occurs

between two objects that already exist, and initialization happens to an object being cre-

ated. Consider the following code:

// Define box1.

Rectangle box1(100.0, 50.0);

// Define box2, initialize with box1's values

Rectangle box2 = box1;

The last statement de nes a Rectangle object, box2, and initializes it to the values stored

in box1. Because memberwise assignment takes place, the box2 object will contain the

exact same values as the box1 object.

14.4 Copy Constructors

CONCEPT: A copy constructor is a special constructor that is called whenever a new

object is created and initialized with another object s data.

Most of the time, the default memberwise assignment behavior in C++ is perfectly accept-

able. There are instances, however, where memberwise assignment cannot be used. For

example, consider the following class. (This le is stored in the Student Source Code

Folder Chapter 14\StudentTestScores Version 1.)

Contents of StudentTestScores.h (Version 1)

 1 #ifndef STUDENTTESTSCORES_H

 2 #define STUDENTTESTSCORES_H

 3 #include <string>

 4 using namespace std;

 5

 6 const double DEFAULT_SCORE = 0.0;

 7

 8 class StudentTestScores

 9 {

10 private:

11 string studentName; // The student's name

12 double *testScores; // Points to array of test scores

13 int numTestScores; // Number of test scores

14

Program Output
box1's width and length: 10 10

box2's width and length: 20 20

box1's width and length: 10 10

box2's width and length: 10 10

M14_GADD6253_07_SE_C14 Page 813 Saturday, January 8, 2011 9:46 PM

814 Chapter 14 More About Classes

15 // Private member function to create an

16 // array of test scores.

17 void createTestScoresArray(int size)

18 { numTestScores = size;

19 testScores = new double[size];

20 for (int i = 0; i < size; i++)

21 testScores[i] = DEFAULT_SCORE; }

22

23 public:

24 // Constructor

25 StudentTestScores(string name, int numScores)

26 { studentName = name;

27 createTestScoresArray(numScores); }

28

29 // Destructor

30 ~StudentTestScores()

31 { delete [] testScores; }

32

33 // The setTestScore function sets a specific

34 // test score's value.

35 void setTestScore(double score, int index)

36 { testScores[index] = score; }

37

38 // Set the student's name.

39 void setStudentName(string name)

40 { studentName = name; }

41

42 // Get the student's name.

43 string getStudentName() const

44 { return studentName; }

45

46 // Get the number of test scores.

47 int getNumTestScores() const

48 { return numTestScores; }

49

50 // Get a specific test score.

51 double getTestScore(int index) const

52 { return testScores[index]; }

53 };

54 #endif

This class stores a student s name and a set of test scores. Let s take a closer look at the

code:

* Lines 11 through 13 declare the class s attributes. The studentName attribute is a

string object that holds a student s name. The testScores attribute is an int

pointer. Its purpose is to point to a dynamically allocated int array that holds the

student s test score. The numTestScore attribute is an int that holds the number

of test scores.

* The createTestScoresArray private member function, in lines 17 through 21,

creates an array to hold the student s test scores. It accepts an argument for the

number of test scores, assigns this value to the numTestScores attribute (line 18),

and then dynamically allocates an int array for the testScores attribute (line

19). The for loop in lines 20 through 21 initializes each element of the array to

the default value 0.0.

M14_GADD6253_07_SE_C14 Page 814 Saturday, January 8, 2011 9:46 PM

14.4 Copy Constructors 815

The constructor, in lines 25 through 27, accepts the student s name and the

number of test scores as arguments. In line 26 the name is assigned to the

studentName attribute, and in line 27 the number of test scores is passed to

the createTestScoresArray member function.

The destructor, in lines 30 through 31, deallocates the test score array.

The setTestScore member function, in lines 35 through 36, sets a specific score

in the testScores attribute. The function accepts arguments for the score and

the index where the score should be stored in the testScores array.

The setStudentName member function, in lines 39 through 40, accepts an argu-

ment that is assigned to the studentName attribute.

The getStudentName member function, in lines 43 through 44, returns the value

of the studentName attribute.

The getNumTestScores member function, in lines 47 through 48, returns the

number of test scores stored in the object.

The getTestScore member function, in lines 51 through 52, returns a specific

score (specified by the index parameter) from the testScores attribute.

A potential problem with this class lies in the fact that one of its members, testScores, is a

pointer. The createTestScoresArray member function (called by the constructor) performs

a critical operation with the pointer: it dynamically allocates a section of memory for the

testScores array, and assigns default values to each of its element. For instance, the follow-

ing statement creates a StudentTestScores object named student1, whose testScores

member references dynamically allocated memory holding an array of 5 double s:

StudentTestScores("Maria Jones Tucker", 5);

This is depicted in Figure 14-3.

Consider what happens when another StudentTestScores object is created and initial-

ized with the student1 object, as in the following statement:

StudentTestScores student2 = student1;

In the statement above, student2 s constructor isn t called. Instead, memberwise assign-

ment takes place, copying each of student1 s member variables into student2. This

means that a separate section of memory is not allocated for student2 s testScores

member. It simply gets a copy of the address stored in student1 s testScores member.

Both pointers will point to the same address, as depicted in Figure 14-4.

In this situation, either object can manipulate the values stored in the array, causing the

changes to show up in the other object. Likewise, one object can be destroyed, causing its

destructor to be called, which frees the allocated memory. The remaining object s

testScores pointer would still reference this section of memory, although it should no

longer be used.

Figure 14-3

0.0 0.0 0.0 0.0 0.0

testScores

pointer

Dynamically allocated array

M14_GADD6253_07_SE_C14 Page 815 Saturday, January 8, 2011 9:46 PM

816 Chapter 14 More About Classes

The solution to this problem is to create a copy constructor for the object. A copy con-

structor is a special constructor that s called when an object is initialized with another

object s data. It has the same form as other constructors, except it has a reference parame-

ter of the same class type as the object itself. For example, here is a copy constructor for

the StudentTestScores class:

StudentTestScores(StudentTestScores &obj)

{ studentName = obj.studentName;

 numTestScores = obj.numTestScores;

 testScores = new double[numTestScores];

 for (int i = 0; i < length; i++)

 testScores[i] = obj.testScores[i]; }

When the = operator is used to initialize a StudentTestScores object with the contents of

another StudentTestScores object, the copy constructor is called. The StudentTestScores

object that appears on the right side of the = operator is passed as an argument to the copy

constructor. For example, look at the following statement:

StudentTestScores student1 ("Molly McBride", 8);

StudentTestScores student2 = student1;

In this code, the student1 object is passed as an argument to the student2 object s copy

constructor.

As you can see from studying the copy constructor s code, student2 s testScores mem-

ber will properly reference its own dynamically allocated memory. There will be no dan-

ger of student1 inadvertently destroying or corrupting student2 s data.

Using const Parameters in Copy Constructors

Because copy constructors are required to use reference parameters, they have access to

their argument s data. Since the purpose of a copy constructor is to make a copy of the

argument, there is no reason the constructor should modify the argument s data. With this

in mind, it s a good idea to make copy constructors parameters constant by specifying the

const key word in the parameter list. Here is an example:

StudentTestScores(const StudentTestScores &obj)

{ studentName = obj.studentName;

 numTestScores = obj.numTestScores;

Figure 14-4

NOTE: C++ requires that a copy constructor s parameter be a reference object.

0.0 0.0 0.0 0.0 0.0

Dynamically allocated array

student1 s

testScores

pointer

student2 s

testScores

pointer

M14_GADD6253_07_SE_C14 Page 816 Saturday, January 8, 2011 9:46 PM

14.4 Copy Constructors 817

 testScores = new double[numTestScores];

 for (int i = 0; i < numTestScores; i++)

 testScores[i] = obj.testScores[i]; }

The const key word ensures that the function cannot change the contents of the parame-

ter. This will prevent you from inadvertently writing code that corrupts data.

The complete listing for the revised StudentTestScores class is shown here. (This le is

stored in the Student Source Code Folder Chapter 14\StudentTestScores Version 2.)

Contents of StudentTestScores.h (Version 2)

 1 #ifndef STUDENTTESTSCORES_H

 2 #define STUDENTTESTSCORES_H

 3 #include <string>

 4 using namespace std;

 5

 6 const double DEFAULT_SCORE = 0.0;

 7

 8 class StudentTestScores

 9 {

10 private:

11 string studentName; // The student's name

12 double *testScores; // Points to array of test scores

13 int numTestScores; // Number of test scores

14

15 // Private member function to create an

16 // array of test scores.

17 void createTestScoresArray(int size)

18 { numTestScores = size;

19 testScores = new double[size];

20 for (int i = 0; i < size; i++)

21 testScores[i] = DEFAULT_SCORE; }

22

23 public:

24 // Constructor

25 StudentTestScores(string name, int numScores)

26 { studentName = name;

27 createTestScoresArray(numScores); }

28

29 // Copy constructor

30 StudentTestScores(const StudentTestScores &obj)

31 { studentName = obj.studentName;

32 numTestScores = obj.numTestScores;

33 testScores = new double[numTestScores];

34 for (int i = 0; i < numTestScores; i++)

35 testScores[i] = obj.testScores[i]; }

36

37 // Destructor

38 ~StudentTestScores()

39 { delete [] testScores; }

40

41 // The setTestScore function sets a specific

42 // test score's value.

43 void setTestScore(double score, int index)

M14_GADD6253_07_SE_C14 Page 817 Saturday, January 8, 2011 9:46 PM

818 Chapter 14 More About Classes

44 { testScores[index] = score; }

45

46 // Set the student's name.

47 void setStudentName(string name)

48 { studentName = name; }

49

50 // Get the student's name.

51 string getStudentName() const

52 { return studentName; }

53

54 // Get the number of test scores.

55 int getNumTestScores() const

56 { return numTestScores; }

57

58 // Get a specific test score.

59 double getTestScore(int index) const

60 { return testScores[index]; }

61 };

62 #endif

Copy Constructors and Function Parameters

When a class object is passed by value as an argument to a function, it is passed to a

parameter that is also a class object, and the copy constructor of the function s parameter

is called. Remember that when a nonreference class object is used as a function parameter

it is created when the function is called, and it is initialized with the argument s value.

This is why C++ requires the parameter of a copy constructor to be a reference object. If

an object were passed to the copy constructor by value, the copy constructor would create

a copy of the argument and store it in the parameter object. When the parameter object is

created, its copy constructor will be called, thus causing another parameter object to be

created. This process will continue inde nitely (or at least until the available memory lls

up, causing the program to halt).

To prevent the copy constructor from calling itself an in nite number of times, C++

requires its parameter to be a reference object.

The Default Copy Constructor

Although you may not realize it, you have seen the action of a copy constructor before. If a

class doesn t have a copy constructor, C++ creates a default copy constructor for it. The default

copy constructor performs the memberwise assignment discussed in the previous section.

Checkpoint

 www.myprogramminglab.com

14.8 Brie y describe what is meant by memberwise assignment.

14.9 Describe two instances when memberwise assignment occurs.

14.10 Describe a situation in which memberwise assignment should not be used.

14.11 When is a copy constructor called?

14.12 How does the compiler know that a member function is a copy constructor?

14.13 What action is performed by a class s default copy constructor?

M14_GADD6253_07_SE_C14 Page 818 Saturday, January 8, 2011 9:46 PM

14.5 Operator Overloading 819

14.5 Operator Overloading

CONCEPT: C++ allows you to rede ne how standard operators work when used

with class objects.

C++ provides many operators to manipulate data of the primitive data types. However,

what if you wish to use an operator to manipulate class objects? For example, assume that

a class named Date exists, and objects of the Date class hold the month, day, and year in

member variables. Suppose the Date class has a member function named add. The add

member function adds a number of days to the date, and adjusts the member variables if

the date goes to another month or year. For example, the following statement adds ve days

to the date stored in the today object:

today.add(5);

Although it might be obvious that the statement is adding ve days to the date stored in

today, the use of an operator might be more intuitive. For example, look at the following

statement:

today += 5;

This statement uses the standard += operator to add 5 to today. This behavior does not

happen automatically, however. The += operator must be overloaded for this action to

occur. In this section, you will learn to overload many of C++ s operators to perform spe-

cialized operations on class objects.

Overloading the = Operator

Although copy constructors solve the initialization problems inherent with objects con-

taining pointer members, they do not work with simple assignment statements. Copy con-

structors are just that constructors. They are only invoked when an object is created.

Statements like the following still perform memberwise assignment:

student2 = student1;

In order to change the way the assignment operator works, it must be overloaded. Opera-

tor overloading permits you to rede ne an existing operator s behavior when used with a

class object.

C++ allows a class to have special member functions called operator functions. If you wish

to rede ne the way a particular operator works with an object, you de ne a function for

that operator. The Operator function is then executed any time the operator is used with

an object of that class. For example, the following version of the StudentTestScores

class overloads the = operator. (This le is stored in the Student Source Code Folder

Chapter 14\StudentTestScores Version 3.)

NOTE: You have already experienced the behavior of an overloaded operator. The /

operator performs two types of division: oating point and integer. If one of the /

operator s operands is a oating point type, the result will be a oating point value. If

both of the / operator s operands are integers, however, a different behavior occurs: the

result is an integer and any fractional part is thrown away.

VideoNote

Operator

Overloading

M14_GADD6253_07_SE_C14 Page 819 Saturday, January 8, 2011 9:46 PM

820 Chapter 14 More About Classes

Contents of StudentTestScores (Version 3)

 1 #ifndef STUDENTTESTSCORES_H

 2 #define STUDENTTESTSCORES_H

 3 #include <string>

 4 using namespace std;

 5

 6 const double DEFAULT_SCORE = 0.0;

 7

 8 class StudentTestScores

 9 {

10 private:

11 string studentName; // The student's name

12 double *testScores; // Points to array of test scores

13 int numTestScores; // Number of test scores

14

15 // Private member function to create an

16 // array of test scores.

17 void createTestScoresArray(int size)

18 { numTestScores = size;

19 testScores = new double[size];

20 for (int i = 0; i < size; i++)

21 testScores[i] = DEFAULT_SCORE; }

22

23 public:

24 // Constructor

25 StudentTestScores(string name, int numScores)

26 { studentName = name;

27 createTestScoresArray(numScores); }

28

29 // Copy constructor

30 StudentTestScores(const StudentTestScores &obj)

31 { studentName = obj.studentName;

32 numTestScores = obj.numTestScores;

33 testScores = new double[numTestScores];

34 for (int i = 0; i < numTestScores; i++)

35 testScores[i] = obj.testScores[i]; }

36

37 // Destructor

38 ~StudentTestScores()

39 { delete [] testScores; }

40

41 // The setTestScore function sets a specific

42 // test score's value.

43 void setTestScore(double score, int index)

44 { testScores[index] = score; }

45

46 // Set the student's name.

47 void setStudentName(string name)

48 { studentName = name; }

49

50 // Get the student's name.

51 string getStudentName() const

52 { return studentName; }

53

M14_GADD6253_07_SE_C14 Page 820 Saturday, January 8, 2011 9:46 PM

14.5 Operator Overloading 821

54 // Get the number of test scores.

55 int getNumTestScores()

56 { return numTestScores; }

57

58 // Get a specific test score.

59 double getTestScore(int index) const

60 { return testScores[index]; }

61

62 // Overloaded = operator

63 void operator=(const StudentTestScores &right)

64 { delete [] testScores;

65 studentName = right.studentName;

66 numTestScores = right.numTestScores;

67 testScores = new double[numTestScores];

68 for (int i = 0; i < numTestScores; i++)

69 testScores[i] = right.testScores[i]; }

70 };

71 #endif

Let s examine the operator function to understand how it works. First look at the function

header:

The name of the function is operator=. This speci es that the function overloads the =

operator. Because it is a member of the StudentTestScores class, this function will be

called only when an assignment statement executes where the object on the left side of the

= operator is a StudentTestScores object.

The function has one parameter: a constant reference object named right. This parame-

ter references the object on the right side of the operator. For example, when the following

statement is executed, right will reference the student1 object:

student2 = student1;

It is not required that the parameter of an operator function be a reference object. The

StudentTestScores example declares right as a const reference for the following

reasons:

It was declared as a reference for efficiency purposes. This prevents the compiler

from making a copy of the object being passed into the function.

It was declared constant so the function will not accidentally change the contents

of the argument.

NOTE: You can, if you choose, put spaces around the operator symbol. For instance,

the function header above could also read:

void operator = (const StudentTestScores &right)

NOTE: In the example, the parameter was named right simply to illustrate that it

references the object on the right side of the operator. You can name the parameter

anything you wish. It will always take the object on the operator s right as its argument.

 void operator=(const StudentTestScores &right)

Return

type

Function

name

Parameter for object

on the right side of operator

M14_GADD6253_07_SE_C14 Page 821 Saturday, January 8, 2011 9:46 PM

822 Chapter 14 More About Classes

In learning the mechanics of operator overloading, it is helpful to know that the following

two statements do the same thing:

student2 = student1; // Call operator= function

student2.operator=(student1); // Call operator= function

In the last statement you can see exactly what is going on in the function call. The

student1 object is being passed to the function s parameter, right. Inside the function,

the values in right s members are used to initialize student2. Notice that the operator=

function has access to the right parameter s private members. Because the operator=

function is a member of the StudentTestScores class, it has access to the private mem-

bers of any StudentTestScores object that is passed into it.

Program 14-6 demonstrates the StudentTestScores class with its overloaded assign-

ment operator. (This le is stored in the Student Source Code Folder Chapter 14\

StudentTestScores Version 3.)

NOTE: C++ allows operator functions to be called with regular function call notation,

or by using the operator symbol.

Program 14-6

 1 // This program demonstrates the overloaded = operator

 2 #include <iostream>

 3 #include "StudentTestScores.h"

 4 using namespace std;

 5

 6 // Function prototype

 7 void displayStudent(StudentTestScores);

 8

 9 int main()

 10 {

 11 // Create a StudentTestScores object and

 12 // assign test scores.

 13 StudentTestScores student1("Kelly Thorton", 3);

 14 student1.setTestScore(100.0, 0);

 15 student1.setTestScore(95.0, 1);

 16 student1.setTestScore(80, 2);

 17

 18 // Create another StudentTestScore object

 19 // with default test scores.

 20 StudentTestScores student2("Jimmy Griffin", 5);

 21

 22 // Assign the student1 object to student2

 23 student2 = student1;

 24

 25 // Display both objects. They should

 26 // contain the same data.

 27 displayStudent(student1);

 28 displayStudent(student2);

 29 return 0;

 30 }

 31

M14_GADD6253_07_SE_C14 Page 822 Saturday, January 8, 2011 9:46 PM

14.5 Operator Overloading 823

The = Operator s Return Value

There is only one problem with the overloaded = operator shown in Program 14-6: it

has a void return type. C++ s built-in = operator allows multiple assignment statements

such as:

a = b = c;

In this statement, the expression b = c causes c to be assigned to b and then returns the

value of c. The return value is then stored in a. If a class object s overloaded = operator is

to function this way, it too must have a valid return type.

For example, the StudentTestScores class s operator= function could be written as:

const StudentTestScores operator=(const StudentTestScores &right)

{ delete [] testScores;

 studentName = right.studentName;

 numTestScores = right.numTestScores;

 testScores = new double[numTestScores];

 for (int i = 0; i < numTestScores; i++)

 testScores[i] = right.testScores[i];

 return *this; }

The data type of the operator function speci es that a const StudentTestScores object

is returned. Look at the last statement in the function:

return *this;

This statement returns the value of a dereferenced pointer: this. But what is this? Read on.

The this Pointer

The this pointer is a special built-in pointer that is available to a class s member func-

tions. It always points to the instance of the class making the function call. For example, if

student1 and student2 are both StudentTestScores objects, the following statement

causes the getStudentName function to operate on student1:

cout << student1.getStudentName() << endl;

 32 // The displayStudent function accepts a

 33 // StudentTestScores object's data.

 34 void displayStudent(StudentTestScores s)

 35 {

 36 cout << "Name: " << s.getStudentName() << endl;

 37 cout << "Test Scores: ";

 38 for (int i = 0; i < s.getNumTestScores(); i++)

 39 cout << s.getTestScore(i) << " ";

 40 cout << endl;

 41 }

Program Output
Name: Kelly Thorton

Test Scores: 100 95 80

Name: Kelly Thorton

Test Scores: 100 95 80

M14_GADD6253_07_SE_C14 Page 823 Saturday, January 8, 2011 9:46 PM

824 Chapter 14 More About Classes

Likewise, the following statement causes getStudentName to operate on student2:

cout << student2.getStudentName() << endl;

When getStudentName is operating on student1, the this pointer is pointing to

student1. When getStudentName is operating on student2, this is pointing to

student2. The this pointer always points to the object that is being used to call the

member function.

The overloaded = operator function is demonstrated in Program 14-7. The multiple

assignment statement in line 21 causes the operator= function to execute. (This le and

the revised version of the StudentTestScores class is stored in the Student Source Code

Folder Chapter 14\StudentTestScores Version 4.)

NOTE: The this pointer is passed as a hidden argument to all nonstatic member

functions.

Program 14-7

 1 // This program demonstrates the overloaded = operator

 2 // with a return value.

 3 #include <iostream>

 4 #include "StudentTestScores.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 // Create and initialize the jim object

 10 StudentTestScores jim("Jim Young", 1);

 11 jim.setTestScore(95.5, 0);

 12

 13 // Create and initialize the bob object

 14 StudentTestScores bob("Bob Faraday", 1);

 15 bob.setTestScore(82.8, 0);

 16

 17 // Create the clone object and initialize with jim

 18 StudentTestScores clone = jim;

 19

 20 // Assign jim to bob and clone

 21 clone = bob = jim;

 22

 23 // Display the contents of the jim object

 24 cout << "The jim object contains: ";

 25 cout << jim.getName() << ", " ;

 26 cout << jim.getTestScore(0) << endl;

 27

 28 // Display the contents of the bob object

 29 cout << "The bob object contains: ";

 30 cout << bob.getName() << ", " ;

 31 cout << bob.getTestScore(0) << endl;

 32

M14_GADD6253_07_SE_C14 Page 824 Saturday, January 8, 2011 9:46 PM

14.5 Operator Overloading 825

Some General Issues of Operator Overloading

Now that you have had a taste of operator overloading, let s look at some of the general

issues involved in this programming technique.

Although it is not a good programming practice, you can change an operator s entire

meaning if that s what you wish to do. There is nothing to prevent you from changing the

= symbol from an assignment operator to a display operator. For instance, the follow-

ing class does just that:

class Weird

{

private:

 int value;

public:

 Weird(int v)

 {value = v; }

 void operator=(const weird &right)

 { cout << right.value << endl; }

};

Although the operator= function in the Weird class overloads the assignment operator,

the function doesn t perform an assignment. Instead, it displays the contents of

right.value. Consider the following program segment:

Weird a(5), b(10);

a = b;

Although the statement a = b looks like an assignment statement, it actually causes the

contents of b s value member to be displayed on the screen:

10

Another operator overloading issue is that you cannot change the number of operands

taken by an operator. The = symbol must always be a binary operator. Likewise, ++ and

-- must always be unary operators.

 33 // Display the contents of the clone object

 34 cout << "The clone object contains: ";

 35 cout << clone.getName() << ", " ;

 36 cout << clone.getTestScore(0) << endl;

 37

 38 return 0;

 39 }

Program Output
Name: Kelly Thorton

Test Scores: 100 95 80

Name: Kelly Thorton

Test Scores: 100 95 80

Name: Kelly Thorton

Test Scores: 100 95 80

M14_GADD6253_07_SE_C14 Page 825 Saturday, January 8, 2011 9:46 PM

826 Chapter 14 More About Classes

The last issue is that although you may overload most of the C++ operators, you cannot

overload all of them. Table 14-1 shows all of the C++ operators that may be overloaded.

The only operators that cannot be overloaded are

?: . .* :: sizeof

Overloading Math Operators

Many classes would bene t not only from an overloaded assignment operator, but also

from overloaded math operators. To illustrate this, consider the FeetInches class shown

in the following two les. (These les are stored in the Student Source Code Folder

Chapter 14\FeetInches Version 1.)

Contents of FeetInches.h (Version 1)

 1 #ifndef FEETINCHES_H

 2 #define FEETINCHES_H

 3

 4 // The FeetInches class holds distances or measurements

 5 // expressed in feet and inches.

 6

 7 class FeetInches

 8 {

 9 private:

10 int feet; // To hold a number of feet

11 int inches; // To hold a number of inches

12 void simplify(); // Defined in FeetInches.cpp

13 public:

14 // Constructor

15 FeetInches(int f = 0, int i = 0)

16 { feet = f;

17 inches = i;

18 simplify(); }

19

20 // Mutator functions

21 void setFeet(int f)

22 { feet = f; }

23

Table 14-1

 + - * / % ^ & | ~ ! = <

 > += -= *= /= %= ^= &= |= << >> >>=

 <<= == != <= >= && || ++ -- ->* , ->

 [] () new delete

NOTE: Some of the operators in Table 14-1 are beyond the scope of this book and are

not covered.

M14_GADD6253_07_SE_C14 Page 826 Saturday, January 8, 2011 9:46 PM

14.5 Operator Overloading 827

24 void setInches(int i)

25 { inches = i;

26 simplify(); }

27

28 // Accessor functions

29 int getFeet() const

30 { return feet; }

31

32 int getInches() const

33 { return inches; }

34

35 // Overloaded operator functions

36 FeetInches operator + (const FeetInches &); // Overloaded +

37 FeetInches operator - (const FeetInches &); // Overloaded -

38 };

39

40 #endif

Contents of FeetInches.cpp (Version 1)

 1 // Implementation file for the FeetInches class

 2 #include <cstdlib> // Needed for abs()

 3 #include "FeetInches.h"

 4

 5 //**

 6 // Definition of member function simplify. This function *

 7 // checks for values in the inches member greater than *

 8 // twelve or less than zero. If such a value is found, *

 9 // the numbers in feet and inches are adjusted to conform *

10 // to a standard feet & inches expression. For example, *

11 // 3 feet 14 inches would be adjusted to 4 feet 2 inches and *

12 // 5 feet -2 inches would be adjusted to 4 feet 10 inches. *

13 //**

14

15 void FeetInches::simplify()

16 {

17 if (inches >= 12)

18 {

19 feet += (inches / 12);

20 inches = inches % 12;

21 }

22 else if (inches < 0)

23 {

24 feet -= ((abs(inches) / 12) + 1);

25 inches = 12 - (abs(inches) % 12);

26 }

27 }

28

29 //**

30 // Overloaded binary + operator. *

31 //**

32

M14_GADD6253_07_SE_C14 Page 827 Saturday, January 8, 2011 9:46 PM

828 Chapter 14 More About Classes

33 FeetInches FeetInches::operator + (const FeetInches &right)

34 {

35 FeetInches temp;

36

37 temp.inches = inches + right.inches;

38 temp.feet = feet + right.feet;

39 temp.simplify();

40 return temp;

41 }

42

43 //**

44 // Overloaded binary - operator. *

45 //**

46

47 FeetInches FeetInches::operator - (const FeetInches &right)

48 {

49 FeetInches temp;

50

51 temp.inches = inches - right.inches;

52 temp.feet = feet - right.feet;

53 temp.simplify();

54 return temp;

55 }

The FeetInches class is designed to hold distances or measurements expressed in feet and

inches. It consists of eight member functions:

A constructor that allows the feet and inches members to be set. The default

values for these members is zero.

A setFeet function for storing a value in the feet member.

A setInches function for storing a value in the inches member.

A getFeet function for returning the value in the feet member.

A getInches function for returning the value in the inches member.

A simplify function for normalizing the values held in feet and inches. This

function adjusts any set of values where the inches member is greater than 12 or

less than 0.

An operator + function that overloads the standard + math operator.

An operator - function that overloads the standard - math operator.

The overloaded + and - operators allow one FeetInches object to be added to or sub-

tracted from another. For example, assume the length1 and length2 objects are de ned

and initialized as follows:

FeetInches length1(3, 5), length2(6, 3);

NOTE: The simplify function uses the standard library function abs() to get the

absolute value of the inches member. The abs() function requires that cstdlib be

included.

M14_GADD6253_07_SE_C14 Page 828 Saturday, January 8, 2011 9:46 PM

14.5 Operator Overloading 829

The length1 object is holding the value 3 feet 5 inches, and the length2 object is holding

the value 6 feet 3 inches. Because the + operator is overloaded, we can add these two

objects in a statement such as:

length3 = length1 + length2;

This statement will add the values of the length1 and length2 objects and store the

result in the length3 object. After the statement executes, the length3 object will be set

to 9 feet 8 inches.

The member function that overloads the + operator appears in lines 33 through 41 of the

FeetInches.cpp le.

This function is called anytime the + operator is used with two FeetInches objects. Just

like the overloaded = operator we de ned in the previous section, this function has one

parameter: a constant reference object named right. This parameter references the object

on the right side of the operator. For example, when the following statement is executed,

right will reference the length2 object:

length3 = length1 + length2;

As before, it might be helpful to think of the statement above as the following function call:

length3 = length1.operator+(length2);

The length2 object is being passed to the function s parameter, right. When the function

nishes, it will return a FeetInches object to length3. Now let s see what is happening

inside the function. First, notice that a FeetInches object named temp is de ned locally

in line 35:

FeetInches temp;

This object is a temporary location for holding the results of the addition. Next, line 37

adds inches to right.inches and stores the result in temp.inches:

temp.inches = inches + right.inches;

The inches variable is a member of length1, the object making the function call. It is the

object on the left side of the operator. right.inches references the inches member of

length2. The next statement, in line 38, is very similar. It adds feet to right.feet and

stores the result in temp.feet:

temp.feet = feet + right.feet;

At this point in the function, temp contains the sum of the feet and inches members of both

objects in the expression. The next step is to adjust the values so they conform to a normal value

expressed in feet and inches. This is accomplished in line 39 by calling temp.simplify():

temp.simplify();

The last step, in line 40, is to return the value stored in temp:

return temp;

M14_GADD6253_07_SE_C14 Page 829 Saturday, January 8, 2011 9:46 PM

830 Chapter 14 More About Classes

In the statement length3 = length1 + length2, the return statement in the operator

function causes the values stored in temp to be returned to the length3 object.

Program 14-8 demonstrates the overloaded operators. (This le is stored in the student

source code folder Chapter 14\FeetInches Version 1.)

Program 14-8

 1 // This program demonstrates the FeetInches class's overloaded

 2 // + and - operators.

 3 #include <iostream>

 4 #include "FeetInches.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int feet, inches; // To hold input for feet and inches

 10

 11 // Create three FeetInches objects. The default arguments

 12 // for the constructor will be used.

 13 FeetInches first, second, third;

 14

 15 // Get a distance from the user.

 16 cout << "Enter a distance in feet and inches: ";

 17 cin >> feet >> inches;

 18

 19 // Store the distance in the first object.

 20 first.setFeet(feet);

 21 first.setInches(inches);

 22

 23 // Get another distance from the user.

 24 cout << "Enter another distance in feet and inches: ";

 25 cin >> feet >> inches;

 26

 27 // Store the distance in second.

 28 second.setFeet(feet);

 29 second.setInches(inches);

 30

 31 // Assign first + second to third.

 32 third = first + second;

 33

 34 // Display the result.

 35 cout << "first + second = ";

 36 cout << third.getFeet() << " feet, ";

 37 cout << third.getInches() << " inches.\n";

 38

M14_GADD6253_07_SE_C14 Page 830 Saturday, January 8, 2011 9:46 PM

14.5 Operator Overloading 831

Overloading the Pre x ++ Operator

Unary operators, such as ++ and , are overloaded in a fashion similar to the way binary

operators are implemented. Because unary operators only affect the object making the

operator function call, however, there is no need for a parameter. For example, let s say

you wish to have a pre x increment operator for the FeetInches class. Assume the

FeetInches object distance is set to the values 7 feet and 5 inches. A ++ operator func-

tion could be designed to increment the object s inches member. The following statement

would cause distance to have the value 7 feet 6 inches:

++distance;

The following function overloads the pre x ++ operator to work in this fashion:

FeetInches FeetInches::operator++()

{

 ++inches;

 simplify();

 return *this;

}

This function rst increments the object s inches member. The simplify() function is

called and then the dereferenced this pointer is returned. This allows the operator to per-

form properly in statements like this:

distance2 = ++distance1;

Remember, the statement above is equivalent to

distance2 = distance1.operator++();

 39 // Assign first - second to third.

 40 third = first - second;

 41

 42 // Display the result.

 43 cout << "first - second = ";

 44 cout << third.getFeet() << " feet, ";

 45 cout << third.getInches() << " inches.\n";

 46

 47 return 0;

 48 }

Program Output with Example Input Shown in Bold
Enter a distance in feet and inches: 6 5 [Enter]
Enter another distance in feet and inches: 3 10 [Enter]
first + second = 10 feet, 3 inches.

first - second = 2 feet, 7 inches.

M14_GADD6253_07_SE_C14 Page 831 Saturday, January 8, 2011 9:46 PM

832 Chapter 14 More About Classes

Overloading the Post x ++ Operator

Overloading the post x ++ operator is only slightly different than overloading the pre x

version. Here is the function that overloads the post x operator with the FeetInches

class:

FeetInches FeetInches::operator++(int)

{

 FeetInches temp(feet, inches);

 inches++;

 simplify();

 return temp;

}

The rst difference you will notice is the use of a dummy parameter. The word int in

the function s parentheses establishes a nameless integer parameter. When C++ sees this

parameter in an operator function, it knows the function is designed to be used in post-

x mode. The second difference is the use of a temporary local variable, the temp object.

temp is initialized with the feet and inches values of the object making the function

call. temp, therefore, is a copy of the object being incremented, but before the increment

takes place. After inches is incremented and the simplify function is called, the con-

tents of temp is returned. This causes the post x operator to behave correctly in a state-

ment like this:

distance2 = distance1++;

You will nd a version of the FeetInches class with the overloaded pre x and post x ++

operators stored in the Student Source Code Folder Chapter 14\FeetInches Version 2.

In that folder you will also nd Program 14-9, which demonstrates these overloaded

operators.

Program 14-9

 1 // This program demonstrates the FeetInches class's overloaded

 2 // prefix and postfix ++ operators.

 3 #include <iostream>

 4 #include "FeetInches.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int count; // Loop counter

 10

 11 // Define a FeetInches object with the default

 12 // value of 0 feet, 0 inches.

 13 FeetInches first;

 14

 15 // Define a FeetInches object with 1 foot 5 inches.

 16 FeetInches second(1, 5);

 17

M14_GADD6253_07_SE_C14 Page 832 Saturday, January 8, 2011 9:46 PM

14.5 Operator Overloading 833

 18 // Use the prefix ++ operator.

 19 cout << "Demonstrating prefix ++ operator.\n";

 20 for (count = 0; count < 12; count++)

 21 {

 22 first = ++second;

 23 cout << "first: " << first.getFeet() << " feet, ";

 24 cout << first.getInches() << " inches. ";

 25 cout << "second: " << second.getFeet() << " feet, ";

 26 cout << second.getInches() << " inches.\n";

 27 }

 28

 29 // Use the postfix ++ operator.

 30 cout << "\nDemonstrating postfix ++ operator.\n";

 31 for (count = 0; count < 12; count++)

 32 {

 33 first = second++;

 34 cout << "first: " << first.getFeet() << " feet, ";

 35 cout << first.getInches() << " inches. ";

 36 cout << "second: " << second.getFeet() << " feet, ";

 37 cout << second.getInches() << " inches.\n";

 38 }

 39

 40 return 0;

 41 }

Program Output

Demonstrating prefix ++ operator.

first: 1 feet 6 inches. second: 1 feet 6 inches.

first: 1 feet 7 inches. second: 1 feet 7 inches.

first: 1 feet 8 inches. second: 1 feet 8 inches.

first: 1 feet 9 inches. second: 1 feet 9 inches.

first: 1 feet 10 inches. second: 1 feet 10 inches.

first: 1 feet 11 inches. second: 1 feet 11 inches.

first: 2 feet 0 inches. second: 2 feet 0 inches.

first: 2 feet 1 inches. second: 2 feet 1 inches.

first: 2 feet 2 inches. second: 2 feet 2 inches.

first: 2 feet 3 inches. second: 2 feet 3 inches.

first: 2 feet 4 inches. second: 2 feet 4 inches.

first: 2 feet 5 inches. second: 2 feet 5 inches.

Demonstrating postfix ++ operator.

first: 2 feet 5 inches. second: 2 feet 6 inches.

first: 2 feet 6 inches. second: 2 feet 7 inches.

first: 2 feet 7 inches. second: 2 feet 8 inches.

first: 2 feet 8 inches. second: 2 feet 9 inches.

first: 2 feet 9 inches. second: 2 feet 10 inches.

first: 2 feet 10 inches. second: 2 feet 11 inches.

first: 2 feet 11 inches. second: 3 feet 0 inches.

first: 3 feet 0 inches. second: 3 feet 1 inches.

first: 3 feet 1 inches. second: 3 feet 2 inches.

first: 3 feet 2 inches. second: 3 feet 3 inches.

first: 3 feet 3 inches. second: 3 feet 4 inches.

first: 3 feet 4 inches. second: 3 feet 5 inches.

M14_GADD6253_07_SE_C14 Page 833 Saturday, January 8, 2011 9:46 PM

834 Chapter 14 More About Classes

Checkpoint

 www.myprogramminglab.com

14.14 Assume there is a class named Pet. Write the prototype for a member function of

Pet that overloads the = operator.

14.15 Assume that dog and cat are instances of the Pet class, which has overloaded the

= operator. Rewrite the following statement so it appears in function call notation

instead of operator notation:

dog = cat;

14.16 What is the disadvantage of an overloaded = operator returning void?

14.17 Describe the purpose of the this pointer.

14.18 The this pointer is automatically passed to what type of functions?

14.19 Assume there is a class named Animal that overloads the = and + operators. In the

following statement, assume cat, tiger, and wildcat are all instances of the

Animal class:

wildcat = cat + tiger;

Of the three objects, wildcat, cat, or tiger, which is calling the operator+

function? Which object is passed as an argument into the function?

14.20 What does the use of a dummy parameter in a unary operator function indicate to

the compiler?

Overloading Relational Operators

In addition to the assignment and math operators, relational operators may be over-

loaded. This capability allows classes to be compared in statements that use relational

expressions such as:

if (distance1 < distance2)

{

 ... code ...

}

Overloaded relational operators are implemented like other binary operators. The only

difference is that a relational operator function should always return a true or false

value. The FeetInches class in the Student Source Code Folder Chapter 14\

FeetInches Version 3 contains functions to overload the >, <, and == relational opera-

tors. Here is the function for overloading the > operator:

bool FeetInches::operator > (const FeetInches &right)

{

 bool status;

 if (feet > right.feet)

 status = true;

 else if (feet == right.feet && inches > right.inches)

 status = true;

 else

 status = false;

 return status;

}

M14_GADD6253_07_SE_C14 Page 834 Saturday, January 8, 2011 9:46 PM

14.5 Operator Overloading 835

As you can see, the function compares the feet member (and if necessary, the inches

member) with that of the parameter. If the calling object contains a value greater than that

of the parameter, true is returned. Otherwise, false is returned.

Here is the code that overloads the < operator:

bool FeetInches::operator < (const FeetInches &right)

{

 bool status;

 if (feet < right.feet)

 status = true;

 else if (feet == right.feet && inches < right.inches)

 status = true;

 else

 status = false;

 return status;

}

Here is the code that overloads the == operator:

bool FeetInches::operator == (const FeetInches &right)

{

 bool status;

 if (feet == right.feet && inches == right.inches)

 status = true;

 else

 status = false;

 return status;

}

Program 14-10 demonstrates these overloaded operators. (This le is also stored in the

Student Source Code Folder Chapter 14\FeetInches Version 3.)

Program 14-10

 1 // This program demonstrates the FeetInches class's overloaded

 2 // relational operators.

 3 #include <iostream>

 4 #include "FeetInches.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int feet, inches; // To hold input for feet and inches

 10

 11 // Create two FeetInches objects. The default arguments

 12 // for the constructor will be used.

 13 FeetInches first, second;

 14

 15 // Get a distance from the user.

 16 cout << "Enter a distance in feet and inches: ";

 17 cin >> feet >> inches;

 18

(program continues)

M14_GADD6253_07_SE_C14 Page 835 Saturday, January 8, 2011 9:46 PM

836 Chapter 14 More About Classes

Overloading the << and >> Operators

Overloading the math and relational operators gives you the ability to write those types of

expressions with class objects just as naturally as with integers, oats, and other built-in

data types. If an object s primary data members are private, however, you still have to

make explicit member function calls to send their values to cout. For example, assume

distance is a FeetInches object. The following statements display its internal values:

cout << distance.getFeet() << " feet, ";

cout << distance.getInches() << "inches";

It is also necessary to explicitly call member functions to set a FeetInches object s data.

For instance, the following statements set the distance object to user-speci ed values:

 19 // Store the distance in first.

 20 first.setFeet(feet);

 21 first.setInches(inches);

 22

 23 // Get another distance.

 24 cout << "Enter another distance in feet and inches: ";

 25 cin >> feet >> inches;

 26

 27 // Store the distance in second.

 28 second.setFeet(feet);

 29 second.setInches(inches);

 30

 31 // Compare the two objects.

 32 if (first == second)

 33 cout << "first is equal to second.\n";

 34 if (first > second)

 35 cout << "first is greater than second.\n";

 36 if (first < second)

 37 cout << "first is less than second.\n";

 38

 39 return 0;

 40 }

Program Output with Example Input Shown in Bold
Enter a distance in feet and inches: 6 5 [Enter]
Enter another distance in feet and inches: 3 10 [Enter]
first is greater than second.

Program Output with Different Example Input Shown in Bold
Enter a distance in feet and inches: 5 5 [Enter]
Enter another distance in feet and inches: 5 5 [Enter]
first is equal to second.

Program Output with Different Example Input Shown in Bold
Enter a distance in feet and inches: 3 4 [Enter]
Enter another distance in feet and inches: 3 7 [Enter]
first is less than second.

Program 14-10 (continued)

M14_GADD6253_07_SE_C14 Page 836 Saturday, January 8, 2011 9:46 PM

14.5 Operator Overloading 837

cout << "Enter a value in feet: ";

cin >> f;

distance.setFeet(f);

cout << "Enter a value in inches: ";

cin >> i;

distance.setInches(i);

By overloading the stream insertion operator (<<), you could send the distance object to

cout, as shown in the following code, and have the screen output automatically formatted

in the correct way.

cout << distance;

Likewise, by overloading the stream extraction operator (>>), the distance object could

take values directly from cin, as shown here.

cin >> distance;

Overloading these operators is done in a slightly different way, however, than overloading

other operators. These operators are actually part of the ostream and istream classes

de ned in the C++ runtime library. (The cout and cin objects are instances of ostream

and istream.) You must write operator functions to overload the ostream version of <<

and the istream version of >>, so they work directly with a class such as FeetInches.

The FeetInches class in the Student Source Code Folder Chapter 14\FeetInches

Version 4 contains functions to overload the << and >> operators. Here is the function

that overloads the << operator:

ostream &operator << (ostream &strm, const FeetInches &obj)

{

 strm << obj.feet << " feet, " << obj.inches << " inches";

 return strm;

}

Notice the function has two parameters: an ostream reference object and a const

FeetInches reference object. The ostream parameter will be a reference to the actual

ostream object on the left side of the << operator. The second parameter is a reference

to a FeetInches object. This parameter will reference the object on the right side of the

<< operator. This function tells C++ how to handle any expression that has the

following form:

ostreamObject << FeetInchesObject

So, when C++ encounters the following statement, it will call the overloaded operator<<

function:

cout << distance;

Notice that the function s return type is ostream &. This means that the function returns

a reference to an ostream object. When the return strm; statement executes, it doesn t

return a copy of strm, but a reference to it. This allows you to chain together several

expressions using the overloaded << operator, such as:

cout << distance1 << " " << distance2 << endl;

Here is the function that overloads the stream extraction operator to work with the

FeetInches class:

M14_GADD6253_07_SE_C14 Page 837 Saturday, January 8, 2011 9:46 PM

838 Chapter 14 More About Classes

istream &operator >> (istream &strm, FeetInches &obj)

{

 // Prompt the user for the feet.

 cout << "Feet: ";

 strm >> obj.feet;

 // Prompt the user for the inches.

 cout << "Inches: ";

 strm >> obj.inches;

 // Normalize the values.

 obj.simplify();

 return strm;

}

The same principles hold true for this operator. It tells C++ how to handle any expression

in the following form:

istreamObject >> FeetInchesObject

Once again, the function returns a reference to an istream object so several of these

expressions may be chained together.

You have probably realized that neither of these functions is quite ready to work, though.

Both functions attempt to directly access the FeetInches object s private members. Because

the functions aren t themselves members of the FeetInches class, they don t have this type

of access. The next step is to make the operator functions friends of FeetInches. This is

shown in the following listing of the FeetInches class declaration. (This le is stored in the

Student Source Code Folder Chapter 14\FeetInches Version 4.)

Contents of FeetInches.h (Version 4)

 1 #ifndef FEETINCHES_H

 2 #define FEETINCHES_H

 3

 4 #include <iostream>

 5 using namespace std;

 6

 7 class FeetInches; // Forward Declaration

 8

 9 // Function Prototypes for Overloaded Stream Operators

10 ostream &operator << (ostream &, const FeetInches &);

11 istream &operator >> (istream &, FeetInches &);

NOTE: Some compilers require you to prototype the >> and << operator functions

outside the class. For this reason, we have added the following statements to the

FeetInches.h class speci cation le.

 class FeetInches; // Forward Declaration

 // Function Prototypes for Overloaded Stream Operators

 ostream &operator << (ostream &, const FeetInches &);

 istream &operator >> (istream &, FeetInches &);

M14_GADD6253_07_SE_C14 Page 838 Saturday, January 8, 2011 9:46 PM

14.5 Operator Overloading 839

12

13 // The FeetInches class holds distances or measurements

14 // expressed in feet and inches.

15

16 class FeetInches

17 {

18 private:

19 int feet; // To hold a number of feet

20 int inches; // To hold a number of inches

21 void simplify(); // Defined in FeetInches.cpp

22 public:

23 // Constructor

24 FeetInches(int f = 0, int i = 0)

25 { feet = f;

26 inches = i;

27 simplify(); }

28

29 // Mutator functions

30 void setFeet(int f)

31 { feet = f; }

32

33 void setInches(int i)

34 { inches = i;

35 simplify(); }

36

37 // Accessor functions

38 int getFeet() const

39 { return feet; }

40

41 int getInches() const

42 { return inches; }

43

44 // Overloaded operator functions

45 FeetInches operator + (const FeetInches &); // Overloaded +

46 FeetInches operator - (const FeetInches &); // Overloaded -

47 FeetInches operator ++ (); // Prefix ++

48 FeetInches operator ++ (int); // Postfix ++

49 bool operator > (const FeetInches &); // Overloaded >

50 bool operator < (const FeetInches &); // Overloaded <

51 bool operator == (const FeetInches &); // Overloaded ==

52

53 // Friends

54 friend ostream &operator << (ostream &, const FeetInches &);

55 friend istream &operator >> (istream &, FeetInches &);

56 };

57

58 #endif

Lines 54 and 55 in the class declaration tell C++ to make the overloaded << and >> opera-

tor functions friends of the FeetInches class:

friend ostream &operator<<(ostream &, const FeetInches &);

friend istream &operator>>(istream &, FeetInches &);

M14_GADD6253_07_SE_C14 Page 839 Saturday, January 8, 2011 9:46 PM

840 Chapter 14 More About Classes

These statements give the operator functions direct access to the FeetInches class s private

members. Program 14-11 demonstrates how the overloaded operators work. (This le is

also stored in the Student Source Code Folder Chapter 14\FeetInches Version 4.)

Overloading the [] Operator

In addition to the traditional operators, C++ allows you to change the way the [] symbols

work. This gives you the ability to write classes that have array-like behaviors. For example,

the string class overloads the [] operator so you can access the individual characters

stored in string class objects. Assume the following de nition exists in a program:

string name = "William";

The rst character in the string, W, is stored at name[0], so the following statement will

display W on the screen.

cout << name[0];

Program 14-11

 1 // This program demonstrates the << and >> operators,

 2 // overloaded to work with the FeetInches class.

 3 #include <iostream>

 4 #include "FeetInches.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 FeetInches first, second; // Define two objects.

 10

 11 // Get a distance for the first object.

 12 cout << "Enter a distance in feet and inches.\n";

 13 cin >> first;

 14

 15 // Get a distance for the second object.

 16 cout << "Enter another distance in feet and inches.\n";

 17 cin >> second;

 18

 19 // Display the values in the objects.

 20 cout << "The values you entered are:\n";

 21 cout << first << " and " << second << endl;

 22 return 0;

 23 }

Program Output with Example Input Shown in Bold
Enter a distance in feet and inches.

Feet: 6 [Enter]
Inches: 5 [Enter]
Enter another distance in feet and inches.

Feet: 3 [Enter]
Inches: 10 [Enter]
The values you entered are:

6 feet, 5 inches and 3 feet, 10 inches

M14_GADD6253_07_SE_C14 Page 840 Saturday, January 8, 2011 9:46 PM

14.5 Operator Overloading 841

You can use the overloaded [] operator to create an array class, like the following one.

The class behaves like a regular array, but performs the bounds-checking that C++ lacks.

Contents of IntArray.h

 1 // Specification file for the IntArray class

 2 #ifndef INTARRAY_H

 3 #define INTARRAY_H

 4

 5 class IntArray

 6 {

 7 private:

 8 int *aptr; // Pointer to the array

 9 int arraySize; // Holds the array size

10 void subscriptError(); // Handles invalid subscripts

11 public:

12 IntArray(int); // Constructor

13 IntArray(const IntArray &); // Copy constructor

14 ~IntArray(); // Destructor

15

16 int size() const // Returns the array size

17 { return arraySize; }

18

19 int &operator[](const int &); // Overloaded [] operator

20 };

21 #endif

Contents of IntArray.cpp

 1 // Implementation file for the IntArray class

 2 #include <iostream>

 3 #include <cstdlib> // For the exit function

 4 #include "IntArray.h"

 5 using namespace std;

 6

 7 //***

 8 // Constructor for IntArray class. Sets the size of the *

 9 // array and allocates memory for it. *

10 //***

11

12 IntArray::IntArray(int s)

13 {

14 arraySize = s;

15 aptr = new int [s];

16 for (int count = 0; count < arraySize; count++)

17 *(aptr + count) = 0;

18 }

19

20 //**

21 // Copy Constructor for IntArray class. *

22 //**

23

M14_GADD6253_07_SE_C14 Page 841 Saturday, January 8, 2011 9:46 PM

842 Chapter 14 More About Classes

24 IntArray::IntArray(const IntArray &obj)

25 {

26 arraySize = obj.arraySize;

27 aptr = new int [arraySize];

28 for(int count = 0; count < arraySize; count++)

29 *(aptr + count) = *(obj.aptr + count);

30 }

31

32 //**

33 // Destructor for IntArray class. *

34 //**

35

36 IntArray::~IntArray()

37 {

38 if (arraySize > 0)

39 delete [] aptr;

40 }

41

42 //***

43 // subscriptError function. Displays an error message and *

44 // terminates the program when a subscript is out of range. *

45 //***

46

47 void IntArray::subscriptError()

48 {

49 cout << "ERROR: Subscript out of range.\n";

50 exit(0);

51 }

52

53 //***

54 // Overloaded [] operator. The argument is a subscript. *

55 // This function returns a reference to the element *

56 // in the array indexed by the subscript. *

57 //***

58

59 int &IntArray::operator[](const int &sub)

60 {

61 if (sub < 0 || sub >= arraySize)

62 subscriptError();

63 return aptr[sub];

64 }

Before focusing on the overloaded operator, let s look at the constructors and the destructor.

The code for the rst constructor in lines 12 through 18 of the IntArray.cpp le follows:

IntArray::IntArray(int s)

{

 arraySize = s;

 aptr = new int [s];

 for (int count = 0; count < arraySize; count++)

 *(aptr + count) = 0;

}

When an instance of the class is de ned, the number of elements the array is to have is

passed into the constructor s parameter, s. This value is copied to the arraySize member,

M14_GADD6253_07_SE_C14 Page 842 Saturday, January 8, 2011 9:46 PM

14.5 Operator Overloading 843

and then used to dynamically allocate enough memory for the array. The constructor s

nal step is to store zeros in all of the array s elements:

for (int count = 0; count < arraySize; count++)

 *(aptr + count) = 0;

The class also has a copy constructor in lines 24 through 30, which is used when a class

object is initialized with another object s data:

IntArray::IntArray(const IntArray &obj)

{

 arraySize = obj.arraySize;

 aptr = new int [arraySize];

 for(int count = 0; count < arraySize; count++)

 *(aptr + count) = *(obj.aptr + count);

}

A reference to the initializing object is passed into the parameter obj. Once the memory is

successfully allocated for the array, the constructor copies all the values in obj s array into

the calling object s array.

The destructor, in lines 36 through 40, simply frees the memory allocated by the class s

constructors. First, however, it checks the value in arraySize to be sure the array has at

least one element:

IntArray::~IntArray()

{

 if (arraySize > 0)

 delete [] aptr;

}

The [] operator is overloaded similarly to other operators. The de nition of the

operator[] function appears in lines 59 through 64:

int &IntArray::operator[](const int &sub)

{

 if (sub < 0 || sub >= arraySize)

 subscriptError();

 return aptr[sub];

}

The operator[] function can have only a single parameter. The one shown uses a con-

stant reference to an integer. This parameter holds the value placed inside the brackets in

an expression. For example, if table is an IntArray object, the number 12 will be passed

into the sub parameter in the following statement:

cout << table[12];

Inside the function, the value in the sub parameter is tested by the following if statement:

if (sub < 0 || sub >= arraySize)

 subscriptError();

This statement determines whether sub is within the range of the array s subscripts. If sub

is less than 0 or greater than or equal to arraySize, it s not a valid subscript, so the

subscriptError function is called. If sub is within range, the function uses it as an offset

into the array, and returns a reference to the value stored at that location.

M14_GADD6253_07_SE_C14 Page 843 Saturday, January 8, 2011 9:46 PM

844 Chapter 14 More About Classes

One critically important aspect of the function above is its return type. It s crucial that the

function return not simply an integer, but a reference to an integer. The reason for this is

that expressions such as the following must be possible:

table[5] = 27;

Remember, the built-in = operator requires the object on its left to be an lvalue. An lvalue

must represent a modi able memory location, such as a variable. The integer return value

of a function is not an lvalue. If the operator[] function merely returns an integer, it can-

not be used to create expressions placed on the left side of an assignment operator.

A reference to an integer, however, is an lvalue. If the operator[] function returns a ref-

erence, it can be used to create expressions like the following:

table[7] = 52;

In this statement, the operator[] function is called with 7 passed as its argument.

Assuming 7 is within range, the function returns a reference to the integer stored at

(aptr + 7). In essence, the statement above is equivalent to:

*(aptr + 7) = 52;

Because the operator[] function returns actual integers stored in the array, it is not nec-

essary for math or relational operators to be overloaded. Even the stream operators <<

and >> will work just as they are with the IntArray class.

Program 14-12 demonstrates how the class works.

Program 14-12

 1 // This program demonstrates an overloaded [] operator.

 2 #include <iostream>

 3 #include "IntArray.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int SIZE = 10; // Array size

 9

 10 // Define an IntArray with 10 elements.

 11 IntArray table(SIZE);

 12

 13 // Store values in the array.

 14 for (int x = 0; x < SIZE; x++)

 15 table[x] = (x * 2);

 16

 17 // Display the values in the array.

 18 for (int x = 0; x < SIZE; x++)

 19 cout << table[x] << " ";

 20 cout << endl;

 21

 22 // Use the standard + operator on array elements.

 23 for (int x = 0; x < SIZE; x++)

 24 table[x] = table[x] + 5;

 25

M14_GADD6253_07_SE_C14 Page 844 Saturday, January 8, 2011 9:46 PM

14.5 Operator Overloading 845

Program 14-13 demonstrates the IntArray class s bounds-checking capability.

 26 // Display the values in the array.

 27 for (int x = 0; x < SIZE; x++)

 28 cout << table[x] << " ";

 29 cout << endl;

 30

 31 // Use the standard ++ operator on array elements.

 32 for (int x = 0; x < SIZE; x++)

 33 table[x]++;

 34

 35 // Display the values in the array.

 36 for (int x = 0; x < SIZE; x++)

 37 cout << table[x] << " ";

 38 cout << endl;

 39

 40 return 0;

 41 }

Program Output

0 2 4 6 8 10 12 14 16 18

5 7 9 11 13 15 17 19 21 23

6 8 10 12 14 16 18 20 22 24

Program 14-13

 1 // This program demonstrates the IntArray class's bounds-checking ability.

 2 #include <iostream>

 3 #include "IntArray.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int SIZE = 10; // Array size

 9

 10 // Define an IntArray with 10 elements.

 11 IntArray table(SIZE);

 12

 13 // Store values in the array.

 14 for (int x = 0; x < SIZE; x++)

 15 table[x] = x;

 16

 17 // Display the values in the array.

 18 for (int x = 0; x < SIZE; x++)

 19 cout << table[x] << " ";

 20 cout << endl;

 21

 22 // Attempt to use an invalid subscript.

 23 cout << "Now attempting to use an invalid subscript.\n";

 24 table[SIZE + 1] = 0;

 25 return 0;

 26 }

(program output continues)

M14_GADD6253_07_SE_C14 Page 845 Saturday, January 8, 2011 9:46 PM

846 Chapter 14 More About Classes

Checkpoint

 www.myprogramminglab.com

14.21 Describe the values that should be returned from functions that overload rela-

tional operators.

14.22 What is the advantage of overloading the << and >> operators?

14.23 What type of object should an overloaded << operator function return?

14.24 What type of object should an overloaded >> operator function return?

14.25 If an overloaded << or >> operator accesses a private member of a class, what

must be done in that class s declaration?

14.26 Assume the class NumList has overloaded the [] operator. In the expression

below, list1 is an instance of the NumList class:

list1[25]

Rewrite the expression above to explicitly call the function that overloads the []

operator.

14.6 Object Conversion

CONCEPT: Special operator functions may be written to convert a class object to any

other type.

As you ve already seen, operator functions allow classes to work more like built-in data

types. Another capability that operator functions can give classes is automatic type con-

version.

Data type conversion happens behind the scenes with the built-in data types. For

instance, suppose a program uses the following variables:

int i;

double d;

The statement below automatically converts the value in i to a oating-point number and

stores it in d:

d = i;

Likewise, the following statement converts the value in d to an integer (truncating the

fractional part) and stores it in i:

i = d;

Program Output
0 1 2 3 4 5 6 7 8 9

Now attempting to use an invalid subscript.

ERROR: Subscript out of range.

Program 14-13 (continued)

M14_GADD6253_07_SE_C14 Page 846 Saturday, January 8, 2011 9:46 PM

14.6 Object Conversion 847

The same functionality can also be given to class objects. For example, assuming

distance is a FeetInches object and d is a double, the following statement would con-

veniently convert distance s value into a oating-point number and store it in d, if

FeetInches is properly written:

d = distance;

To be able to use a statement such as this, an operator function must be written to perform

the conversion. The Student Source Code Folder Chapter 14\FeetInches Version 5

contains a version of the FeetInches class with such an operator function. Here is the

code for the operator function that converts a FeetInches object to a double:

FeetInches::operator double()

{

 double temp = feet;

 temp += (inches / 12.0);

 return temp;

}

This function contains an algorithm that will calculate the decimal equivalent of a feet and

inches measurement. For example, the value 4 feet 6 inches will be converted to 4.5. This

value is stored in the local variable temp. The temp variable is then returned.

The revised FeetInches class also has an operator function that converts a FeetInches

object to an int. The function, shown here, simply returns the feet member, thus trun-

cating the inches value:

FeetInches:: operator int()

{

 return feet;

}

Program 14-14 demonstrates both of these conversion functions. (This le is also stored in

the Student Source Code Folder Chapter 14\FeetInches Version 5.)

NOTE: No return type is speci ed in the function header. Because the function is a
FeetInches-to-double conversion function, it will always return a double. Also,

because the function takes no arguments, there are no parameters.

Program 14-14

 1 // This program demonstrates the FeetInches class's

 2 // conversion functions.

 3 #include <iostream>

 4 #include "FeetInches.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 double d; // To hold double input

 10 int i; // To hold int input

 11

(program continues)

M14_GADD6253_07_SE_C14 Page 847 Saturday, January 8, 2011 9:46 PM

848 Chapter 14 More About Classes

See the Case Study on Creating a String Class for another example. You can download the

case study from the book s companion Web site at www.pearsonhighered.com/gaddis.

Checkpoint

 www.myprogramminglab.com

14.27 When overloading a binary operator such as + or , what object is passed into the

operator function s parameter?

14.28 Explain why overloaded pre x and post x ++ and -- operator functions should

return a value.

14.29 How does C++ tell the difference between an overloaded pre x and post x ++ or

-- operator function?

14.30 Write member functions of the FeetInches class that overload the pre x and

post x -- operators. Demonstrate the functions in a simple program similar to

Program 14-14.

 12 // Define a FeetInches object.

 13 FeetInches distance;

 14

 15 // Get a distance from the user.

 16 cout << "Enter a distance in feet and inches:\n";

 17 cin >> distance;

 18

 19 // Convert the distance object to a double.

 20 d = distance;

 21

 22 // Convert the distance object to an int.

 23 i = distance;

 24

 25 // Display the values.

 26 cout << "The value " << distance;

 27 cout << " is equivalent to " << d << " feet\n";

 28 cout << "or " << i << " feet, rounded down.\n";

 29 return 0;

 30 }

Program Output with Example Input Shown in Bold
Enter a distance in feet and inches:

Feet: 8 [Enter]
Inches: 6 [Enter]
The value 8 feet, 6 inches is equivalent to 8.5 feet

or 8 feet, rounded down.

Program 14-14 (continued)

M14_GADD6253_07_SE_C14 Page 848 Saturday, January 8, 2011 9:46 PM

14.7 Aggregation 849

14.7 Aggregation

CONCEPT: Aggregation occurs when a class contains an instance of another class.

In real life, objects are frequently made of other objects. A house, for example, is made of

door objects, window objects, wall objects, and much more. It is the combination of all

these objects that makes a house object.

When designing software, it sometimes makes sense to create an object from other objects.

For example, suppose you need an object to represent a course that you are taking in col-

lege. You decide to create a Course class, which will hold the following information:

The course name

The instructor s last name, first name, and office number

The textbook s title, author, and publisher

In addition to the course name, the class will hold items related to the instructor and the

textbook. You could put attributes for each of these items in the Course class. However, a

good design principle is to separate related items into their own classes. In this example,

an Instructor class could be created to hold the instructor-related data and a TextBook

class could be created to hold the textbook-related data. Instances of these classes could

then be used as attributes in the Course class.

Let s take a closer look at how this might be done. To keep things simple, the Instructor

class will have only the following functions:

A default constructor that assigns empty strings to the instructor s last name, first

name, and office number.

A constructor that accepts arguments for the instructor s last name, first name,

and office number

A set function that can be used to set all of the class s attributes

A print function that displays the object s attribute values

The code for the Instructor class is shown here:

Contents of Instructor.h

 1 #ifndef INSTRUCTOR

 2 #define INSTRUCTOR

 3 #include <iostream>

 4 #include <string>

 5 using namespace std;

 6

 7 // Instructor class

 8 class Instructor

 9 {

10 private:

11 string lastName; // Last name

12 string firstName; // First name

13 string officeNumber; // Office number

14 public:

15 // The default constructor stores empty strings

16 // in the string objects.

VideoNote

Class

Aggregation

M14_GADD6253_07_SE_C14 Page 849 Saturday, January 8, 2011 9:46 PM

850 Chapter 14 More About Classes

17 Instructor()

18 { set("", "", ""); }

19

20 // Constructor

21 Instructor(string lname, string fname, string office)

22 { set(lname, fname, office); }

23

24 // set function

25 void set(string lname, string fname, string office)

26 { lastName = lname;

27 firstName = fname;

28 officeNumber = office; }

29

30 // print function

31 void print() const

32 { cout << "Last name: " << lastName << endl;

33 cout << "First name: " << firstName << endl;

34 cout << "Office number: " << officeNumber << endl; }

35 };

36 #endif

The code for the TextBook class is shown next. As before, we want to keep the class sim-

ple. The only functions it has are a default constructor, a constructor that accepts argu-

ments, a set function, and a print function.

Contents of TextBook.h

 1 #ifndef TEXTBOOK

 2 #define TEXTBOOK

 3 #include <iostream>

 4 #include <string>

 5 using namespace std;

 6

 7 // TextBook class

 8 class TextBook

 9 {

10 private:

11 string title; // Book title

12 string author; // Author name

13 string publisher; // Publisher name

14 public:

15 // The default constructor stores empty strings

16 // in the string objects.

17 TextBook()

18 { set("", "", ""); }

19

20 // Constructor

21 TextBook(string textTitle, string auth, string pub)

22 { set(textTitle, auth, pub); }

23

24 // set function

25 void set(string textTitle, string auth, string pub)

26 { title = textTitle;

27 author = auth;

28 publisher = pub; }

29

M14_GADD6253_07_SE_C14 Page 850 Saturday, January 8, 2011 9:46 PM

14.7 Aggregation 851

30 // print function

31 void print() const

32 { cout << "Title: " << title << endl;

33 cout << "Author: " << author << endl;

34 cout << "Publisher: " << publisher << endl; }

35 };

36 #endif

The Course class is shown next. Notice that the Course class has an Instructor object

and a TextBook object as member variables. Those objects are used as attributes of the

Course object. Making an instance of one class an attribute of another class is called

object aggregation. The word aggregate means a whole that is made of constituent

parts. In this example, the Course class is an aggregate class because an instance of it is

made of constituent objects.

When an instance of one class is a member of another class, it is said that there is a has

a relationship between the classes. For example, the relationships that exist among the

Course, Instructor, and TextBook classes can be described as follows:

The course has an instructor.

The course has a textbook.

The has a relationship is sometimes called a whole part relationship because one object

is part of a greater whole.

Contents of Course.h

 1 #ifndef COURSE

 2 #define COURSE

 3 #include <iostream>

 4 #include <string>

 5 #include "Instructor.h"

 6 #include "TextBook.h"

 7 using namespace std;

 8

 9 class Course

10 {

11 private:

12 string courseName; // Course name

13 Instructor instructor; // Instructor

14 TextBook textbook; // Textbook

15 public:

16 // Constructor

17 Course(string course, string instrLastName,

18 string instrFirstName, string instrOffice,

19 string textTitle, string author,

20 string publisher)

21 { // Assign the course name.

22 courseName = course;

23

24 // Assign the instructor.

25 instructor.set(instrLastName, instrFirstName, instrOffice);

26

27 // Assign the textbook.

28 textbook.set(textTitle, author, publisher); }

29

M14_GADD6253_07_SE_C14 Page 851 Saturday, January 8, 2011 9:46 PM

852 Chapter 14 More About Classes

30 // print function

31 void print() const

32 { cout << "Course name: " << courseName << endl << endl;

33 cout << "Instructor Information:\n";

34 instructor.print();

35 cout << "\nTextbook Information:\n";

36 textbook.print();

37 cout << endl; }

38 };

39 #endif

Program 14-15 demonstrates the Course class.

Aggregation in UML Diagrams

In Chapter 13 you were introduced to the Uni ed Modeling Language (UML) as a tool for

designing classes. You show aggregation in a UML diagram by connecting two classes

with a line that has an open diamond at one end. The diamond is closest to the class that

is the aggregate. Figure 14-5 shows a UML diagram depicting the relationship between the

Course, Instructor, and TextBook classes. The open diamond is closest to the Course

class because it is the aggregate (the whole).

Program 14-15

 1 // This program demonstrates the Course class.

 2 #include "Course.h"

 3

 4 int main()

 5 {

 6 // Create a Course object.

 7 Course myCourse("Intro to Computer Science", // Course name

 8 "Kramer", "Shawn", "RH3010", // Instructor info

 9 "Starting Out with C++", "Gaddis", // Textbook title and author

 10 "Addison-Wesley"); // Textbook publisher

 11

 12 // Display the course info.

 13 myCourse.print();

 14 return 0;

 15 }

Program Output
Course name: Intro to Computer Science

Instructor Information:

Last name: Kramer

First name: Shawn

Office number: RH3010

Textbook Information:

Title: Starting Out with C++

Author: Gaddis

Publisher: Addison-Wesley

M14_GADD6253_07_SE_C14 Page 852 Saturday, January 8, 2011 9:46 PM

14.8 Focus on Object-Oriented Design: Class Collaborations 853

14.8
Focus on Object-Oriented Design:
Class Collaborations

CONCEPT: It is common for classes to interact, or collaborate, with one another to

perform their operations. Part of the object-oriented design process is

identifying the collaborations between classes.

In an object-oriented application it is common for objects of different classes to collabo-

rate. This simply means that objects interact with each other. Sometimes one object will

need the services of another object in order to ful ll its responsibilities. For example, let s

say an object needs to read a number from the keyboard and then format the number to

appear as a dollar amount. The object might use the services of the cin object to read the

number from the keyboard, and then use the services of another object that is designed to

format the number.

If one object is to collaborate with another object, then it must know something about the

other object s member functions and how to call them. Let s look at an example.

Figure 14-5

- courseName : string

- instructor : Instructor

- textBook : TextBook

+ Course(name : string, instr : &Instructor,

 text : &TextBook) :

+ print() : void

Course

- lastName : string

- firstName : string

- officeNumber : string

+ Instructor(lname : string, fname : string,

 office : string) :

+ Instructor(obj : &Instructor) :

+ set(lname : string, fname : string,

 office : string) : void

+ print() : void

Instructor

- title : string

- author : string

- publisher : string

+ TextBook(textTitle : string, auth : string,

 pub : string) :

+ TextBook(obj : &TextBook) :

+ set(textTitle : string, auth : string,

 pub : string) : void

+ print() : void

TextBook

M14_GADD6253_07_SE_C14 Page 853 Saturday, January 8, 2011 9:46 PM

854 Chapter 14 More About Classes

The following code shows a class named Stock. An object of this class holds data about a

company s stock. This class has two attributes: symbol and sharePrice. The symbol

attribute holds the trading symbol for the company s stock. This is a short series of charac-

ters that are used to identify the stock on the stock exchange. For example, the XYZ Com-

pany s stock might have the trading symbol XYZ. The sharePrice attribute holds the

current price per share of the stock. The class also has the following member functions:

A default constructor that initializes symbol to an empty string and sharePrice

to 0.0.

A constructor that accepts arguments for the symbol and share price.

A copy constructor

A set function that accepts arguments for the symbol and share price.

A getSymbol function that returns the stock s trading symbol.

A getSharePrice function that returns the current price of the stock.

Contents of Stock.h

 1 #ifndef STOCK

 2 #define STOCK

 3 #include <string>

 4 using namespace std;

 5

 6 class Stock

 7 {

 8 private:

 9 string symbol; // Trading symbol of the stock

10 double sharePrice; // Current price per share

11 public:

12 // Default constructor

13 Stock()

14 { set("", 0.0); }

15

16 // Constructor

17 Stock(const string sym, double price)

18 { set(sym, price); }

19

20 // Copy constructor

21 Stock(const Stock &obj)

22 { set(obj.symbol, obj.sharePrice); }

23

24 // Mutator function

25 void set(string sym, double price)

26 { symbol = sym;

27 sharePrice = price; }

28

29 // Accessor functions

30 string getSymbol() const

31 { return symbol; }

32

33 double getSharePrice() const

34 { return sharePrice; }

35 };

36 #endif

M14_GADD6253_07_SE_C14 Page 854 Saturday, January 8, 2011 9:46 PM

14.8 Focus on Object-Oriented Design: Class Collaborations 855

The following code shows another class named StockPurchase that uses an object of the

Stock class to simulate the purchase of a stock. The StockPurchase class is responsible

for calculating the cost of the stock purchase. To do that, the StockPurchase class must

know how to call the Stock class s getSharePrice function to get the price per share of

the stock.

Contents of StockPurchase.h

 1 #ifndef STOCK_PURCHASE

 2 #define STOCK_PURCHASE

 3 #include "Stock.h"

 4

 5 class StockPurchase

 6 {

 7 private:

 8 Stock stock; // The stock that was purchased

 9 int shares; // The number of shares

10 public:

11 // The default constructor sets shares to 0. The stock

12 // object is initialized by its default constructor.

13 StockPurchase()

14 { shares = 0; }

15

16 // Constructor

17 StockPurchase(const Stock &stockObject, int numShares)

18 { stock = stockObject;

19 shares = numShares; }

20

21 // Accessor function

22 double getCost() const

23 { return shares * stock.getSharePrice(); }

24 };

25 #endif

The second constructor for the StockPurchase class accepts a Stock object representing

the stock that is being purchased, and an int representing the number of shares to pur-

chase. In line 18 we see the rst collaboration: the StockPurchase constructor makes a

copy of the Stock object by using the Stock class s copy constructor. The next collabora-

tion takes place in the getCost function. This function calculates and returns the cost of

the stock purchase. In line 23 it calls the Stock class s getSharePrice function to deter-

mine the stock s price per share. Program 14-16 demonstrates this class.

Program 14-16

 1 // Stock trader program

 2 #include <iostream>

 3 #include <iomanip>

 4 #include "Stock.h"

 5 #include "StockPurchase.h"

 6 using namespace std;

 7

(program continues)

M14_GADD6253_07_SE_C14 Page 855 Saturday, January 8, 2011 9:46 PM

856 Chapter 14 More About Classes

Determining Class Collaborations with CRC Cards

During the object-oriented design process, you can determine many of the collaborations

that will be necessary between classes by examining the responsibilities of the classes. In

Chapter 13 we discussed the process of nding the classes and their responsibilities. Recall

from that section that a class s responsibilities are

the things that the class is responsible for knowing

the actions that the class is responsible for doing

Often you will determine that the class must collaborate with another class in order to

ful ll one or more of its responsibilities. One popular method of discovering a class s

responsibilities and collaborations is by creating CRC cards. CRC stands for class,

responsibilities, and collaborations.

You can use simple index cards for this procedure. Once you have gone through the pro-

cess of nding the classes (which is discussed in Chapter 13), set aside one index card for

each class. At the top of the index card, write the name of the class. Divide the rest of the

 8 int main()

 9 {

 10 int sharesToBuy; // Number of shares to buy

 11

 12 // Create a Stock object for the company stock. The

 13 // trading symbol is XYZ and the stock is currently

 14 // priced at $9.62 per share.

 15 Stock xyzCompany("XYZ", 9.62);

 16

 17 // Display the symbol and current share price.

 18 cout << setprecision(2) << fixed << showpoint;

 19 cout << "XYZ Company's trading symbol is "

 20 << xyzCompany.getSymbol() << endl;

 21 cout << "The stock is currently $"

 22 << xyzCompany.getSharePrice()

 23 << " per share.\n";

 24

 25 // Get the number of shares to purchase.

 26 cout << "How many shares do you want to buy? ";

 27 cin >> sharesToBuy;

 28

 29 // Create a StockPurchase object for the transaction.

 30 StockPurchase buy(xyzCompany, sharesToBuy);

 31

 32 // Display the cost of the transaction.

 33 cout << "The cost of the transaction is $"

 34 << buy.getCost() << endl;

 35 return 0;

 36 }

Program Output with Example Input Shown in Bold
XYZ Company's trading symbol is XYZ

The stock is currently $9.62 per share.

How many shares do you want to buy? 100 [Enter]
The cost of the transaction is $962.00

Program 14-16 (continued)

M14_GADD6253_07_SE_C14 Page 856 Saturday, January 8, 2011 9:46 PM

14.8 Focus on Object-Oriented Design: Class Collaborations 857

card into two columns. In the left column, write each of the class s responsibilities. As you

write each responsibility, think about whether the class needs to collaborate with another

class to ful ll that responsibility. Ask yourself questions such as

Will an object of this class need to get data from another object in order to fulfill

this responsibility?

Will an object of this class need to request another object to perform an operation

in order to fulfill this responsibility?

If collaboration is required, write the name of the collaborating class in the right column,

next to the responsibility that requires it. If no collaboration is required for a responsibil-

ity, simply write None in the right column, or leave it blank. Figure 14-6 shows an

example CRC card for the StockPurchase class.

From the CRC card shown in the gure, we can see that the StockPurchase class has the

following responsibilities and collaborations:

Responsibility: To know the stock to purchase

Collaboration: The Stock class

Responsibility: To know the number of shares to purchase

Collaboration: None

Responsibility: To calculate the cost of the purchase

Collaboration: The Stock class

When you have completed a CRC card for each class in the application, you will have a

good idea of each class s responsibilities and how the classes must interact.

Checkpoint

 www.myprogramminglab.com

14.31 What are the bene ts of having operator functions that perform object conversion?

14.32 Why are no return types listed in the prototypes or headers of operator functions

that perform data type conversion?

14.33 Assume there is a class named BlackBox. Write the header for a member function

that converts a BlackBox object to an int.

14.34 Assume there are two classes, Big and Small. The Big class has, as a member, an

instance of the Small class. Write a sentence that describes the relationship

between the two classes.

Figure 14-6

StockPurchase
Know the stock to

purchase

Know the number of

shares to purchase

Calculate the cost of

the purchase

Stock class

Stock class

None

Name of the class

Responsibilities
Collaborating

classes

M14_GADD6253_07_SE_C14 Page 857 Saturday, January 8, 2011 9:46 PM

858 Chapter 14 More About Classes

Review Questions and Exercises

Short Answer

1. Describe the difference between an instance member variable and a static member

variable.

2. Assume that a class named Numbers has the following static member function
declaration:

static void showTotal();

Write a statement that calls the showTotal function.

3. A static member variable is declared in a class. Where is the static member variable
defined?

4. What is a friend function?

5. Why is it not always a good idea to make an entire class a friend of another class?

6. What is memberwise assignment?

7. When is a copy constructor called?

8. How can the compiler determine if a constructor is a copy constructor?

9. Describe a situation where memberwise assignment is not desirable.

10. Why must the parameter of a copy constructor be a reference?

11. What is a default copy constructor?

12. Why would a programmer want to overload operators rather than use regular mem-
ber functions to perform similar operations?

13. What is passed to the parameter of a class s operator= function?

14. Why shouldn t a class s overloaded = operator be implemented with a void operator
function?

15. How does the compiler know whether an overloaded ++ operator should be used in
prefix or postfix mode?

16. What is the this pointer?

17. What type of value should be returned from an overloaded relational operator
function?

18. The class Stuff has both a copy constructor and an overloaded = operator. Assume
that blob and clump are both instances of the Stuff class. For each statement below,
indicate whether the copy constructor or the overloaded = operator will be called.

Stuff blob = clump;

clump = blob;

blob.operator=(clump);

showValues(blob); // blob is passed by value.

19. Explain the programming steps necessary to make a class s member variable static.

20. Explain the programming steps necessary to make a class s member function static.

21. Consider the following class declaration:

class Thing

{

private:

 int x;

M14_GADD6253_07_SE_C14 Page 858 Saturday, January 8, 2011 9:46 PM

Review Questions and Exercises 859

 int y;

 static int z;

public:

 Thing()

 { x = y = z; }

 static void putThing(int a)

 { z = a; }

};

Assume a program containing the class declaration de nes three Thing objects with

the following statement:

Thing one, two, three;

How many separate instances of the x member exist?

How many separate instances of the y member exist?

How many separate instances of the z member exist?

What value will be stored in the x and y members of each object?

Write a statement that will call the PutThing member function before the objects

above are de ned.

22. Describe the difference between making a class a member of another class (object
aggregation), and making a class a friend of another class.

23. What is the purpose of a forward declaration of a class?

24. Explain why memberwise assignment can cause problems with a class that contains a
pointer member.

25. Why is a class s copy constructor called when an object of that class is passed by value
into a function?

Fill-in-the-Blank

26. If a member variable is declared __________, all objects of that class have access to
the same variable.

27. Static member variables are defined __________ the class.

28. A(n) __________ member function cannot access any nonstatic member variables in
its own class.

29. A static member function may be called __________ any instances of its class are
defined.

30. A(n) __________ function is not a member of a class, but has access to the private
members of the class.

31. A(n) __________ tells the compiler that a specific class will be declared later in the
program.

32. __________ is the default behavior when an object is assigned the value of another
object of the same class.

33. A(n) __________ is a special constructor, called whenever a new object is initialized
with another object s data.

34. __________ is a special built-in pointer that is automatically passed as a hidden argu-
ment to all nonstatic member functions.

35. An operator may be __________ to work with a specific class.

M14_GADD6253_07_SE_C14 Page 859 Saturday, January 8, 2011 9:46 PM

860 Chapter 14 More About Classes

36. When overloading the __________ operator, its function must have a dummy
parameter.

37. Making an instance of one class a member of another class is called __________.

38. Object aggregation is useful for creating a(n) __________ relationship between two
classes.

Algorithm Workbench

39. Assume a class named Bird exists. Write the header for a member function that over-
loads the = operator for that class.

40. Assume a class named Dollars exists. Write the headers for member functions that
overload the prefix and postfix ++ operators for that class.

41. Assume a class named Yen exists. Write the header for a member function that over-
loads the < operator for that class.

42. Assume a class named Length exists. Write the header for a member function that
overloads cout s << operator for that class.

43. Assume a class named Collection exists. Write the header for a member function
that overloads the [] operator for that class.

True or False

44. T F Static member variables cannot be accessed by nonstatic member functions.

45. T F Static member variables are de ned outside their class declaration.

46. T F A static member function may refer to nonstatic member variables of the same

class, but only after an instance of the class has been de ned.

47. T F When a function is declared a friend by a class, it becomes a member of

that class.

48. T F A friend function has access to the private members of the class declaring it

a friend.

49. T F An entire class may be declared a friend of another class.

50. T F In order for a function or class to become a friend of another class, it must be

declared as such by the class granting it access.

51. T F If a class has a pointer as a member, it s a good idea to also have a copy con-

structor.

52. T F You cannot use the = operator to assign one object s values to another object,

unless you overload the operator.

53. T F If a class doesn t have a copy constructor, the compiler generates a default copy

constructor for it.

54. T F If a class has a copy constructor, and an object of that class is passed by value

into a function, the function s parameter will not call its copy constructor.

55. T F The this pointer is passed to static member functions.

56. T F All functions that overload unary operators must have a dummy parameter.

57. T F For an object to perform automatic type conversion, an operator function must

be written.

58. T F It is possible to have an instance of one class as a member of another class.

M14_GADD6253_07_SE_C14 Page 860 Saturday, January 8, 2011 9:46 PM

Review Questions and Exercises 861

Find the Error

Each of the following class declarations has errors. Locate as many as you can.

59. class Box

{

 private:

 double width;

 double length;

 double height;

 public:

 Box(double w, l, h)

 { width = w; length = l; height = h; }

 Box(Box b) // Copy constructor

 { width = b.width;

 length = b.length;

 height = b.height; }

 ... Other member functions follow ...

};

60. class Circle

{

 private:

 double diameter;

 int centerX;

 int centerY;

 public:

 Circle(double d, int x, int y)

 { diameter = d; centerX = x; centerY = y; }

 // Overloaded = operator

 void Circle=(Circle &right)

 { diameter = right.diameter;

 centerX = right.centerX;

 centerY = right.centerY; }

 ... Other member functions follow ...

 };

61. class Point

{

 private:

 int xCoord;

 int yCoord;

 public:

 Point (int x, int y)

 { xCoord = x; yCoord = y; }

 // Overloaded + operator

 void operator+(const &Point right)

 { xCoord += right.xCoord;

 yCoord += right.yCoord;

 }

 ... Other member functions follow ...

};

M14_GADD6253_07_SE_C14 Page 861 Saturday, January 8, 2011 9:46 PM

862 Chapter 14 More About Classes

62. class Box

{

 private:

 double width;

 double length;

 double height;

 public:

 Box(double w, l, h)

 { width = w; length = l; height = h; }

 // Overloaded prefix ++ operator

 void operator++()

 { ++width; ++length; }

 // Overloaded postfix ++ operator

 void operator++()

 { width++; length++; }

 ... Other member functions follow ...

};

63. class Yard

{

 private:

 float length;

 public:

 yard(float l)

 { length = l; }

 // float conversion function

 void operator float()

 { return length; }

 ... Other member functions follow ...

};

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. Numbers Class

Design a class Numbers that can be used to translate whole dollar amounts in the

range 0 through 9999 into an English description of the number. For example, the

number 713 would be translated into the string seven hundred thirteen, and 8203

would be translated into eight thousand two hundred three. The class should have a

single integer member variable:

int number;

and a static array of string objects that specify how to translate key dollar amounts

into the desired format. For example, you might use static strings such as

string lessThan20[20] = {"zero", "one", ..., "eighteen", "nineteen"};

string hundred = "hundred";

string thousand = "thousand";

The class should have a constructor that accepts a nonnegative integer and uses it to

initialize the Numbers object. It should have a member function print() that prints

the English description of the Numbers object. Demonstrate the class by writing a

M14_GADD6253_07_SE_C14 Page 862 Saturday, January 8, 2011 9:46 PM

Review Questions and Exercises 863

main program that asks the user to enter a number in the proper range and then prints

out its English description.

2. Day of the Year

Assuming that a year has 365 days, write a class named DayOfYear that takes an inte-

ger representing a day of the year and translates it to a string consisting of the month

followed by day of the month. For example,

Day 2 would be January 2.

Day 32 would be February 1.

Day 365 would be December 31.

The constructor for the class should take as parameter an integer representing the day

of the year, and the class should have a member function print() that prints the day

in the month day format. The class should have an integer member variable to repre-

sent the day, and should have static member variables holding string objects that can

be used to assist in the translation from the integer format to the month-day format.

Test your class by inputting various integers representing days and printing out their

representation in the month day format.

3. Day of the Year Modi cation

Modify the DayOfYear class, written in Programming Challenge 2, to add a construc-

tor that takes two parameters: a string object representing a month and an integer in

the range 0 through 31 representing the day of the month. The constructor should

then initialize the integer member of the class to represent the day speci ed by the

month and day of month parameters. The constructor should terminate the program

with an appropriate error message if the number entered for a day is outside the range

of days for the month given.

Add the following overloaded operators:

++ pre x and post x increment operators. These operators should modify the

DayOfYear object so that it represents the next day. If the day is already the end

of the year, the new value of the object will represent the rst day of the year.

-- pre x and post x decrement operators. These operators should modify the

DayOfYear object so that it represents the previous day. If the day is already the

rst day of the year, the new value of the object will represent the last day of the

year.

4. NumDays Class

Design a class called NumDays. The class s purpose is to store a value that represents a

number of work hours and convert it to a number of days. For example, 8 hours

would be converted to 1 day, 12 hours would be converted to 1.5 days, and 18 hours

would be converted to 2.25 days. The class should have a constructor that accepts a

number of hours, as well as member functions for storing and retrieving the hours and

days. The class should also have the following overloaded operators:

+ Addition operator. When two NumDays objects are added together, the over-

loaded + operator should return the sum of the two objects hours members.

VideoNote

Solving the

NumDays

Problem

Programming Challenges

M14_GADD6253_07_SE_C14 Page 863 Saturday, January 8, 2011 9:46 PM

864 Chapter 14 More About Classes

- Subtraction operator. When one NumDays object is subtracted from another,

the overloaded - operator should return the difference of the two objects

hours members.

++ Pre x and post x increment operators. These operators should increment the

number of hours stored in the object. When incremented, the number of days

should be automatically recalculated.

-- Pre x and post x decrement operators. These operators should decrement the

number of hours stored in the object. When decremented, the number of days

should be automatically recalculated.

5. Time Off

Design a class named TimeOff. The purpose of the class is to track an employee s sick

leave, vacation, and unpaid time off. It should have, as members, the following

instances of the NumDays class described in Programming Challenge 4:

maxSickDays A NumDays object that records the maximum number of days of

sick leave the employee may take.

sickTaken A NumDays object that records the number of days of sick leave the

employee has already taken.

maxVacation A NumDays object that records the maximum number of days of

paid vacation the employee may take.

vacTaken A NumDays object that records the number of days of paid vacation

the employee has already taken.

maxUnpaid A NumDays object that records the maximum number of days of

unpaid vacation the employee may take.

unpaidTaken A NumDays object that records the number of days of unpaid leave

the employee has taken.

Additionally, the class should have members for holding the employee s name and

identi cation number. It should have an appropriate constructor and member func-

tions for storing and retrieving data in any of the member objects.

Input Validation: Company policy states that an employee may not accumulate more

than 240 hours of paid vacation. The class should not allow the maxVacation object

to store a value greater than this amount.

6. Personnel Report

Write a program that uses an instance of the TimeOff class you designed in Program-

ming Challenge 5. The program should ask the user to enter the number of months an

employee has worked for the company. It should then use the TimeOff object to cal-

culate and display the employee s maximum number of sick leave and vacation days.

Employees earn 12 hours of vacation leave and 8 hours of sick leave per month.

NOTE: This assignment assumes you have already completed Programming Challenge 4.

NOTE: This assignment assumes you have already completed Programming

Challenges 4 and 5.

M14_GADD6253_07_SE_C14 Page 864 Saturday, January 8, 2011 9:46 PM

Review Questions and Exercises 865

7. Month Class

Design a class named Month. The class should have the following private members:

* name A string object that holds the name of a month, such as January,

February, etc.

* monthNumber An integer variable that holds the number of the month. For

example, January would be 1, February would be 2, etc. Valid values for this

variable are 1 through 12.

In addition, provide the following member functions:

* A default constructor that sets monthNumber to 1 and name to January.

* A constructor that accepts the name of the month as an argument. It should set

name to the value passed as the argument and set monthNumber to the correct

value.

* A constructor that accepts the number of the month as an argument. It should set

monthNumber to the value passed as the argument and set name to the correct

month name.

* Appropriate set and get functions for the name and monthNumber member vari-

ables.

* Prefix and postfix overloaded ++ operator functions that increment monthNumber

and set name to the name of next month. If monthNumber is set to 12 when these

functions execute, they should set monthNumber to 1 and name to January.

* Prefix and postfix overloaded -- operator functions that decrement monthNumber

and set name to the name of previous month. If monthNumber is set to 1 when these

functions execute, they should set monthNumber to 12 and name to December.

Also, you should overload cout s << operator and cin s >> operator to work with the

Month class. Demonstrate the class in a program.

8. Date Class Modi cation

Modify the Date class in Programming Challenge 1 of Chapter 13. The new version

should have the following overloaded operators:

++ Pre x and post x increment operators. These operators should increment the

object s day member.

-- Pre x and post x decrement operators. These operators should decrement the

object s day member.

- Subtraction operator. If one Date object is subtracted from another, the operator

should give the number of days between the two dates. For example, if April 10,

2012 is subtracted from April 18, 2012, the result will be 8.

<< cout s stream insertion operator. This operator should cause the date to be dis-

played in the form

 April 18, 2012

>> cin s stream extraction operator. This operator should prompt the user for a

date to be stored in a Date object.

The class should detect the following conditions and handle them accordingly:

* When a date is set to the last day of the month and incremented, it should become

the first day of the following month.

Programming Challenges

M14_GADD6253_07_SE_C14 Page 865 Saturday, January 8, 2011 9:46 PM

866 Chapter 14 More About Classes

* When a date is set to December 31 and incremented, it should become January 1

of the following year.

* When a day is set to the first day of the month and decremented, it should

become the last day of the previous month.

* When a date is set to January 1 and decremented, it should become December 31

of the previous year.

Demonstrate the class s capabilities in a simple program.

Input Validation: The overloaded >> operator should not accept invalid dates. For

example, the date 13/45/2012 should not be accepted.

9. FeetInches Modi cation

Modify the FeetInches class discussed in this chapter so it overloads the following

operators:

<=

>=

!=

Demonstrate the class s capabilities in a simple program.

10. Corporate Sales

A corporation has six divisions, each responsible for sales to different geographic

locations. Design a DivSales class that keeps sales data for a division, with the fol-

lowing members:

* An array with four elements for holding four quarters of sales figures for the division.

* A private static variable for holding the total corporate sales for all divisions for

the entire year.

* A member function that takes four arguments, each assumed to be the sales for a

quarter. The value of the arguments should be copied into the array that holds the

sales data. The total of the four arguments should be added to the static variable

that holds the total yearly corporate sales.

* A function that takes an integer argument within the range of 0 3. The argument

is to be used as a subscript into the division quarterly sales array. The function

should return the value of the array element with that subscript.

Write a program that creates an array of six DivSales objects. The program should

ask the user to enter the sales for four quarters for each division. After the data are

entered, the program should display a table showing the division sales for each quar-

ter. The program should then display the total corporate sales for the year.

Input Validation: Only accept positive values for quarterly sales gures.

11. FeetInches Class Copy Constructor and multiply Function

Add a copy constructor to the FeetInches class. This constructor should accept a

FeetInches object as an argument. The constructor should assign to the feet

attribute the value in the argument s feet attribute, and assign to the inches

M14_GADD6253_07_SE_C14 Page 866 Saturday, January 8, 2011 9:46 PM

Review Questions and Exercises 867

attribute the value in the argument s inches attribute. As a result, the new object will
be a copy of the argument object.

Next, add a multiply member function to the FeetInches class. The multiply
function should accept a FeetInches object as an argument. The argument object s
feet and inches attributes will be multiplied by the calling object s feet and inches
attributes, and a FeetInches object containing the result will be returned.

12. LandTract Class

Make a LandTract class that is composed of two FeetInches objects, one for the
tract s length and one for the width. The class should have a member function that
returns the tract s area. Demonstrate the class in a program that asks the user to enter
the dimensions for two tracts of land. The program should display the area of each
tract of land and indicate whether the tracts are of equal size.

13. Carpet Calculator

The West eld Carpet Company has asked you to write an application that calculates
the price of carpeting for rectangular rooms. To calculate the price, you multiply the
area of the oor (width times length) by the price per square foot of carpet. For
example, the area of oor that is 12 feet long and 10 feet wide is 120 square feet. To
cover that oor with carpet that costs $8 per square foot would cost $960. (12 * 10 *
8 = 960.)

First, you should create a class named RoomDimension that has two FeetInches
objects as attributes: one for the length of the room and one for the width. (You
should use the version of the FeetInches class that you created in Programming
Challenge 11 with the addition of a multiply member function. You can use this
function to calculate the area of the room.) The RoomDimension class should have a
member function that returns the area of the room as a FeetInches object.

Next, you should create a RoomCarpet class that has a RoomDimension object as an
attribute. It should also have an attribute for the cost of the carpet per square foot.
The RoomCarpet class should have a member function that returns the total cost of
the carpet.

Once you have written these classes, use them in an application that asks the user to
enter the dimensions of a room and the price per square foot of the desired carpeting.
The application should display the total cost of the carpet.

14. Parking Ticket Simulator

For this assignment you will design a set of classes that work together to simulate a
police of cer issuing a parking ticket. The classes you should design are:

* The ParkedCar Class: This class should simulate a parked car. The class s
responsibilities are:

To know the car s make, model, color, license number, and the number of
minutes that the car has been parked

Programming Challenges

M14_GADD6253_07_SE_C14 Page 867 Saturday, January 8, 2011 9:46 PM

868 Chapter 14 More About Classes

* The ParkingMeter Class: This class should simulate a parking meter. The class s
only responsibility is:

To know the number of minutes of parking time that has been purchased
* The ParkingTicket Class: This class should simulate a parking ticket. The

class s responsibilities are:
To report the make, model, color, and license number of the illegally
parked car
To report the amount of the ne, which is $25 for the rst hour or part of an
hour that the car is illegally parked, plus $10 for every additional hour or
part of an hour that the car is illegally parked
To report the name and badge number of the police of cer issuing the
ticket

* The PoliceOfficer Class: This class should simulate a police officer inspecting
parked cars. The class s responsibilities are:

To know the police of cer s name and badge number
To examine a ParkedCar object and a ParkingMeter object, and determine
whether the car s time has expired
To issue a parking ticket (generate a ParkingTicket object) if the car s time
has expired

Write a program that demonstrates how these classes collaborate.

15. Car Instrument Simulator

For this assignment you will design a set of classes that work together to simulate a car s
fuel gauge and odometer. The classes you will design are:

* The FuelGauge Class: This class will simulate a fuel gauge. Its responsibilities
are

To know the car s current amount of fuel, in gallons.
To report the car s current amount of fuel, in gallons.
To be able to increment the amount of fuel by 1 gallon. This simulates putting
fuel in the car. (The car can hold a maximum of 15 gallons.)
To be able to decrement the amount of fuel by 1 gallon, if the amount of fuel
is greater than 0 gallons. This simulates burning fuel as the car runs.

* The Odometer Class: This class will simulate the car s odometer. Its responsibili-
ties are:

To know the car s current mileage.
To report the car s current mileage.
To be able to increment the current mileage by 1 mile. The maximum mileage
the odometer can store is 999,999 miles. When this amount is exceeded, the
odometer resets the current mileage to 0.
To be able to work with a FuelGauge object. It should decrease the FuelGauge
object s current amount of fuel by 1 gallon for every 24 miles traveled. (The
car s fuel economy is 24 miles per gallon.)

Demonstrate the classes by creating instances of each. Simulate lling the car up with
fuel, and then run a loop that increments the odometer until the car runs out of fuel.
During each loop iteration, print the car s current mileage and amount of fuel.

M14_GADD6253_07_SE_C14 Page 868 Saturday, January 8, 2011 9:46 PM

869

C
H

A
P

T
E

R

15

Inheritance, Polymorphism,
and Virtual Functions

15.1

What Is Inheritance?

CONCEPT:

Inheritance allows a new class to be based on an existing class. The new

class inherits all the member variables and functions (except the

constructors and destructor) of the class it is based on.

Generalization and Specialization

In the real world you can nd many objects that are specialized versions of other more

general objects. For example, the term insect describes a very general type of creature

with numerous characteristics. Because grasshoppers and bumblebees are insects, they

have all the general characteristics of an insect. In addition, they have special characteris-

tics of their own. For example, the grasshopper has its jumping ability, and the bumblebee

has its stinger. Grasshoppers and bumblebees are specialized versions of an insect. This is

illustrated in Figure 15-1.

TOPICS

15.1 What Is Inheritance?

15.2 Protected Members and Class

Access

15.3 Constructors and Destructors in

Base and Derived Classes

15.4 Rede ning Base Class Functions

15.5 Class Hierarchies

15.6 Polymorphism and Virtual

Member Functions

15.7 Abstract Base Classes and Pure

Virtual Functions

15.8 Multiple Inheritance

M15_GADD6253_07_SE_C15 Page 869 Wednesday, January 12, 2011 8:06 PM

870

Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Inheritance and the Is a Relationship

When one object is a specialized version of another object, there is an

is a relationship

between them. For example, a grasshopper

is an

 insect. Here are a few other examples of

the is a relationship.

A poodle

is a

 dog.

A car

is a

 vehicle.

A tree

is a

 plant.

A rectangle

is a

 shape.

A football player

is an

 athlete.

When an is a relationship exists between classes, it means that the specialized class has

all of the characteristics of the general class, plus additional characteristics that make it

special. In object-oriented programming,

inheritance

 is used to create an is a relation-

ship between classes.

Inheritance involves a base class and a derived class. The

base class

is the general class and

the

derived class

is the specialized class. The derived class is based on, or derived from, the

base class. You can think of the base class

as the parent and the derived class

as the child.

This is illustrated in Figure 15-2.

Figure 15-1

Figure 15-2

Insect
All insects have

certain characteristics.

In addition to the common

insect characteristics, the

 bumblebee has its own unique

characteristics such as the

ability to sting.

In addition to the common

insect characteristics, the

 grasshopper has its own unique

characteristics such as the

ability to jump.

Insect class

members

Grasshopper class

members

Base Class

(Parent)

Derived Class

(Child)

M15_GADD6253_07_SE_C15 Page 870 Wednesday, January 12, 2011 8:06 PM

15.1 What Is Inheritance?

871

The derived class inherits the member variables and member functions of the base class

without any of them being rewritten. Furthermore, new member variables and functions

may be added to the derived class to make it more specialized than the base class.

Let s look at an example of how inheritance can be used. Most teachers assign various

graded activities for their students to complete. A graded activity can receive a numeric

score such as 70, 85, 90, and so on, and a letter grade such as A, B, C, D, or F. The follow-

ing

GradedActivity

 class is designed to hold the numeric score and letter grade of a

graded activity. When a numeric score is stored by the class, it automatically determines

the letter grade. (These les are stored in the Student Source Code Folder

Chapter 15\

GradedActivity Version 1

.)

Contents of

GradedActivity.h

 (Version 1)

 1 #ifndef GRADEDACTIVITY_H

 2 #define GRADEDACTIVITY_H

 3

 4 // GradedActivity class declaration

 5

 6 class GradedActivity

 7 {

 8 private:

 9 double score; // To hold the numeric score

10 public:

11 // Default constructor

12 GradedActivity()

13 { score = 0.0; }

14

15 // Constructor

16 GradedActivity(double s)

17 { score = s; }

18

19 // Mutator function

20 void setScore(double s)

21 { score = s; }

22

23 // Accessor functions

24 double getScore() const

25 { return score; }

26

27 char getLetterGrade() const;

28 };

29 #endif

Contents of

GradedActivity.cpp

 (Version 1)

 1 #include "GradedActivity.h"

 2

 3 //**

 4 // Member function GradedActivity::getLetterGrade *

 5 //**

 6

M15_GADD6253_07_SE_C15 Page 871 Wednesday, January 12, 2011 8:06 PM

872

Chapter 15 Inheritance, Polymorphism, and Virtual Functions

 7 char GradedActivity::getLetterGrade() const

 8 {

 9 char letterGrade; // To hold the letter grade

10

11 if (score > 89)

12 letterGrade = 'A';

13 else if (score > 79)

14 letterGrade = 'B';

15 else if (score > 69)

16 letterGrade = 'C';

17 else if (score > 59)

18 letterGrade = 'D';

19 else

20 letterGrade = 'F';

21

22 return letterGrade;

23 }

The

GradedActivity

 class has a default constructor that initializes the

score

 member

variable to 0.0. A second constructor accepts an argument for

score

. The

setScore

 mem-

ber function also accepts an argument for the

score

 variable, and the

getLetterGrade

member function returns the letter grade that corresponds to the value in

score

.

Program 15-1 demonstrates the

GradedActivity

 class. (This le is also stored in the Student

Source Code Folder

Chapter 15\GradedActivity Version 1

.)

Program 15-1

 1 // This program demonstrates the GradedActivity class.

 2 #include <iostream>

 3 #include "GradedActivity.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 double testScore; // To hold a test score

 9

 10 // Create a GradedActivity object for the test.

 11 GradedActivity test;

 12

 13 // Get a numeric test score from the user.

 14 cout << "Enter your numeric test score: ";

 15 cin >> testScore;

 16

 17 // Store the numeric score in the test object.

 18 test.setScore(testScore);

 19

 20 // Display the letter grade for the test.

 21 cout << "The grade for that test is "

 22 << test.getLetterGrade() << endl;

 23

 24 return 0;

 25 }

M15_GADD6253_07_SE_C15 Page 872 Wednesday, January 12, 2011 8:06 PM

15.1 What Is Inheritance?

873

The

GradedActivity

 class represents the general characteristics of a student s graded activ-

ity. Many different types of graded activities exist, however, such as quizzes, midterm exams,

nal exams, lab reports, essays, and so on. Because the numeric scores might be determined

differently for each of these graded activities, we can create derived classes to handle each

one. For example, the following code shows the

FinalExam

 class, which is derived from the

GradedActivity

 class. It has member variables for the number of questions on the exam

(

numQuestions

), the number of points each question is worth (

pointsEach

), and the num-

ber of questions missed by the student (

numMissed

). These les are also stored in the Student

Source Code Folder

Chapter 15\GradedActivity Version 1

.

Contents of

FinalExam.h

 1 #ifndef FINALEXAM_H

 2 #define FINALEXAM_H

 3 #include "GradedActivity.h"

 4

 5 class FinalExam : public GradedActivity

 6 {

 7 private:

 8 int numQuestions; // Number of questions

 9 double pointsEach; // Points for each question

10 int numMissed; // Number of questions missed

11 public:

12 // Default constructor

13 FinalExam()

14 { numQuestions = 0;

15 pointsEach = 0.0;

16 numMissed = 0; }

17

18 // Constructor

19 FinalExam(int questions, int missed)

20 { set(questions, missed); }

21

22 // Mutator function

23 void set(int, int); // Defined in FinalExam.cpp

24

25 // Accessor functions

26 double getNumQuestions() const

27 { return numQuestions; }

28

29 double getPointsEach() const

30 { return pointsEach; }

31

Program Output with Example Input Shown in Bold

Enter your numeric test score:

89 [Enter]

The grade for that test is B

Program Output with Different Example Input Shown in Bold

Enter your numeric test score:

75 [Enter]

The grade for that test is C

M15_GADD6253_07_SE_C15 Page 873 Wednesday, January 12, 2011 8:06 PM

874

Chapter 15 Inheritance, Polymorphism, and Virtual Functions

32 int getNumMissed() const

33 { return numMissed; }

34 };

35 #endif

Contents of

FinalExam.cpp

 1 #include "FinalExam.h"

 2

 3 //**

 4 // set function *

 5 // The parameters are the number of questions and the *

 6 // number of questions missed. *

 7 //**

 8

 9 void FinalExam::set(int questions, int missed)

10 {

11 double numericScore; // To hold the numeric score

12

13 // Set the number of questions and number missed.

14 numQuestions = questions;

15 numMissed = missed;

16

17 // Calculate the points for each question.

18 pointsEach = 100.0 / numQuestions;

19

20 // Calculate the numeric score for this exam.

21 numericScore = 100.0 - (missed * pointsEach);

22

23 // Call the inherited setScore function to set

24 // the numeric score.

25 setScore(numericScore);

26 }

The only new notation in this code is in line 5 of the

FinalExam.h

 le, which reads

class FinalExam : public GradedActivity

This line indicates the name of the class being declared and the name of the base class it is

derived from.

FinalExam

 is the name of the class being declared and

GradedActivity

 is

the name of the base class it inherits from.

If we want to express the relationship between the two classes, we can say that a

FinalExam

is a

GradedActivity

.

The word

public

, which precedes the name of the base class in line 5 of the

FinalExam.h

le, is the

base class access speci cation

. It affects how the members of the base class are

inherited by the derived class. When you create an object of a derived class, you can think

class FinalExam : public GradedActivity

Class being declared

(the derived class)

Base class

M15_GADD6253_07_SE_C15 Page 874 Wednesday, January 12, 2011 8:06 PM

15.1 What Is Inheritance?

875

of it as being built on top of an object of the base class. The members of the base class

object become members of the derived class object. How the base class members appear in

the derived class is determined by the base class access speci cation.

Although we will discuss this topic in more detail in the next section, let s see how it

works in this example. The

GradedActivity

 class has both private members and public

members. The

FinalExam

 class is derived from the

GradedActivity

 class, using

public

access speci cation. This means that the public members of the

GradedActivity

 class

will become public members of the

FinalExam

 class. The private members of the

GradedActivity

 class cannot be accessed directly by code in the

FinalExam

 class.

Although the private members of the

GradedActivity

 class are inherited, it s as though

they are invisible to the code in the

FinalExam

 class. They can only be accessed by the

member functions of the

GradedActivity class. Here is a list of the members of the

FinalExam class:

Private Members:

int numQuestions Declared in the FinalExam class

double pointsEach Declared in the FinalExam class

int numMissed Declared in the FinalExam class

Public Members:

FinalExam() De ned in the FinalExam class

FinalExam(int, int) De ned in the FinalExam class

set(int, int) De ned in the FinalExam class

getNumQuestions() De ned in the FinalExam class

getPointsEach() De ned in the FinalExam class

getNumMissed() De ned in the FinalExam class

setScore(double) Inherited from GradedActivity

getScore() Inherited from GradedActivity

getLetterGrade() Inherited from GradedActivity

The GradedActivity class has one private member, the variable score. Notice that it is

not listed as a member of the FinalExam class. It is still inherited by the derived class, but

because it is a private member of the base class, only member functions of the base class

may access it. It is truly private to the base class. Because the functions setScore,

getScore, and getLetterGrade are public members of the base class, they also become

public members of the derived class.

You will also notice that the GradedActivity class constructors are not listed among the

members of the FinalExam class. Although the base class constructors still exist, it makes

sense that they are not members of the derived class because their purpose is to construct

objects of the base class. In the next section we discuss in more detail how base class con-

structors operate.

Let s take a closer look at the FinalExam class constructors. The default constructor

appears in lines 13 through 16 of the FinalExam.h le. It simply assigns 0 to each of the

class s member variables. Another constructor appears in lines 19 through 20. This con-

structor accepts two arguments, one for the number of questions on the exam, and one for

the number of questions missed. This constructor merely passes those values as arguments

to the set function.

M15_GADD6253_07_SE_C15 Page 875 Wednesday, January 12, 2011 8:06 PM

876 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

The set function is de ned in FinalExam.cpp. It accepts two arguments: the number of

questions on the exam, and the number of questions missed by the student. In lines 14 and

15 these values are assigned to the numQuestions and numMissed member variables. In

line 18 the number of points for each question is calculated. In line 21 the numeric test

score is calculated. In line 25, the last statement in the function reads:

setScore(numericScore);

This is a call to the setScore function. Although no setScore function appears in the

FinalExam class, it is inherited from the GradedActivity class. Program 15-2 demon-

strates the FinalExam class.

Program 15-2

 1 // This program demonstrates a base class and a derived class.

 2 #include <iostream>

 3 #include <iomanip>

 4 #include "FinalExam.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int questions; // Number of questions on the exam

 10 int missed; // Number of questions missed by the student

 11

 12 // Get the number of questions on the final exam.

 13 cout << "How many questions are on the final exam? ";

 14 cin >> questions;

 15

 16 // Get the number of questions the student missed.

 17 cout << "How many questions did the student miss? ";

 18 cin >> missed;

 19

 20 // Define a FinalExam object and initialize it with

 21 // the values entered.

 22 FinalExam test(questions, missed);

 23

 24 // Display the test results.

 25 cout << setprecision(2);

 26 cout << "\nEach question counts " << test.getPointsEach()

 27 << " points.\n";

 28 cout << "The exam score is " << test.getScore() << endl;

 29 cout << "The exam grade is " << test.getLetterGrade() << endl;

 30

 31 return 0;

 32 }

Program Output with Example Input Shown in Bold

How many questions are on the final exam? 20 [Enter]
How many questions did the student miss? 3 [Enter]

Each question counts 5 points.

The exam score is 85

The exam grade is B

M15_GADD6253_07_SE_C15 Page 876 Wednesday, January 12, 2011 8:06 PM

15.1 What Is Inheritance? 877

Notice in lines 28 and 29 that the public member functions of the GradedActivity class

may be directly called by the test object:

cout << "The exam score is " << test.getScore() << endl;

cout << "The exam grade is " << test.getLetterGrade() << endl;

The getScore and getLetterGrade member functions are inherited as public members

of the FinalExam class, so they may be accessed like any other public member.

Inheritance does not work in reverse. It is not possible for a base class to call a member

function of a derived class. For example, the following classes will not compile in a pro-

gram because the BadBase constructor attempts to call a function in its derived class:

class BadBase

{

 private:

 int x;

 public:

 BadBase() { x = getVal(); } // Error!

};

class Derived : public BadBase

{

 private:

 int y;

 public:

 Derived(int z) { y = z; }

 int getVal() { return y; }

};

Checkpoint

 www.myprogramminglab.com

15.1 Here is the rst line of a class declaration. Circle the name of the base class:
class Truck : public Vehicle

15.2 Circle the name of the derived class in the following declaration line:
class Truck : public Vehicle

15.3 Suppose a program has the following class declarations:

class Shape

{

private:

 double area;

public:

 void setArea(double a)

 { area = a; }

 double getArea()

 { return area; }

};

class Circle : public Shape

{

private:

 double radius;

M15_GADD6253_07_SE_C15 Page 877 Wednesday, January 12, 2011 8:06 PM

878 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

public:

 void setRadius(double r)

 { radius = r;

 setArea(3.14 * r * r); }

 double getRadius()

 { return radius; }

};

Answer the following questions concerning these classes:

A) When an object of the Circle class is created, what are its private members?

B) When an object of the Circle class is created, what are its public members?

C) What members of the Shape class are not accessible to member functions of the

Circle class?

15.2 Protected Members and Class Access

CONCEPT: Protected members of a base class are like private members, but they may

be accessed by derived classes. The base class access speci cation

determines how private, public, and protected base class members are

accessed when they are inherited by the derived classes.

Until now you have used two access speci cations within a class: private and public.

C++ provides a third access speci cation, protected. Protected members of a base class

are like private members, except they may be accessed by functions in a derived class. To

the rest of the program, however, protected members are inaccessible.

The following code shows a modi ed version of the GradedActivity class declaration.

The private member of the class has been made protected. This le is stored in the Student

Source Code Folder Chapter 15\GradedActivity Version 2. The implementation le,

GradedActivity.cpp has not changed, so it is not shown again in this example.

Contents of GradedActivity.h (Version 2)

 1 #ifndef GRADEDACTIVITY_H

 2 #define GRADEDACTIVITY_H

 3

 4 // GradedActivity class declaration

 5

 6 class GradedActivity

 7 {

 8 protected:

 9 double score; // To hold the numeric score

10 public:

11 // Default constructor

12 GradedActivity()

13 { score = 0.0; }

14

15 // Constructor

16 GradedActivity(double s)

17 { score = s; }

18

M15_GADD6253_07_SE_C15 Page 878 Wednesday, January 12, 2011 8:06 PM

15.2 Protected Members and Class Access 879

19 // Mutator function

20 void setScore(double s)

21 { score = s; }

22

23 // Accessor functions

24 double getScore() const

25 { return score; }

26

27 char getLetterGrade() const;

28 };

29 #endif

Now we will look at a modi ed version of the FinalExam class, which is derived from this

version of the GradedActivity class. This version of the FinalExam class has a new mem-

ber function named adjustScore. This function directly accesses the GradedActivity

class s score member variable. If the content of the score variable has a fractional part of

0.5 or greater, the function rounds score up to the next whole number. The set function

calls the adjustScore function after it calculates the numeric score. (These les are stored

in the Student Source Code Folder Chapter 15\GradedActivity Version 2.)

Contents of FinalExam.h (Version 2)

 1 #ifndef FINALEXAM_H

 2 #define FINALEXAM_H

 3 #include "GradedActivity.h"

 4

 5 class FinalExam : public GradedActivity

 6 {

 7 private:

 8 int numQuestions; // Number of questions

 9 double pointsEach; // Points for each question

10 int numMissed; // Number of questions missed

11 public:

12 // Default constructor

13 FinalExam()

14 { numQuestions = 0;

15 pointsEach = 0.0;

16 numMissed = 0; }

17

18 // Constructor

19 FinalExam(int questions, int missed)

20 { set(questions, missed); }

21

22 // Mutator functions

23 void set(int, int); // Defined in FinalExam.cpp

24 void adjustScore(); // Defined in FinalExam.cpp

25

26 // Accessor functions

27 double getNumQuestions() const

28 { return numQuestions; }

29

30 double getPointsEach() const

31 { return pointsEach; }

32

M15_GADD6253_07_SE_C15 Page 879 Wednesday, January 12, 2011 8:06 PM

880 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

33 int getNumMissed() const

34 { return numMissed; }

35 };

36 #endif

 Contents of FinalExam.cpp (Version 2)

 1 #include "FinalExam.h"

 2

 3 //**

 4 // set function *

 5 // The parameters are the number of questions and the *

 6 // number of questions missed. *

 7 //**

 8

 9 void FinalExam::set(int questions, int missed)

10 {

11 double numericScore; // To hold the numeric score

12

13 // Set the number of questions and number missed.

14 numQuestions = questions;

15 numMissed = missed;

16

17 // Calculate the points for each question.

18 pointsEach = 100.0 / numQuestions;

19

20 // Calculate the numeric score for this exam.

21 numericScore = 100.0 - (missed * pointsEach);

22

23 // Call the inherited setScore function to set

24 // the numeric score.

25 setScore(numericScore);

26

27 // Call the adjustScore function to adjust

28 // the score.

29 adjustScore();

30 }

31

32 //**

33 // Definition of Test::adjustScore. If score is within *

34 // 0.5 points of the next whole point, it rounds the score up *

35 // and recalculates the letter grade. *

36 //**

37

38 void FinalExam::adjustScore()

39 {

40 double fraction = score - static_cast<int>(score);

41

42 if (fraction >= 0.5)

43 {

44 // Adjust the score variable in the GradedActivity class.

45 score += (1.0 - fraction);

46 }

47 }

M15_GADD6253_07_SE_C15 Page 880 Wednesday, January 12, 2011 8:06 PM

15.2 Protected Members and Class Access 881

Program 15-3 demonstrates these versions of the GradedActivity and FinalExam

classes. (This le is also stored in the Student Source Code Folder Chapter 15\

GradedActivity Version 2.)

The program works as planned. In the example run, the student missed ve questions,

which are worth 6.25 points each. The unadjusted score would be 68.75. The score was

adjusted to 69.

Program 15-3

 1 // This program demonstrates a base class with a

 2 // protected member.

 3 #include <iostream>

 4 #include <iomanip>

 5 #include "FinalExam.h"

 6 using namespace std;

 7

 8 int main()

 9 {

 10 int questions; // Number of questions on the exam

 11 int missed; // Number of questions missed by the student

 12

 13 // Get the number of questions on the final exam.

 14 cout << "How many questions are on the final exam? ";

 15 cin >> questions;

 16

 17 // Get the number of questions the student missed.

 18 cout << "How many questions did the student miss? ";

 19 cin >> missed;

 20

 21 // Define a FinalExam object and initialize it with

 22 // the values entered.

 23 FinalExam test(questions, missed);

 24

 25 // Display the adjusted test results.

 26 cout << setprecision(2) << fixed;

 27 cout << "\nEach question counts "

 28 << test.getPointsEach() << " points.\n";

 29 cout << "The adjusted exam score is "

 30 << test.getScore() << endl;

 31 cout << "The exam grade is "

 32 << test.getLetterGrade() << endl;

 33

 34 return 0;

 35 }

Program Output with Example Input Shown in Bold

How many questions are on the final exam? 16 [Enter]
How many questions did the student miss? 5 [Enter]

Each question counts 6.25 points.

The adjusted exam score is 69.00

The exam grade is D

M15_GADD6253_07_SE_C15 Page 881 Wednesday, January 12, 2011 8:06 PM

882 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

More About Base Class Access Speci cation

The rst line of the FinalExam class declaration reads:

class FinalExam : public GradedActivity

This declaration gives public access speci cation to the base class. Recall from our earlier

discussion that base class access speci cation affects how inherited base class members are

accessed. Be careful not to confuse base class access speci cation with member access

speci cation. Member access speci cation determines how members that are de ned

within the class are accessed. Base class access speci cation determines how inherited

members are accessed.

When you create an object of a derived class, it inherits the members of the base class. The

derived class can have its own private, protected, and public members, but what is the

access speci cation of the inherited members? This is determined by the base class access

speci cation. Table 15-1 summarizes how base class access speci cation affects the way

that base class members are inherited.

As you can see from Table 15-1, class access speci cation gives you a great deal of exibil-

ity in determining how base class members will appear in the derived class. Think of a

base class s access speci cation as a lter that base class members must pass through when

becoming inherited members of a derived class. This is illustrated in Figure 15-3.

Table 15-1

Base Class Access

Speci cation How Members of the Base Class Appear in the Derived Class

private Private members of the base class are inaccessible to the derived class.

Protected members of the base class become private members of the

derived class.

Public members of the base class become private members of the derived class.

protected Private members of the base class are inaccessible to the derived class.

Protected members of the base class become protected members of the

derived class.

Public members of the base class become protected members of the derived

class.

public Private members of the base class are inaccessible to the derived class.

Protected members of the base class become protected members of the

derived class.

Public members of the base class become public members of the derived class.

NOTE: If the base class access speci cation is left out of a declaration, the default access

speci cation is private. For example, in the following declaration, Grade is declared as

a private base class:

 class Test : Grade

M15_GADD6253_07_SE_C15 Page 882 Wednesday, January 12, 2011 8:06 PM

15.2 Protected Members and Class Access 883

Checkpoint

 www.myprogramminglab.com

15.4 What is the difference between private members and protected members?

15.5 What is the difference between member access speci cation and class access

speci cation?

15.6 Suppose a program has the following class declaration:

// Declaration of CheckPoint class.

class CheckPoint

{

 private:

 int a;

 protected:

 int b;

 int c;

 void setA(int x) { a = x;}

 public:

 void setB(int y) { b = y;}

 void setC(int z) { c = z;}

};

Answer the following questions regarding the class:

A) Suppose another class, Quiz, is derived from the CheckPoint class. Here is the

rst line of its declaration:

 class Quiz : private CheckPoint

Indicate whether each member of the CheckPoint class is private,

protected, public, or inaccessible:
a

b

c

setA

setB

setC

Figure 15-3

private: x

protected: y

public: z

private: x

protected: y

public: z

private: x

protected: y

public: z

x is inaccessible.

private: y

private: z

x is inaccessible.

protected: y

protected: z

x is inaccessible.

protected: y

public: z

private

base class

protected

base class

public

base class

How base class

members appear

in the derived classBase class members

M15_GADD6253_07_SE_C15 Page 883 Wednesday, January 12, 2011 8:06 PM

884 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

B) Suppose the Quiz class, derived from the CheckPoint class, is declared as
 class Quiz : protected Checkpoint

Indicate whether each member of the CheckPoint class is private,

protected, public, or inaccessible:
a

b

c

setA

setB

setC

C) Suppose the Quiz class, derived from the CheckPoint class, is declared as

 class Quiz : public Checkpoint

Indicate whether each member of the CheckPoint class is private,

protected, public, or inaccessible:
a

b

c

setA

setB

setC

D) Suppose the Quiz class, derived from the CheckPoint class, is declared as

 class Quiz : Checkpoint

Is the CheckPoint class a private, public, or protected base class?

15.3
Constructors and Destructors in Base
and Derived Classes

CONCEPT: The base class s constructor is called before the derived class s

constructor. The destructors are called in reverse order, with the derived

class s destructor being called rst.

In inheritance, the base class constructor is called before the derived class constructor.

Destructors are called in reverse order. Program 15-4 shows a simple set of demonstration

classes, each with a default constructor and a destructor. The DerivedClass class is

derived from the BaseClass class. Messages are displayed by the constructors and

destructors to demonstrate when each is called.

Program 15-4

 1 // This program demonstrates the order in which base and

 2 // derived class constructors and destructors are called.

 3 #include <iostream>

 4 using namespace std;

 5

 6 //********************************

 7 // BaseClass declaration *

 8 //********************************

 9

M15_GADD6253_07_SE_C15 Page 884 Wednesday, January 12, 2011 8:06 PM

15.3 Constructors and Destructors in Base and Derived Classes 885

Passing Arguments to Base Class Constructors

In Program 15-4, both the base class and derived class have default constructors, that are

called automatically. But what if the base class s constructor takes arguments? What if

there is more than one constructor in the base class? The answer to these questions is to let

the derived class constructor pass arguments to the base class constructor. For example,

consider the following class:

 10 class BaseClass

 11 {

 12 public:

 13 BaseClass() // Constructor

 14 { cout << "This is the BaseClass constructor.\n"; }

 15

 16 ~BaseClass() // Destructor

 17 { cout << "This is the BaseClass destructor.\n"; }

 18 };

 19

 20 //********************************

 21 // DerivedClass declaration *

 22 //********************************

 23

 24 class DerivedClass : public BaseClass

 25 {

 26 public:

 27 DerivedClass() // Constructor

 28 { cout << "This is the DerivedClass constructor.\n"; }

 29

 30 ~DerivedClass() // Destructor

 31 { cout << "This is the DerivedClass destructor.\n"; }

 32 };

 33

 34 //********************************

 35 // main function *

 36 //********************************

 37

 38 int main()

 39 {

 40 cout << "We will now define a DerivedClass object.\n";

 41

 42 DerivedClass object;

 43

 44 cout << "The program is now going to end.\n";

 45 return 0;

 46 }

Program Output

We will now define a DerivedClass object.

This is the BaseClass constructor.

This is the DerivedClass constructor.

The program is now going to end.

This is the DerivedClass destructor.

This is the BaseClass destructor.

M15_GADD6253_07_SE_C15 Page 885 Wednesday, January 12, 2011 8:06 PM

886 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Contents of Rectangle.h

 1 #ifndef RECTANGLE_H

 2 #define RECTANGLE_H

 3

 4 class Rectangle

 5 {

 6 private:

 7 double width;

 8 double length;

 9 public:

10 // Default constructor

11 Rectangle()

12 { width = 0.0;

13 length = 0.0; }

14

15 // Constructor #2

16 Rectangle(double w, double len)

17 { width = w;

18 length = len; }

19

20 double getWidth() const

21 { return width; }

22

23 double getLength() const

24 { return length; }

25

26 double getArea() const

27 { return width * length; }

28 };

29 #endif

This class is designed to hold data about a rectangle. It speci es two constructors. The

default constructor, in lines 11 through 13, simply initializes the width and length mem-

ber variables to 0.0. The second constructor, in lines 16 through 18, takes two arguments,

which are assigned to the width and length member variables. Now let s look at a class

that is derived from the Rectangle class:

Contents of Cube.h

 1 #ifndef CUBE_H

 2 #define CUBE_H

 3 #include "Rectangle.h"

 4

 5 class Cube : public Rectangle

 6 {

 7 protected:

 8 double height;

 9 double volume;

10 public:

11 // Default constructor

12 Cube() : Rectangle()

13 { height = 0.0; volume = 0.0; }

14

M15_GADD6253_07_SE_C15 Page 886 Wednesday, January 12, 2011 8:06 PM

15.3 Constructors and Destructors in Base and Derived Classes 887

15 // Constructor #2

16 Cube(double w, double len, double h) : Rectangle(w, len)

17 { height = h;

18 volume = getArea() * h; }

19

20 double getHeight() const

21 { return height; }

22

23 double getVolume() const

24 { return volume; }

25 };

26 #endif

The Cube class is designed to hold data about cubes, which not only have a length and

width, but a height and volume as well. Look at line 12, which is the rst line of the Cube

class s default constructor:

Cube() : Rectangle()

Notice the added notation in the header of the constructor. A colon is placed after the

derived class constructor s parentheses, followed by a function call to a base class con-

structor. In this case, the base class s default constructor is being called. When this Cube

class constructor executes, it will rst call the Rectangle class s default constructor. This

is illustrated here:

The general format of this type of constructor declaration is

You can also pass arguments to the base class constructor, as shown in the Cube class s

second constructor. Look at line 16:

Cube(double w, double len, double h) : Rectangle(w, len)

This Cube class constructor has three parameters: w, len, and h. Notice that the Rectangle

class s constructor is called, and the w and len parameters are passed as arguments. This

causes the Rectangle class s second constructor to be called.

You only write this notation in the de nition of a constructor, not in a prototype. In this

example, the derived class constructor is written inline (inside the class declaration), so the

notation that contains the call to the base class constructor appears there. If the construc-

tor were de ned outside the class, the notation would appear in the function header. For

example, the Cube class could appear as follows.

 ClassName::ClassName(ParameterList) : BaseClassName(ArgumentList)

Cube() : Rectangle()

Derived Class

Constructor
Call to the Base

Class Constructor

M15_GADD6253_07_SE_C15 Page 887 Wednesday, January 12, 2011 8:06 PM

888 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

class Cube : public Rectangle

{

protected:

 double height;

 double volume;

public:

 // Default constructor

 Cube() : Rectangle()

 { height = 0.0; volume = 0.0; }

 // Constructor #2

 Cube(double, double, double);

 double getHeight() const

 { return height; }

 double getVolume() const

 { return volume; }

};

// Cube class constructor #2

Cube::Cube(double w, double len, double h) : Rectangle(w, len)

{

 height = h;

 volume = getArea() * h;

}

The base class constructor is always executed before the derived class constructor. When

the Rectangle constructor nishes, the Cube constructor is then executed.

Any literal value or variable that is in scope may be used as an argument to the derived

class constructor. Usually, one or more of the arguments passed to the derived class con-

structor are, in turn, passed to the base class constructor. The values that may be used as

base class constructor arguments are

Derived class constructor parameters

Literal values

Global variables that are accessible to the file containing the derived class con-

structor definition

Expressions involving any of these items

Program 15-5 shows the Rectangle and Cube classes in use.

Program 15-5

 1 // This program demonstrates passing arguments to a base

 2 // class constructor.

 3 #include <iostream>

 4 #include "Cube.h"

 5 using namespace std;

 6

M15_GADD6253_07_SE_C15 Page 888 Wednesday, January 12, 2011 8:06 PM

15.3 Constructors and Destructors in Base and Derived Classes 889

 7 int main()

 8 {

 9 double cubeWidth; // To hold the cube's width

 10 double cubeLength; // To hold the cube's length

 11 double cubeHeight; // To hold the cube's height

 12

 13 // Get the width, length, and height of

 14 // the cube from the user.

 15 cout << "Enter the dimensions of a cube:\n";

 16 cout << "Width: ";

 17 cin >> cubeWidth;

 18 cout << "Length: ";

 19 cin >> cubeLength;

 20 cout << "Height: ";

 21 cin >> cubeHeight;

 22

 23 // Define a Cube object and use the dimensions

 24 // entered by the user.

 25 Cube myCube(cubeWidth, cubeLength, cubeHeight);

 26

 27 // Display the Cube object's properties.

 28 cout << "Here are the cube's properties:\n";

 29 cout << "Width: " << myCube.getWidth() << endl;

 30 cout << "Length: " << myCube.getLength() << endl;

 31 cout << "Height: " << myCube.getHeight() << endl;

 32 cout << "Base area: " << myCube.getArea() << endl;

 33 cout << "Volume: " << myCube.getVolume() << endl;

 34

 35 return 0;

 36 }

Program Output with Example Input Shown in Bold

Enter the dimensions of a cube:

Width: 10 [Enter]
Length: 15 [Enter]
Height: 12 [Enter]
Here are the cube's properties:

Width: 10

Length: 15

Height: 12

Base area: 150

Volume: 1800

NOTE: If the base class has no default constructor, then the derived class must have a

constructor that calls one of the base class constructors.

M15_GADD6253_07_SE_C15 Page 889 Wednesday, January 12, 2011 8:06 PM

890 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

In the Spotlight:

The Automobile, Car, Truck, and SUV classes

Suppose we are developing a program that a car dealership can use to manage its inven-

tory of used cars. The dealership s inventory includes three types of automobiles: cars,

pickup trucks, and sport-utility vehicles (SUVs). Regardless of the type, the dealership

keeps the following data about each automobile:

Make

Year model

Mileage

Price

Each type of vehicle that is kept in inventory has these general characteristics, plus its own

specialized characteristics. For cars, the dealership keeps the following additional data:

Number of doors (2 or 4)

For pickup trucks, the dealership keeps the following additional data:

Drive type (two-wheel drive or four-wheel drive)

And, for SUVs, the dealership keeps the following additional data:

Passenger capacity

In designing this program, one approach would be to write the following three classes:

A Car class with attributes for the make, year model, mileage, price, and number

of doors.

A Truck class with attributes for the make, year model, mileage, price, and drive

type.

An SUV class with attributes for the make, year model, mileage, price, and passen-

ger capacity.

This would be an inef cient approach, however, because all three classes have a large

number of common data attributes. As a result, the classes would contain a lot of dupli-

cated code. In addition, if we discover later that we need to add more common attributes,

we would have to modify all three classes.

A better approach would be to write an Automobile base class to hold all the general data

about an automobile, and then write derived classes for each speci c type of automobile.

The following code shows the Automobile class. (This le is stored in the Student Source

Code Folder Chapter 15\Automobile.)

Contents of Automobile.h

 1 #ifndef AUTOMOBILE_H

 2 #define AUTOMOBILE_H

 3 #include <string>

 4 using namespace std;

 5

 6 // The Automobile class holds general data

 7 // about an automobile in inventory.

 8 class Automobile

M15_GADD6253_07_SE_C15 Page 890 Wednesday, January 12, 2011 8:06 PM

15.3 Constructors and Destructors in Base and Derived Classes 891

 9 {

10 private:

11 string make; // The auto's make

12 int model; // The auto's year model

13 int mileage; // The auto's mileage

14 double price; // The auto's price

15

16 public:

17 // Default constructor

18 Automobile()

19 { make = "";

20 model = 0;

21 mileage = 0;

22 price = 0.0; }

23

24 // Constructor

25 Automobile(string autoMake, int autoModel,

26 int autoMileage, double autoPrice)

27 { make = autoMake;

28 model = autoModel;

29 mileage = autoMileage;

30 price = autoPrice; }

31

32 // Accessors

33 string getMake() const

34 { return make; }

35

36 int getModel() const

37 { return model; }

38

39 int getMileage() const

40 { return mileage; }

41

42 double getPrice() const

43 { return price; }

44 };

45 #endif

Notice that the class has a default constructor in lines 18 through 22, and a constructor that

accepts arguments for all of the class s attributes in lines 25 through 30. The Automobile

class is a complete class that we can create objects from. If we wish, we can write a program

that creates instances of the Automobile class. However, the Automobile class holds only

general data about an automobile. It does not hold any of the speci c pieces of data that the

dealership wants to keep about cars, pickup trucks, and SUVs. To hold data about those

speci c types of automobiles we will write derived classes that inherit from the Automobile

class. The following shows the code for the Car class. (This le is also stored in the Student

Source Code Folder Chapter 15\Automobile.)

Contents of Car.h

 1 #ifndef CAR_H

 2 #define CAR_H

 3 #include "Automobile.h"

 4 #include <string>

 5 using namespace std;

M15_GADD6253_07_SE_C15 Page 891 Wednesday, January 12, 2011 8:06 PM

892 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

 6

 7 // The Car class represents a car.

 8 class Car : public Automobile

 9 {

10 private:

11 int doors;

12

13 public:

14 // Default constructor

15 Car() : Automobile()

16 { doors = 0; }

17

18 // Constructor #2

19 Car(string carMake, int carModel, int carMileage,

20 double carPrice, int carDoors) :

21 Automobile(carMake, carModel, carMileage, carPrice)

22 { doors = carDoors; }

23

24 // Accessor for doors attribute

25 int getDoors()

26 { return doors; }

27 };

28 #endif

The Car class de nes a doors attribute in line 11 to hold the car s number of doors. The

class has a default constructor in lines 15 through 16 that sets the doors attribute to 0.

Notice in line 15 that the default constructor calls the Automobile class s default con-

structor, which initializes all of the inherited attributes to their default values.

The Car class also has an overloaded constructor, in lines 19 through 22, that accepts

arguments for the car s make, model, mileage, price, and number of doors. Line 21 calls

the Automobile class s constructor, passing the make, model, mileage, and price as argu-

ments. Line 22 sets the value of the doors attribute.

Now let s look at the Truck class, which also inherits from the Automobile class. (This

le is also stored in the Student Source Code Folder Chapter 15\Automobile.)

Contents of Truck.h

 1 #ifndef TRUCK_H

 2 #define TRUCK_H

 3 #include "Automobile.h"

 4 #include <string>

 5 using namespace std;

 6

 7 // The Truck class represents a truck.

 8 class Truck : public Automobile

 9 {

10 private:

11 string driveType;

12

13 public:

14 // Default constructor

15 Truck() : Automobile()

16 { driveType = ""; }

17

M15_GADD6253_07_SE_C15 Page 892 Wednesday, January 12, 2011 8:06 PM

15.3 Constructors and Destructors in Base and Derived Classes 893

18 // Constructor #2

19 Truck(string truckMake, int truckModel, int truckMileage,

20 double truckPrice, string truckDriveType) :

21 Automobile(truckMake, truckModel, truckMileage, truckPrice)

22 { driveType = truckDriveType; }

23

24 // Accessor for driveType attribute

25 string getDriveType()

26 { return driveType; }

27 };

28 #endif

The Truck class de nes a driveType attribute in line 11 to hold a string describing the

truck s drive type. The class has a default constructor in lines 15 through 16 that sets the

driveType attribute to an empty string. Notice in line 15 that the default constructor calls

the Automobile class s default constructor, which initializes all of the inherited attributes

to their default values.

The Truck class also has an overloaded constructor, in lines 19 through 22, that accepts

arguments for the truck s make, model, mileage, price, and drive type. Line 21 calls the

Automobile class s constructor, passing the make, model, mileage, and price as argu-

ments. Line 22 sets the value of the driveType attribute.

Now let s look at the SUV class, which also inherits from the Automobile class. (This le is

also stored in the Student Source Code Folder Chapter 15\Automobile.)

Contents of SUV.h

 1 #ifndef SUV_H

 2 #define SUV_H

 3 #include "Automobile.h"

 4 #include <string>

 5 using namespace std;

 6

 7 // The SUV class represents a SUV.

 8 class SUV : public Automobile

 9 {

10 private:

11 int passengers;

12

13 public:

14 // Default constructor

15 SUV() : Automobile()

16 { passengers = 0; }

17

18 // Constructor #2

19 SUV(string SUVMake, int SUVModel, int SUVMileage,

20 double SUVPrice, int SUVPassengers) :

21 Automobile(SUVMake, SUVModel, SUVMileage, SUVPrice)

22 { passengers = SUVPassengers; }

23

24 // Accessor for passengers attribute

25 int getPassengers()

26 { return passengers; }

27 };

28 #endif

M15_GADD6253_07_SE_C15 Page 893 Wednesday, January 12, 2011 8:06 PM

894 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

The SUV class de nes a passengers attribute in line 11 to hold the number of passengers

that the vehicle can accommodate. The class has a default constructor in lines 15 through

16 that sets the passengers attribute to 0. Notice in line 15 that the default constructor

calls the Automobile class s default constructor, which initializes all of the inherited

attributes to their default values.

The SUV class also has an overloaded constructor, in lines 19 through 22, that accepts

arguments for the SUV s make, model, mileage, price, and number of passengers. Line 21

calls the Automobile class s constructor, passing the make, model, mileage, and price as

arguments. Line 22 sets the value of the passengers attribute.

Program 15-6 demonstrates each of the derived classes. It creates a Car object, a Truck

object, and an SUV object. (This le is also stored in the Student Source Code Folder

Chapter 15\Automobile.)

Program 15-6

 1 // This program demonstrates the Car, Truck, and SUV

 2 // classes that are derived from the Automobile class.

 3 #include <iostream>

 4 #include <iomanip>

 5 #include "Car.h"

 6 #include "Truck.h"

 7 #include "SUV.h"

 8 using namespace std;

 9

 10 int main()

 11 {

 12 // Create a Car object for a used 2007 BMW with

 13 // 50,000 miles, priced at $15,000, with 4 doors.

 14 Car car("BMW", 2007, 50000, 15000.0, 4);

 15

 16 // Create a Truck object for a used 2006 Toyota

 17 // pickup with 40,000 miles, priced at $12,000,

 18 // with 4-wheel drive.

 19 Truck truck("Toyota", 2006, 40000, 12000.0, "4WD");

 20

 21 // Create an SUV object for a used 2005 Volvo

 22 // with 30,000 miles, priced at $18,000, with

 23 // 5 passenger capacity.

 24 SUV suv("Volvo", 2005, 30000, 18000.0, 5);

 25

 26 // Display the automobiles we have in inventory.

 27 cout << fixed << showpoint << setprecision(2);

 28 cout << "We have the following car in inventory:\n"

 29 << car.getModel() << " " << car.getMake()

 30 << " with " << car.getDoors() << " doors and "

 31 << car.getMileage() << " miles.\nPrice: $"

 32 << car.getPrice() << endl << endl;

 33

M15_GADD6253_07_SE_C15 Page 894 Wednesday, January 12, 2011 8:06 PM

15.3 Constructors and Destructors in Base and Derived Classes 895

Checkpoint

 www.myprogramminglab.com

15.7 What will the following program display?

#include <iostream>

using namespace std;

class Sky

{

public:

 Sky()

 { cout << "Entering the sky.\n"; }

 ~Sky()

 { cout << "Leaving the sky.\n"; }

};

class Ground : public Sky

{

public:

 Ground()

 { cout << "Entering the Ground.\n"; }

 ~Ground()

 { cout << "Leaving the Ground.\n"; }

};

 34 cout << "We have the following truck in inventory:\n"

 35 << truck.getModel() << " " << truck.getMake()

 36 << " with " << truck.getDriveType()

 37 << " drive type and " << truck.getMileage()

 38 << " miles.\nPrice: $" << truck.getPrice()

 39 << endl << endl;

 40

 41 cout << "We have the following SUV in inventory:\n"

 42 << suv.getModel() << " " << suv.getMake()

 43 << " with " << suv.getMileage() << " miles and "

 44 << suv.getPassengers() << " passenger capacity.\n"

 45 << "Price: $" << suv.getPrice() << endl;

 46

 47 return 0;

 48 }

Program Output

We have the following car in inventory:

2007 BMW with 4 doors and 50000 miles.

Price: $15000.00

We have the following truck in inventory:

2006 Toyota with 4WD drive type and 40000 miles.

Price: $12000.00

We have the following SUV in inventory:

2005 Volvo with 30000 miles and 5 passenger capacity.

Price: $18000.00

15.3 Constructors and Destructors in Base and Derived Classes

M15_GADD6253_07_SE_C15 Page 895 Wednesday, January 12, 2011 8:06 PM

896 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

int main()

{

 Ground object;

 return 0;

}

15.8 What will the following program display?

#include <iostream>

using namespace std;

class Sky

{

public:

 Sky()

 { cout << "Entering the sky.\n"; }

 Sky(string color)

 { cout << "The sky is " << color << endl; }

 ~Sky()

 { cout << "Leaving the sky.\n"; }

};

class Ground : public Sky

{

public:

 Ground()

 { cout << "Entering the Ground.\n"; }

 Ground(string c1, string c2) : Sky(c1)

 { cout << "The ground is " << c2 << endl; }

 ~Ground()

 { cout << "Leaving the Ground.\n"; }

};

int main()

{

 Ground object;

 return 0;

}

15.4 Rede ning Base Class Functions

CONCEPT: A base class member function may be rede ned in a derived class.

Inheritance is commonly used to extend a class or give it additional capabilities. Some-

times it may be helpful to overload a base class function with a function of the same name

in the derived class. For example, recall the GradedActivity class that was presented

earlier in this chapter:

class GradedActivity

{

protected:

 char letter; // To hold the letter grade

 double score; // To hold the numeric score

 void determineGrade(); // Determines the letter grade

VideoNote

Rede ning

a Base Class

Function in a

Derived Class

M15_GADD6253_07_SE_C15 Page 896 Wednesday, January 12, 2011 8:06 PM

15.4 Redefining Base Class Functions 897

public:

 // Default constructor

 GradedActivity()

 { letter = ' '; score = 0.0; }

 // Mutator function

 void setScore(double s)

 { score = s;

 determineGrade();}

 // Accessor functions

 double getScore() const

 { return score; }

 char getLetterGrade() const

 { return letter; }

};

This class holds a numeric score and determines a letter grade based on that score. The

setScore member function stores a value in score, then calls the determineGrade mem-

ber function to determine the letter grade.

Suppose a teacher wants to curve a numeric score before the letter grade is determined.

For example, Dr. Harrison determines that in order to curve the grades in her class she

must multiply each student s score by a certain percentage. This gives an adjusted score,

which is used to determine the letter grade.

The following CurvedActivity class is derived from the GradedActivity class. It mul-

tiplies the numeric score by a percentage, and passes that value as an argument to the

base class s setScore function. (This le is stored in the Student Source Code Folder

Chapter 15\CurvedActivity.)

Contents of CurvedActivity.h

 1 #ifndef CURVEDACTIVITY_H

 2 #define CURVEDACTIVITY_H

 3 #include "GradedActivity.h"

 4

 5 class CurvedActivity : public GradedActivity

 6 {

 7 protected:

 8 double rawScore; // Unadjusted score

 9 double percentage; // Curve percentage

10 public:

11 // Default constructor

12 CurvedActivity() : GradedActivity()

13 { rawScore = 0.0; percentage = 0.0; }

14

15 // Mutator functions

16 void setScore(double s)

17 { rawScore = s;

18 GradedActivity::setScore(rawScore * percentage); }

19

M15_GADD6253_07_SE_C15 Page 897 Wednesday, January 12, 2011 8:06 PM

898 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

20 void setPercentage(double c)

21 { percentage = c; }

22

23 // Accessor functions

24 double getPercentage() const

25 { return percentage; }

26

27 double getRawScore() const

28 { return rawScore; }

29 };

30 #endif

This CurvedActivity class has the following member variables:

rawScore This variable holds the student s unadjusted score.

percentage This variable holds the value that the unadjusted score

must be multiplied by to get the curved score.

It also has the following member functions:

A default constructor that calls the GradedActivity default constructor, then

sets rawScore and percentage to 0.0.

setScore This function accepts an argument that is the student s

unadjusted score. The function stores the argument in the

rawScore variable, then passes rawScore * percentage

as an argument to the base class s setScore function.

setPercentage This function stores a value in the percentage variable.

getPercentage This function returns the value in the percentage variable.

getRawScore This function returns the value in the rawScore variable.

Notice that the CurvedActivity class has a setScore member function. This function

has the same name as one of the base class member functions. When a derived class s

member function has the same name as a base class member function, it is said that the

derived class function rede nes the base class function. When an object of the derived

class calls the function, it calls the derived class s version of the function.

There is a distinction between rede ning a function and overloading a function. An over-

loaded function is one with the same name as one or more other functions, but with a dif-

ferent parameter list. The compiler uses the arguments passed to the function to tell which

version to call. Overloading can take place with regular functions that are not members of

a class. Overloading can also take place inside a class when two or more member func-

tions of the same class have the same name. These member functions must have different

parameter lists for the compiler to tell them apart in function calls.

Rede ning happens when a derived class has a function with the same name as a base

class function. The parameter lists of the two functions can be the same because the

derived class function is always called by objects of the derived class type.

NOTE: Although we are not using the CurvedActivity class as a base class, it still has

a protected member section. This is because we might want to use the CurvedActivity

class itself as a base class, as you will see in the next section.

M15_GADD6253_07_SE_C15 Page 898 Wednesday, January 12, 2011 8:06 PM

15.4 Redefining Base Class Functions 899

Let s continue our look at the CurvedActivity class. Here is the setScore member

function:

void setScore(double s)

 { rawScore = s;

 GradedActivity::setScore(rawScore * percentage); }

This function accepts an argument that should be the student s unadjusted numeric score,

into the parameter s. This value is stored in the rawScore variable. Then the following

statement is executed:

GradedActivity::setScore(rawScore * percentage);

This statement calls the base class s version of the setScore function with the expression

rawScore * percentage passed as an argument. Notice that the name of the base class

and the scope resolution operator precede the name of the function. This speci es that the

base class s version of the setScore function is being called. A derived class function may

call a base class function of the same name using this notation, which takes this form:

Program 15-7 shows the GradedActivity and CurvedActivity classes used in a com-

plete program. (This le is stored in the Student Source Code Folder Chapter 15\

CurvedActivity.)

 BaseClassName::functionName(ArgumentList);

Program 15-7

 1 // This program demonstrates a class that redefines

 2 // a base class function.

 3 #include <iostream>

 4 #include <iomanip>

 5 #include "CurvedActivity.h"

 6 using namespace std;

 7

 8 int main()

 9 {

 10 double numericScore; // To hold the numeric score

 11 double percentage; // To hold curve percentage

 12

 13 // Define a CurvedActivity object.

 14 CurvedActivity exam;

 15

 16 // Get the unadjusted score.

 17 cout << "Enter the student's raw numeric score: ";

 18 cin >> numericScore;

 19

 20 // Get the curve percentage.

 21 cout << "Enter the curve percentage for this student: ";

 22 cin >> percentage;

 23

 24 // Send the values to the exam object.

 25 exam.setPercentage(percentage);

 26 exam.setScore(numericScore);

 27

(program continues)

M15_GADD6253_07_SE_C15 Page 899 Wednesday, January 12, 2011 8:06 PM

900 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

It is important to note that even though a derived class may rede ne a function in the base

class, objects that are de ned of the base class type still call the base class version of the

function. This is demonstrated in Program 15-8.

 28 // Display the grade data.

 29 cout << fixed << setprecision(2);

 30 cout << "The raw score is "

 31 << exam.getRawScore() << endl;

 32 cout << "The curved score is "

 33 << exam.getScore() << endl;

 34 cout << "The curved grade is "

 35 << exam.getLetterGrade() << endl;

 36

 37 return 0;

 38 }

Program Output with Example Input Shown in Bold

Enter the student's raw numeric score: 87 [Enter]
Enter the curve percentage for this student: 1.06 [Enter]
The raw score is 87.00

The curved score is 92.22

The curved grade is A

Program 15-8

 1 // This program demonstrates that when a derived class function

 2 // overrides a base class function, objects of the base class

 3 // still call the base class version of the function.

 4 #include <iostream>

 5 using namespace std;

 6

 7 class BaseClass

 8 {

 9 public:

 10 void showMessage()

 11 { cout << "This is the Base class.\n"; }

 12 };

 13

 14 class DerivedClass : public BaseClass

 15 {

 16 public:

 17 void showMessage()

 18 { cout << "This is the Derived class.\n"; }

 19 };

 20

 21 int main()

 22 {

 23 BaseClass b;

 24 DerivedClass d;

 25

Program 15-7 (continued)

M15_GADD6253_07_SE_C15 Page 900 Wednesday, January 12, 2011 8:06 PM

15.5 Class Hierarchies 901

In Program 15-8, a class named BaseClass is declared with a member function named

showMessage. A class named DerivedClass is then declared, also with a showMessage

member function. As their names imply, DerivedClass is derived from BaseClass. Two

objects, b and d, are de ned in function main. The object b is a BaseClass object and d is

a DerivedClass object. When b is used to call the showMessage function, it is the

BaseClass version that is executed. Likewise, when d is used to call showMessage, the

DerivedClass version is used.

15.5 Class Hierarchies

CONCEPT: A base class can also be derived from another class.

Sometimes it is desirable to establish a hierarchy of classes in which one class inherits from

a second class, which in turn inherits from a third class, as illustrated by Figure 15-4. In

some cases, the inheritance of classes goes on for many layers.

 26 b.showMessage();

 27 d.showMessage();

 28

 29 return 0;

 30 }

Program Output

This is the Base class.

This is the Derived class.

Figure 15-4

ClassA

ClassB

ClassC

M15_GADD6253_07_SE_C15 Page 901 Wednesday, January 12, 2011 8:06 PM

902 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

In Figure 15-4, ClassC inherits ClassB s members, including the ones that ClassB inher-

ited from ClassA. Let s look at an example of such a chain of inheritance. Consider the

following PassFailActivity class, which inherits from the GradedActivity class. The

class is intended to determine a letter grade of P for passing, or F for failing. (This le is

stored in the Student Source Code Folder Chapter 15\PassFailActivity.)

Contents of PassFailActivity.h

 1 #ifndef PASSFAILACTIVITY_H

 2 #define PASSFAILACTIVITY_H

 3 #include "GradedActivity.h"

 4

 5 class PassFailActivity : public GradedActivity

 6 {

 7 protected:

 8 double minPassingScore; // Minimum passing score.

 9 public:

10 // Default constructor

11 PassFailActivity() : GradedActivity()

12 { minPassingScore = 0.0; }

13

14 // Constructor

15 PassFailActivity(double mps) : GradedActivity()

16 { minPassingScore = mps; }

17

18 // Mutator

19 void setMinPassingScore(double mps)

20 { minPassingScore = mps; }

21

22 // Accessors

23 double getMinPassingScore() const

24 { return minPassingScore; }

25

26 char getLetterGrade() const;

27 };

28 #endif

The PassFailActivity class has a private member variable named minPassingScore.

This variable holds the minimum passing score for an activity. The default constructor, in

lines 11 through 12, sets minPassingScore to 0.0. An overloaded constructor in lines 15

through 16 accepts a double argument that is the minimum passing grade for the activ-

ity. This value is stored in the minPassingScore variable. The getLetterGrade member

function is de ned in the following PassFailActivity.cpp le. (This le is also stored in

the Student Source Code Folder Chapter 15\PassFailActivity.)

Contents of PassFailActivity.cpp

 1 #include "PassFailActivity.h"

 2

 3 //**

 4 // Member function PassFailActivity::getLetterGrade *

 5 // This function returns 'P' if the score is passing, *

 6 // otherwise it returns 'F'. *

 7 //**

M15_GADD6253_07_SE_C15 Page 902 Wednesday, January 12, 2011 8:06 PM

15.5 Class Hierarchies 903

 8

 9 char PassFailActivity::getLetterGrade() const

10 {

11 char letterGrade;

12

13 if (score >= minPassingScore)

14 letterGrade = 'P';

15 else

16 letterGrade = 'F';

17

18 return letterGrade;

19 }

This getLetterGrade member function rede nes the getLetterGrade member function

of GradedActivity class. This version of the function returns a grade of 'P' if the

numeric score is greater than or equal to minPassingScore. Otherwise, the function

returns a grade of 'F'.

The PassFailActivity class represents the general characteristics of a student s pass-or-

fail activity. There might be numerous types of pass-or-fail activities, however. Suppose we

need a more specialized class, such as one that determines a student s grade for a pass-or-

fail exam. The following PassFailExam class is an example. This class is derived from the

PassFailActivity class. It inherits all of the members of PassFailActivity, including

the ones that PassFailActivity inherits from GradedActivity. The PassFailExam

class calculates the number of points that each question on the exam is worth, as well as

the student s numeric score. (These les are stored in the Student Source Code Folder

Chapter 15\PassFailActivity.)

Contents of PassFailExam.h

 1 #ifndef PASSFAILEXAM_H

 2 #define PASSFAILEXAM_H

 3 #include "PassFailActivity.h"

 4

 5 class PassFailExam : public PassFailActivity

 6 {

 7 private:

 8 int numQuestions; // Number of questions

 9 double pointsEach; // Points for each question

10 int numMissed; // Number of questions missed

11 public:

12 // Default constructor

13 PassFailExam() : PassFailActivity()

14 { numQuestions = 0;

15 pointsEach = 0.0;

16 numMissed = 0; }

17

18 // Constructor

19 PassFailExam(int questions, int missed, double mps) :

20 PassFailActivity(mps)

21 { set(questions, missed); }

22

M15_GADD6253_07_SE_C15 Page 903 Wednesday, January 12, 2011 8:06 PM

904 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

23 // Mutator function

24 void set(int, int); // Defined in PassFailExam.cpp

25

26 // Accessor functions

27 double getNumQuestions() const

28 { return numQuestions; }

29

30 double getPointsEach() const

31 { return pointsEach; }

32

33 int getNumMissed() const

34 { return numMissed; }

35 };

36 #endif

Contents of PassFailExam.cpp

 1 #include "PassFailExam.h"

 2

 3 //**

 4 // set function *

 5 // The parameters are the number of questions and the *

 6 // number of questions missed. *

 7 //**

 8

 9 void PassFailExam::set(int questions, int missed)

10 {

11 double numericScore; // To hold the numeric score

12

13 // Set the number of questions and number missed.

14 numQuestions = questions;

15 numMissed = missed;

16

17 // Calculate the points for each question.

18 pointsEach = 100.0 / numQuestions;

19

20 // Calculate the numeric score for this exam.

21 numericScore = 100.0 - (missed * pointsEach);

22

23 // Call the inherited setScore function to set

24 // the numeric score.

25 setScore(numericScore);

26 }

The PassFailExam class inherits all of the PassFailActivity class s members, including

the ones that PassFailActivity inherited from GradedActivity. Because the public

base class access speci cation is used, all of the protected members of PassFailActivity

become protected members of PassFailExam, and all of the public members of

PassFailActivity become public members of PassFailExam. Table 15-2 lists all of

the member variables of the PassFailExam class, and Table 15-3 lists all the member

functions. These include the members that were inherited from the base classes.

M15_GADD6253_07_SE_C15 Page 904 Wednesday, January 12, 2011 8:06 PM

15.5 Class Hierarchies 905

Program 15-9 demonstrates the PassFailExam class. This le is also stored in the student

source code folder Chapter 15\PassFailActivity.

Table 15-2

Member Variable of the

PassFailExam Class Access Inherited?

numQuestions protected No

pointsEach protected No

numMissed protected No

minPassingScore protected Yes, from PassFailActivity

score protected Yes, from PassFailActivity, which inherited it from

GradedActivity

Table 15-3

Member Function of the

PassFailExam Class Access Inherited?

set public No

getNumQuestions public No

getPointsEach public No

getNumMissed public No

setMinPassingScore public Yes, from PassFailActivity

getMinPassingScore public Yes, from PassFailActivity

getLetterGrade public Yes, from PassFailActivity

setScore public Yes, from PassFailActivity, which inherited it from

GradedActivity

getScore public Yes, from PassFailActivity, which inherited it from

GradedActivity

Program 15-9

 1 // This program demonstrates the PassFailExam class.

 2 #include <iostream>

 3 #include <iomanip>

 4 #include "PassFailExam.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int questions; // Number of questions

 10 int missed; // Number of questions missed

 11 double minPassing; // The minimum passing score

 12

 13 // Get the number of questions on the exam.

 14 cout << "How many questions are on the exam? ";

 15 cin >> questions;

 16

(program continues)

M15_GADD6253_07_SE_C15 Page 905 Wednesday, January 12, 2011 8:06 PM

906 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

This program uses the PassFailExam object to call the getLetterGrade member func-

tion in line 37. Recall that the PassFailActivity class rede nes the getLetterGrade

function to report only grades of P or F . Because the PassFailExam class is derived

from the PassFailActivity class, it inherits the rede ned getLetterGrade function.

Software designers often use class hierarchy diagrams. Like a family tree, a class hierarchy

diagram shows the inheritance relationships between classes. Figure 15-5 shows a class

hierarchy for the GradedActivity, FinalExam, PassFailActivity, and PassFailExam

classes. The more general classes are toward the top of the tree and the more specialized

classes are toward the bottom.

 17 // Get the number of questions the student missed.

 18 cout << "How many questions did the student miss? ";

 19 cin >> missed;

 20

 21 // Get the minimum passing score.

 22 cout << "Enter the minimum passing score for this test: ";

 23 cin >> minPassing;

 24

 25 // Define a PassFailExam object.

 26 PassFailExam exam(questions, missed, minPassing);

 27

 28 // Display the test results.

 29 cout << fixed << setprecision(1);

 30 cout << "\nEach question counts "

 31 << exam.getPointsEach() << " points.\n";

 32 cout << "The minimum passing score is "

 33 << exam.getMinPassingScore() << endl;

 34 cout << "The student's exam score is "

 35 << exam.getScore() << endl;

 36 cout << "The student's grade is "

 37 << exam.getLetterGrade() << endl;

 38 return 0;

 39 }

Program Output with Example Input Shown in Bold

How many questions are on the exam? 100 [Enter]
How many questions did the student miss? 25 [Enter]
Enter the minimum passing score for this test: 60 [Enter]

Each question counts 1.0 points.

The minimum passing score is 60.0

The student's exam score is 75.0

The student's grade is P

Program 15-9 (continued)

M15_GADD6253_07_SE_C15 Page 906 Wednesday, January 12, 2011 8:06 PM

15.6 Polymorphism and Virtual Member Functions 907

15.6 Polymorphism and Virtual Member Functions

CONCEPT: Polymorphism allows an object reference variable or an object pointer to

reference objects of different types, and to call the correct member

functions, depending upon the type of object being referenced.

Look at the following code for a function named displayGrade:

void displayGrade(const GradedActivity &activity)

{

 cout << setprecision(1) << fixed;

 cout << "The activity's numeric score is "

 << activity.getScore() << endl;

 cout << "The activity's letter grade is "

 << activity.getLetterGrade() << endl;

}

This function uses a const GradedActivity reference variable as its parameter. When a

GradedActivity object is passed as an argument to this function, the function calls the

object s getScore and getLetterGrade member functions to display the numeric score

and letter grade. The following code shows how we might call the function.

GradedActivity test(88.0); // The score is 88

displayGrade(test); // Pass test to displayGrade

This code will produce the following output:

The activity's numeric score is 88.0

The activity's letter grade is B

Recall that the GradedActivity class is also the base class for the FinalExam class.

Because of the is-a relationship between a base class and a derived class, an object of the

FinalExam class is not just a FinalExam object. It is also a GradedActivity object.

Figure 15-5

GradedActivity

FinalExam

PassFailExam

PassFailActivity

VideoNote

Polymorphism

M15_GADD6253_07_SE_C15 Page 907 Wednesday, January 12, 2011 8:06 PM

908 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

(A nal exam is a graded activity.) Because of this relationship, we can also pass a

FinalExam object to the displayGrade function. For example, look at the following code:

// There are 100 questions. The student missed 25.

FinalExam test2(100, 25);

displayGrade(test2);

This code will produce the following output:

The activity's numeric score is 75.0

The activity's letter grade is C

Because the parameter in the displayGrade function is a GradedActivity reference vari-

able, it can reference any object that is derived from GradedActivity. A problem can occur

with this type of code, however, when rede ned member functions are involved. For exam-

ple, recall that the PassFailActivity class is derived from the GradedActivity class.

The PassFailActivity class rede nes the getLetterGrade function. Although we can

pass a PassFailActivity object as an argument to the displayGrade function, we will

not get the results we wish. This is demonstrated in Program 15-10. (This le is stored in the

Student Source Code Folder Chapter 15\PassFailActivity.)

Program 15-10

 1 #include <iostream>

 2 #include <iomanip>

 3 #include "PassFailActivity.h"

 4 using namespace std;

 5

 6 // Function prototype

 7 void displayGrade(const GradedActivity &);

 8

 9 int main()

 10 {

 11 // Create a PassFailActivity object. Minimum passing

 12 // score is 70.

 13 PassFailActivity test(70);

 14

 15 // Set the score to 72.

 16 test.setScore(72);

 17

 18 // Display the object's grade data. The letter grade

 19 // should be 'P'. What will be displayed?

 20 displayGrade(test);

 21 return 0;

 22 }

 23

 24 //***

 25 // The displayGrade function displays a GradedActivity object's *

 26 // numeric score and letter grade. *

 27 //***

 28

 29 void displayGrade(const GradedActivity &activity)

M15_GADD6253_07_SE_C15 Page 908 Wednesday, January 12, 2011 8:06 PM

15.6 Polymorphism and Virtual Member Functions 909

As you can see from the example output, the getLetterGrade member function returned

C instead of P . This is because the GradedActivity class s getLetterGrade function

was executed instead of the PassFailActivity class s version of the function.

This behavior happens because of the way C++ matches function calls with the correct

function. This process is known as binding. In Program 15-10, C++ decides at compile

time which version of the getLetterGrade function to execute when it encounters the

call to the function in line 35. Even though we passed a PassFailActivity object to the

displayGrade function, the activity parameter in the displayGrade function is a

GradedActivity reference variable. Because it is of the GradedActivity type, the com-

piler binds the function call in line 35 with the GradedActivity class s getLetterGrade

function. When the program executes, it has already been determined by the compiler that

the GradedActivity class s getLetterGrade function will be called. The process of

matching a function call with a function at compile time is called static binding.

To remedy this, the getLetterGrade function can be made virtual. A virtual function is a

member function that is dynamically bound to function calls. In dynamic binding, C++

determines which function to call at runtime, depending on the type of the object responsi-

ble for the call. If a GradedActivity object is responsible for the call, C++ will execute the

GradedActivity::getLetterGrade function. If a PassFailActivity object is responsi-

ble for the call, C++ will execute the PassFailActivity::getLetterGrade function.

Virtual functions are declared by placing the key word virtual before the return type in

the base class s function declaration, such as

virtual char getLetterGrade() const;

This declaration tells the compiler to expect getLetterGrade to be rede ned in a derived

class. The compiler does not bind calls to the function with the actual function. Instead, it

allows the program to bind calls, at runtime, to the version of the function that belongs to

the same class as the object responsible for the call.

The following code shows an updated version of the GradedActivity class, with the

getLetterGrade function declared virtual. This le is stored in the Student Source

Code Folder Chapter 15\GradedActivity Version 3. The GradedActivity.cpp le

has not changed, so it is not shown again.

 30 {

 31 cout << setprecision(1) << fixed;

 32 cout << "The activity's numeric score is "

 33 << activity.getScore() << endl;

 34 cout << "The activity's letter grade is "

 35 << activity.getLetterGrade() << endl;

 36 }

Program Output

The activity's numeric score is 72.0

The activity's letter grade is C

NOTE: You place the virtual key word only in the function s declaration or prototype.

If the function is de ned outside the class, you do not place the virtual key word in the

function header.

M15_GADD6253_07_SE_C15 Page 909 Wednesday, January 12, 2011 8:06 PM

910 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Contents of GradedActivity.h (Version 3)

 1 #ifndef GRADEDACTIVITY_H

 2 #define GRADEDACTIVITY_H

 3

 4 // GradedActivity class declaration

 5

 6 class GradedActivity

 7 {

 8 protected:

 9 double score; // To hold the numeric score

10 public:

11 // Default constructor

12 GradedActivity()

13 { score = 0.0; }

14

15 // Constructor

16 GradedActivity(double s)

17 { score = s; }

18

19 // Mutator function

20 void setScore(double s)

21 { score = s; }

22

23 // Accessor functions

24 double getScore() const

25 { return score; }

26

27 virtual char getLetterGrade() const;

28 };

29 #endif

The only change we have made to this class is to declare getLetterGrade as virtual

in line 27. This tells the compiler not to bind calls to getLetterGrade with the func-

tion at compile time. Instead, calls to the function will be bound dynamically to the

function at runtime.

When a member function is declared virtual in a base class, any rede ned versions of the

function that appear in derived classes automatically become virtual. So, it is not neces-

sary to declare the getLetterGrade function in the PassFailActivity class as virtual.

It is still a good idea to declare the function virtual in the PassFailActivity class for

documentation purposes. A new version of the PassFailActivity class is shown here.

This le is stored in the Student Source Code Folder Chapter 15\GradedActivity

Version 3. The PassFailActivity.cpp le has not changed, so it is not shown again.

Contents of PassFailActivity.h

 1 #ifndef PASSFAILACTIVITY_H

 2 #define PASSFAILACTIVITY_H

 3 #include "GradedActivity.h"

 4

 5 class PassFailActivity : public GradedActivity

M15_GADD6253_07_SE_C15 Page 910 Wednesday, January 12, 2011 8:06 PM

15.6 Polymorphism and Virtual Member Functions 911

 6 {

 7 protected:

 8 double minPassingScore; // Minimum passing score

 9 public:

10 // Default constructor

11 PassFailActivity() : GradedActivity()

12 { minPassingScore = 0.0; }

13

14 // Constructor

15 PassFailActivity(double mps) : GradedActivity()

16 { minPassingScore = mps; }

17

18 // Mutator

19 void setMinPassingScore(double mps)

20 { minPassingScore = mps; }

21

22 // Accessors

23 double getMinPassingScore() const

24 { return minPassingScore; }

25

26 virtual char getLetterGrade() const;

27 };

28 #endif

The only change we have made to this class is to declare getLetterGrade as virtual in

line 26. Program 15-11 is identical to Program 15-10, except it uses the corrected version

of the GradedActivity and PassFailActivity classes. This le is also stored in the

student source code folder Chapter 15\GradedActivity Version 3.

Program 15-11

 1 #include <iostream>

 2 #include <iomanip>

 3 #include "PassFailActivity.h"

 4 using namespace std;

 5

 6 // Function prototype

 7 void displayGrade(const GradedActivity &);

 8

 9 int main()

 10 {

 11 // Create a PassFailActivity object. Minimum passing

 12 // score is 70.

 13 PassFailActivity test(70);

 14

 15 // Set the score to 72.

 16 test.setScore(72);

 17

 18 // Display the object's grade data. The letter grade

 19 // should be 'P'. What will be displayed?

 20 displayGrade(test);

 21 return 0;

 22 }

(program continues)

M15_GADD6253_07_SE_C15 Page 911 Wednesday, January 12, 2011 8:06 PM

912 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Now that the getLetterGrade function is declared virtual, the program works prop-

erly. This type of behavior is known as polymorphism. The term polymorphism means the

ability to take many forms. Program 15-12 demonstrates polymorphism by passing

objects of the GradedActivity and PassFailExam classes to the displayGrade func-

tion. This le is stored in the Student Source Code Folder Chapter 15\GradedActivity

Version 3.

 23

 24 //***

 25 // The displayGrade function displays a GradedActivity object's *

 26 // numeric score and letter grade. *

 27 //***

 28

 29 void displayGrade(const GradedActivity &activity)

 30 {

 31 cout << setprecision(1) << fixed;

 32 cout << "The activity's numeric score is "

 33 << activity.getScore() << endl;

 34 cout << "The activity's letter grade is "

 35 << activity.getLetterGrade() << endl;

 36 }

Program Output

The activity's numeric score is 72.0

The activity's letter grade is P

Program 15-12

 1 #include <iostream>

 2 #include <iomanip>

 3 #include "PassFailExam.h"

 4 using namespace std;

 5

 6 // Function prototype

 7 void displayGrade(const GradedActivity &);

 8

 9 int main()

 10 {

 11 // Create a GradedActivity object. The score is 88.

 12 GradedActivity test1(88.0);

 13

 14 // Create a PassFailExam object. There are 100 questions,

 15 // the student missed 25 of them, and the minimum passing

 16 // score is 70.

 17 PassFailExam test2(100, 25, 70.0);

 18

 19 // Display the grade data for both objects.

 20 cout << "Test 1:\n";

 21 displayGrade(test1); // GradedActivity object

 22 cout << "\nTest 2:\n";

Program 15-11 (continued)

M15_GADD6253_07_SE_C15 Page 912 Wednesday, January 12, 2011 8:06 PM

15.6 Polymorphism and Virtual Member Functions 913

Polymorphism Requires References or Pointers

The displayGrade function in Programs 15-11 and 15-12 uses a GradedActivity refer-

ence variable as its parameter. When we call the function, we pass an object by reference.

Polymorphic behavior is not possible when an object is passed by value, however. For

example, suppose the displayGrade function had been written as shown here:

// Polymorphic behavior is not possible with this function.

void displayGrade(const GradedActivity activity)

{

 cout << setprecision(1) << fixed;

 cout << "The activity's numeric score is "

 << activity.getScore() << endl;

 cout << "The activity's letter grade is "

 << activity.getLetterGrade() << endl;

}

In this version of the function the activity parameter is an object variable, not a refer-

ence variable. Suppose we call this version of the function with the following code:

// Create a GradedActivity object. The score is 88.

GradedActivity test1(88.0);

// Create a PassFailExam object. There are 100 questions,

// the student missed 25 of them, and the minimum passing

// score is 70.

PassFailExam test2(100, 25, 70.0);

 23 displayGrade(test2); // PassFailExam object

 24 return 0;

 25 }

 26

 27 //***

 28 // The displayGrade function displays a GradedActivity object's *

 29 // numeric score and letter grade. *

 30 //***

 31

 32 void displayGrade(const GradedActivity &activity)

 33 {

 34 cout << setprecision(1) << fixed;

 35 cout << "The activity's numeric score is "

 36 << activity.getScore() << endl;

 37 cout << "The activity's letter grade is "

 38 << activity.getLetterGrade() << endl;

 39 }

Program Output

Test 1:

The activity's numeric score is 88.0

The activity's letter grade is B

Test 2:

The activity's numeric score is 75.0

The activity's letter grade is P

M15_GADD6253_07_SE_C15 Page 913 Wednesday, January 12, 2011 8:06 PM

914 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

// Display the grade data for both objects.

cout << "Test 1:\n";

displayGrade(test1); // Pass the GradedActivity object

cout << "\nTest 2:\n";

displayGrade(&test2); // Pass the PassFailExam object

This code will produce the following output:

Test 1:

The activity's numeric score is 88.0

The activity's letter grade is B

Test 2:

The activity's numeric score is 75.0

The activity's letter grade is C

Even though the getLetterGrade function is declared virtual, static binding still takes

place because activity is not a reference variable or a pointer.

Alternatively we could have used a GradedActivity pointer in the displayGrade func-

tion, as shown in Program 15-13. This le is also stored in the Student Source Code

Folder Chapter 15\GradedActivity Version 3.

Program 15-13

 1 #include <iostream>

 2 #include <iomanip>

 3 #include "PassFailExam.h"

 4 using namespace std;

 5

 6 // Function prototype

 7 void displayGrade(const GradedActivity *);

 8

 9 int main()

 10 {

 11 // Create a GradedActivity object. The score is 88.

 12 GradedActivity test1(88.0);

 13

 14 // Create a PassFailExam object. There are 100 questions,

 15 // the student missed 25 of them, and the minimum passing

 16 // score is 70.

 17 PassFailExam test2(100, 25, 70.0);

 18

 19 // Display the grade data for both objects.

 20 cout << "Test 1:\n";

 21 displayGrade(&test1); // Address of the GradedActivity object

 22 cout << "\nTest 2:\n";

 23 displayGrade(&test2); // Address of the PassFailExam object

 24 return 0;

 25 }

 26

 27 //***

 28 // The displayGrade function displays a GradedActivity object's *

 29 // numeric score and letter grade. This version of the function *

 30 // uses a GradedActivity pointer as its parameter. *

 31 //***

M15_GADD6253_07_SE_C15 Page 914 Wednesday, January 12, 2011 8:06 PM

15.6 Polymorphism and Virtual Member Functions 915

Base Class Pointers

Pointers to a base class may be assigned the address of a derived class object. For example,

look at the following code:

GradedActivity *exam = new PassFailExam(100, 25, 70.0);

This statement dynamically allocates a PassFailExam object and assigns its address to

exam, which is a GradedActivity pointer. We can then use the exam pointer to call member

functions, as shown here:

cout << exam->getScore() << endl;

cout << exam->getLetterGrade() << endl;

Program 15-14 is an example that uses base class pointers to reference derived class

objects. This le is also stored in the Student Source Code Folder Chapter 15\

GradedActivity Version 3.

 32

 33 void displayGrade(const GradedActivity *activity)

 34 {

 35 cout << setprecision(1) << fixed;

 36 cout << "The activity's numeric score is "

 37 << activity->getScore() << endl;

 38 cout << "The activity's letter grade is "

 39 << activity->getLetterGrade() << endl;

 40 }

Program Output

Test 1:

The activity's numeric score is 88.0

The activity's letter grade is B

Test 2:

The activity's numeric score is 75.0

The activity's letter grade is P

Program 15-14

 1 #include <iostream>

 2 #include <iomanip>

 3 #include "PassFailExam.h"

 4 using namespace std;

 5

 6 // Function prototype

 7 void displayGrade(const GradedActivity *);

 8

 9 int main()

 10 {

 11 // Constant for the size of an array.

 12 const int NUM_TESTS = 4;

 13

(program continues)

M15_GADD6253_07_SE_C15 Page 915 Wednesday, January 12, 2011 8:06 PM

916 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

 14 // tests is an array of GradedActivity pointers.

 15 // Each element of tests is initialized with the

 16 // address of a dynamically allocated object.

 17 GradedActivity *tests[NUM_TESTS] =

 18 { new GradedActivity(88.0),

 19 new PassFailExam(100, 25, 70.0),

 20 new GradedActivity(67.0),

 21 new PassFailExam(50, 12, 60.0)

 22 };

 23

 24 // Display the grade data for each element in the array.

 25 for (int count = 0; count < NUM_TESTS; count++)

 26 {

 27 cout << "Test #" << (count + 1) << ":\n";

 28 displayGrade(tests[count]);

 29 cout << endl;

 30 }

 31 return 0;

 32 }

 33

 34 //***

 35 // The displayGrade function displays a GradedActivity object's *

 36 // numeric score and letter grade. This version of the function *

 37 // uses a GradedActivity pointer as its parameter. *

 38 //***

 39

 40 void displayGrade(const GradedActivity *activity)

 41 {

 42 cout << setprecision(1) << fixed;

 43 cout << "The activity's numeric score is "

 44 << activity->getScore() << endl;

 45 cout << "The activity's letter grade is "

 46 << activity->getLetterGrade() << endl;

 47 }

Program Output

Test #1:

The activity's numeric score is 88.0

The activity's letter grade is B

Test #2:

The activity's numeric score is 75.0

The activity's letter grade is P

Test #3:

The activity's numeric score is 67.0

The activity's letter grade is D

Test #4:

The activity's numeric score is 76.0

The activity's letter grade is P

Program 15-14 (continued)

M15_GADD6253_07_SE_C15 Page 916 Wednesday, January 12, 2011 8:06 PM

15.6 Polymorphism and Virtual Member Functions 917

Let s take a closer look at this program. An array named tests is de ned in lines 17

through 22. This is an array of GradedActivity pointers. The array elements are initial-

ized with the addresses of dynamically allocated objects. The tests[0] element is initial-

ized with the address of the GradedActivity object returned from this expression:

new GradedActivity(88.0)

The tests[1] element is initialized with the address of the GradedActivity object

returned from this expression:

new PassFailExam(100, 25, 70.0)

The tests[2] element is initialized with the address of the GradedActivity object

returned from this expression:

new GradedActivity(67.0)

Finally, the tests[3] element is initialized with the address of the GradedActivity

object returned from this expression:

new PassFailExam(50, 12, 60.0)

Although each element in the array is a GradedActivity pointer, some of the elements

point to GradedActivity objects and some point to PassFailExam objects. The loop

in lines 25 through 30 steps through the array, passing each pointer element to the

displayGrade function.

Base Class Pointers and References Know Only
About Base Class Members

Although a base class pointer can reference objects of any class that derives from the base

class, there are limits to what the pointer can do with those objects. Recall that the

GradedActivity class has, other than its constructors, only three member functions:

setScore, getScore, and getLetterGrade. So, a GradedActivity pointer can be used

to call only those functions, regardless of the type of object it points to. For example, look

at the following code.

GradedActivity *exam = new PassFailExam(100, 25, 70.0);

cout << exam->getScore() << endl; // This works.

cout << exam->getLetterGrade() << endl; // This works.

cout << exam->getPointsEach() << endl; // ERROR! Won't work!

In this code, exam is a GradedActivity pointer, and is assigned the address of a

PassFailExam object. The GradedActivity class has only the setScore, getScore, and

getLetterGrade member functions, so those are the only member functions that the exam

variable knows how to execute. The last statement in this code is a call to the

getPointsEach member function, which is de ned in the PassFailExam class. Because the

exam variable only knows about member functions in the GradedActivity class, it cannot

execute this function.

The Is-a Relationship Does Not Work in Reverse

It is important to note that the is-a relationship does not work in reverse. Although the

statement a nal exam is a graded activity is true, the statement a graded activity is a

M15_GADD6253_07_SE_C15 Page 917 Wednesday, January 12, 2011 8:06 PM

918 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

nal exam is not true. This is because not all graded activities are nal exams. Likewise,

not all GradedActivity objects are FinalExam objects. So, the following code will not

work.

// Create a GradedActivity object.

GradedActivity *gaPointer = new GradedActivity(88.0);

// Error! This will not work.

FinalExam *fePointer = gaPointer;

You cannot assign the address of a GradedActivity object to a FinalExam pointer. This

makes sense because FinalExam objects have capabilities that go beyond those of a

GradedActivity object. Interestingly, the C++ compiler will let you make such an assign-

ment if you use a type cast, as shown here:

// Create a GradedActivity object.

GradedActivity *gaPointer = new GradedActivity(88.0);

// This will work, but with limitations.

FinalExam *fePointer = static_cast<FinalExam *>(gaPointer);

After this code executes, the derived class pointer fePointer will be pointing to a base

class object. We can use the pointer to access members of the object, but only the members

that exist. The following code demonstrates:

// This will work. The object has a getScore function.

cout << fePointer->getScore() << endl;

// This will work. The object has a getLetterGrade function.

cout << fePointer->getLetterGrade() << endl;

// This will compile, but an error will occur at runtime.

// The object does not have a getPointsEach function.

cout << fePointer->getPointsEach() << endl;

In this code fePointer is a FinalExam pointer, and it points to a GradedActivity

object. The rst two cout statements work because the GradedActivity object has

getScore and a getLetterGrade member functions. The last cout statement will cause

an error, however, because it calls the getPointsEach member function. The

GradedActivity object does not have a getPointsEach member function.

Rede ning vs. Overriding

Earlier in this chapter you learned how a derived class can rede ne a base class member

function. When a class rede nes a virtual function, it is said that the class overrides the

function. In C++, the difference between overriding and rede ning base class functions is

that overridden functions are dynamically bound, and rede ned functions are statically

bound. Only virtual functions can be overridden.

Virtual Destructors

When you write a class with a destructor, and that class could potentially become a base

class, you should always declare the destructor virtual. This is because the compiler will

perform static binding on the destructor if it is not declared virtual. This can lead to

M15_GADD6253_07_SE_C15 Page 918 Wednesday, January 12, 2011 8:06 PM

15.6 Polymorphism and Virtual Member Functions 919

problems when a base class pointer or reference variable references a derived class object.

If the derived class has its own destructor, it will not execute when the object is destroyed

or goes out of scope. Only the base class destructor will execute. Program 15-15

demonstrates.

Program 15-15

 1 #include <iostream>

 2 using namespace std;

 3

 4 // Animal is a base class.

 5 class Animal

 6 {

 7 public:

 8 // Constructor

 9 Animal()

 10 { cout << "Animal constructor executing.\n"; }

 11

 12 // Destructor

 13 ~Animal()

 14 { cout << "Animal destructor executing.\n"; }

 15 };

 16

 17 // The Dog class is derived from Animal

 18 class Dog : public Animal

 19 {

 20 public:

 21 // Constructor

 22 Dog() : Animal()

 23 { cout << "Dog constructor executing.\n"; }

 24

 25 // Destructor

 26 ~Dog()

 27 { cout << "Dog destructor executing.\n"; }

 28 };

 29

 30 //***

 31 // main function *

 32 //***

 33

 34 int main()

 35 {

 36 // Create a Dog object, referenced by an

 37 // Animal pointer.

 38 Animal *myAnimal = new Dog;

 39

 40 // Delete the dog object.

 41 delete myAnimal;

 42 return 0;

 43 }

Program Output

Animal constructor executing.

Dog constructor executing.

Animal destructor executing.

M15_GADD6253_07_SE_C15 Page 919 Wednesday, January 12, 2011 8:06 PM

920 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

This program declares two classes: Animal and Dog. Animal is the base class and Dog is

the derived class. Each class has its own constructor and destructor. In line 38, a Dog

object is created and its address is stored in an Animal pointer. Both the Animal and the

Dog constructors execute. In line 41 the object is deleted. When this statement executes,

however, only the Animal destructor executes. The Dog destructor does not execute

because the object is referenced by an Animal pointer. We can x this problem by declar-

ing the Animal class destructor virtual, as shown in Program 15-16.

Program 15-16

 1 #include <iostream>

 2 using namespace std;

 3

 4 // Animal is a base class.

 5 class Animal

 6 {

 7 public:

 8 // Constructor

 9 Animal()

 10 { cout << "Animal constructor executing.\n"; }

 11

 12 // Destructor

 13 virtual ~Animal()

 14 { cout << "Animal destructor executing.\n"; }

 15 };

 16

 17 // The Dog class is derived from Animal

 18 class Dog : public Animal

 19 {

 20 public:

 21 // Constructor

 22 Dog() : Animal()

 23 { cout << "Dog constructor executing.\n"; }

 24

 25 // Destructor

 26 ~Dog()

 27 { cout << "Dog destructor executing.\n"; }

 28 };

 29

 30 //***

 31 // main function *

 32 //***

 33

 34 int main()

 35 {

 36 // Create a Dog object, referenced by an

 37 // Animal pointer.

 38 Animal *myAnimal = new Dog;

 39

 40 // Delete the dog object.

 41 delete myAnimal;

 42 return 0;

 43 }

M15_GADD6253_07_SE_C15 Page 920 Wednesday, January 12, 2011 8:06 PM

15.7 Abstract Base Classes and Pure Virtual Functions 921

The only thing that has changed in this program is that the Animal class destructor is

declared virtual in line 13. As a result, the destructor is dynamically bound at runtime.

When the Dog object is destroyed, both the Animal and Dog destructors execute.

A good programming practice to follow is that any class that has a virtual member func-

tion should also have a virtual destructor. If the class doesn t require a destructor, it should

have a virtual destructor that performs no statements. Remember, when a base class func-

tion is declared virtual, all overridden versions of the function in derived classes auto-

matically become virtual. Including a virtual destructor in a base class, even one that does

nothing, will ensure that any derived class destructors will also be virtual.

15.7 Abstract Base Classes and Pure Virtual Functions

CONCEPT: An abstract base class cannot be instantiated, but other classes are

derived from it. A pure virtual function is a virtual member function of a

base class that must be overridden. When a class contains a pure virtual

function as a member, that class becomes an abstract base class.

Sometimes it is helpful to begin a class hierarchy with an abstract base class. An abstract

base class is not instantiated itself, but serves as a base class for other classes. The abstract

base class represents the generic, or abstract, form of all the classes that are derived from it.

For example, consider a factory that manufactures airplanes. The factory does not make a

generic airplane, but makes three speci c types of planes: two different models of prop-

driven planes, and one commuter jet model. The computer software that catalogs the

planes might use an abstract base class called Airplane. That class has members repre-

senting the common characteristics of all airplanes. In addition, it has classes for each of

the three speci c airplane models the factory manufactures. These classes have members

representing the unique characteristics of each type of plane. The base class, Airplane, is

never instantiated, but is used to derive the other classes.

A class becomes an abstract base class when one or more of its member functions is a pure

virtual function. A pure virtual function is a virtual member function declared in a manner

similar to the following:

virtual void showInfo() = 0;

The = 0 notation indicates that showInfo is a pure virtual function. Pure virtual functions

have no body, or de nition, in the base class. They must be overridden in derived classes.

Additionally, the presence of a pure virtual function in a class prevents a program from

instantiating the class. The compiler will generate an error if you attempt to de ne an

object of an abstract base class.

Program Output

Animal constructor executing.

Dog constructor executing.

Dog destructor executing.

Animal destructor executing.

M15_GADD6253_07_SE_C15 Page 921 Wednesday, January 12, 2011 8:06 PM

922 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

For example, look at the following abstract base class Student. It holds data common to

all students, but does not hold all the data needed for students of speci c majors.

Contents of Student.h

 1 // Specification file for the Student class

 2 #ifndef STUDENT_H

 3 #define STUDENT_H

 4 #include <string>

 5 using namespace std;

 6

 7 class Student

 8 {

 9 protected:

10 string name; // Student name

11 string idNumber; // Student ID

12 int yearAdmitted; // Year student was admitted

13 public:

14 // Default constructor

15 Student()

16 { name = "";

17 idNumber = "";

18 yearAdmitted = 0; }

19

20 // Constructor

21 Student(string n, string id, int year)

22 { set(n, id, year); }

23

24 // The set function sets the attribute data.

25 void set(string n, string id, int year)

26 { name = n; // Assign the name

27 idNumber = id; // Assign the ID number

28 yearAdmitted = year; } // Assign the year admitted

29

30 // Accessor functions

31 const string getName() const

32 { return name; }

33

34 const string getIdNum() const

35 { return idNumber; }

36

37 int getYearAdmitted() const

38 { return yearAdmitted; }

39

40 // Pure virtual function

41 virtual int getRemainingHours() const = 0;

42 };

43 #endif

The Student class contains members for storing a student s name, ID number, and year

admitted. It also has constructors and a mutator function for setting values in the name,

idNumber, and yearAdmitted members. Accessor functions are provided that return the

values in the name, idNumber, and yearAdmitted members. A pure virtual function

named getRemainingHours is also declared.

The pure virtual function must be overridden in classes derived from the Student class. It

was made a pure virtual function because this class is intended to be the base for classes

M15_GADD6253_07_SE_C15 Page 922 Wednesday, January 12, 2011 8:06 PM

15.7 Abstract Base Classes and Pure Virtual Functions 923

that represent students of speci c majors. For example, a CsStudent class might hold the

data for a computer science student, and a BiologyStudent class might hold the data for

a biology student. Computer science students must take courses in different disciplines

than those taken by biology students. It stands to reason that the CsStudent class will cal-

culate the number of hours taken in a different manner than the BiologyStudent class.

Let s look at an example of the CsStudent class.

Contents of CsStudent.h

 1 // Specification file for the CsStudent class

 2 #ifndef CSSTUDENT_H

 3 #define CSSTUDENT_H

 4 #include "Student.h"

 5

 6 // Constants for required hours

 7 const int MATH_HOURS = 20; // Math hours

 8 const int CS_HOURS = 40; // Computer science hours

 9 const int GEN_ED_HOURS = 60; // General Ed hours

10

11 class CsStudent : public Student

12 {

13 private:

14 int mathHours; // Hours of math taken

15 int csHours; // Hours of Computer Science taken

16 int genEdHours; // Hours of general education taken

17

18 public:

19 // Default constructor

20 CsStudent() : Student()

21 { mathHours = 0;

22 csHours = 0;

23 genEdHours = 0; }

24

25 // Constructor

26 CsStudent(string n, string id, int year) :

27 Student(n, id, year)

28 { mathHours = 0;

29 csHours = 0;

30 genEdHours = 0; }

31

32 // Mutator functions

33 void setMathHours(int mh)

34 { mathHours = mh; }

35

36 void setCsHours(int csh)

37 { csHours = csh; }

38

39 void setGenEdHours(int geh)

40 { genEdHours = geh; }

41

42 // Overridden getRemainingHours function,

43 // defined in CsStudent.cpp

44 virtual int getRemainingHours() const;

45 };

46 #endif

M15_GADD6253_07_SE_C15 Page 923 Wednesday, January 12, 2011 8:06 PM

924 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

This le declares the following const int member variables in lines 7 through 9:

MATH_HOURS, CS_HOURS, and GEN_ED_HOURS. These variables hold the required number of

math, computer science, and general education hours for a computer science student. The

CsStudent class, which derives from the Student class, declares the following member

variables in lines 14 through 16: mathHours, csHours, and genEdHours. These variables

hold the number of math, computer science, and general education hours taken by the stu-

dent. Mutator functions are provided to store values in these variables. In addition, the

class overrides the pure virtual getRemainingHours function in the CsStudent.cpp le.

Contents of CsStudent.cpp

 1 #include <iostream>

 2 #include "CsStudent.h"

 3 using namespace std;

 4

 5 //**

 6 // The CsStudent::getRemainingHours function returns *

 7 // the number of hours remaining to be taken. *

 8 //**

 9

10 int CsStudent::getRemainingHours() const

11 {

12 int reqHours, // Total required hours

13 remainingHours; // Remaining hours

14

15 // Calculate the required hours.

16 reqHours = MATH_HOURS + CS_HOURS + GEN_ED_HOURS;

17

18 // Calculate the remaining hours.

19 remainingHours = reqHours - (mathHours + csHours +

20 genEdHours);

21

22 // Return the remaining hours.

23 return remainingHours;

24 }

Program 15-17 provides a simple demonstration of the class.

Program 15-17

 1 // This program demonstrates the CsStudent class, which is

 2 // derived from the abstract base class, Student.

 3 #include <iostream>

 4 #include "CsStudent.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 // Create a CsStudent object for a student.

 10 CsStudent student("Jennifer Haynes", "167W98337", 2006);

 11

 12 // Store values for Math, Computer Science, and General

 13 // Ed hours.

M15_GADD6253_07_SE_C15 Page 924 Wednesday, January 12, 2011 8:06 PM

15.7 Abstract Base Classes and Pure Virtual Functions 925

Remember the following points about abstract base classes and pure virtual functions:

When a class contains a pure virtual function, it is an abstract base class.

Pure virtual functions are declared with the = 0 notation.

Abstract base classes cannot be instantiated.

Pure virtual functions have no body, or definition, in the base class.

A pure virtual function must be overridden at some point in a derived class in

order for it to become nonabstract.

Checkpoint

 www.myprogramminglab.com

15.9 Explain the difference between overloading a function and rede ning a function.

15.10 Explain the difference between static binding and dynamic binding.

15.11 Are virtual functions statically bound or dynamically bound?

15.12 What will the following program display?

#include <iostream.>

using namespace std;

class First

{

protected:

 int a;

public:

 First(int x = 1)

 { a = x; }

 int getVal()

 { return a; }

};

class Second : public First

{

private:

 int b;

 14 student.setMathHours(12); // Student has taken 12 Math hours

 15 student.setCsHours(20); // Student has taken 20 CS hours

 16 student.setGenEdHours(40); // Student has taken 40 Gen Ed hours

 17

 18 // Display the number of remaining hours.

 19 cout << "The student " << student.getName()

 20 << " needs to take " << student.getRemainingHours()

 21 << " more hours to graduate.\n";

 22

 23 return 0;

 24 }

Program Output

The student Jennifer Haynes needs to take 48 more hours to graduate.

M15_GADD6253_07_SE_C15 Page 925 Wednesday, January 12, 2011 8:06 PM

926 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

public:

 Second(int y = 5)

 { b = y; }

 int getVal()

 { return b; }

};

int main()

{

 First object1;

 Second object2;

 cout << object1.getVal() << endl;

 cout << object2.getVal() << endl;

 return 0;

}

15.13 What will the following program display?

#include <iostream>

using namespace std;

class First

{

protected:

 int a;

public:

 First(int x = 1)

 { a = x; }

 void twist()

 { a *= 2; }

 int getVal()

 { twist(); return a; }

};

class Second : public First

{

private:

 int b;

public:

 Second(int y = 5)

 { b = y; }

 void twist()

 { b *= 10; }

};

int main()

{

 First object1;

 Second object2;

 cout << object1.getVal() << endl;

 cout << object2.getVal() << endl;

 return 0;

}

M15_GADD6253_07_SE_C15 Page 926 Wednesday, January 12, 2011 8:06 PM

15.7 Abstract Base Classes and Pure Virtual Functions 927

15.14 What will the following program display?

#include <iostream>

using namespace std;

class First

{

protected:

 int a;

public:

 First(int x = 1)

 { a = x; }

 virtual void twist()

 { a *= 2; }

 int getVal()

 { twist(); return a; }

};

class Second : public First

{

private:

 int b;

public:

 Second(int y = 5)

 { b = y; }

 virtual void twist()

 { b *= 10; }

};

int main()

{

 First object1;

 Second object2;

 cout << object1.getVal() << endl;

 cout << object2.getVal() << endl;

 return 0;

}

15.15 What will the following program display?

#include <iostream>

using namespace std;

class Base

{

protected:

 int baseVar;

public:

 Base(int val = 2)

 { baseVar = val; }

 int getVar()

 { return baseVar; }

};

class Derived : public Base

{

private:

 int derivedVar;

M15_GADD6253_07_SE_C15 Page 927 Wednesday, January 12, 2011 8:06 PM

928 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

public:

 Derived(int val = 100)

 { derivedVar = val; }

 int getVar()

 { return derivedVar; }

};

int main()

{

 Base *optr;

 Derived object;

 optr = &object;

 cout << optr->getVar() << endl;

 return 0;

}

15.8 Multiple Inheritance

CONCEPT: Multiple inheritance is when a derived class has two or more base classes.

Previously we discussed how a class may be derived from a second class that is itself

derived from a third class. The series of classes establishes a chain of inheritance. In such a

scheme, you might be tempted to think of the lowest class in the chain as having multiple

base classes. A base class, however, should be thought of as the class that another class is

directly derived from. Even though there may be several classes in a chain, each class

(below the topmost class) only has one base class.

Another way of combining classes is through multiple inheritance. Multiple inheritance is

when a class has two or more base classes. This is illustrated in Figure 15-6.

In Figure 15-6, class C is directly derived from classes A and B, and inherits the members

of both. Neither class A nor B, however, inherits members from the other. Their members

are only passed down to class C. Let s look at an example of multiple inheritance. Con-

sider the two classes declared here:

Contents of Date.h

 1 // Specification file for the Date class

 2 #ifndef DATE_H

 3 #define DATE_H

 4

 5 class Date

 6 {

Figure 15-6

Class A Class B

Class C

M15_GADD6253_07_SE_C15 Page 928 Wednesday, January 12, 2011 8:06 PM

15.8 Multiple Inheritance 929

 7 protected:

 8 int day;

 9 int month;

10 int year;

11 public:

12 // Default constructor

13 Date(int d, int m, int y)

14 { day = 1; month = 1; year = 1900; }

15

16 // Constructor

17 Date(int d, int m, int y)

18 { day = d; month = m; year = y; }

19

20 // Accessors

21 int getDay() const

22 { return day; }

23

24 int getMonth() const

25 { return month; }

26

27 int getYear() const

28 { return year; }

29 };

30 #endif

Contents of Time.h

 1 // Specification file for the Time class

 2 #ifndef TIME_H

 3 #define TIME_H

 4

 5 class Time

 6 {

 7 protected:

 8 int hour;

 9 int min;

10 int sec;

11 public:

12 // Default constructor

13 Time()

14 { hour = 0; min = 0; sec = 0; }

15

16 // Constructor

17 Time(int h, int m, int s)

18 { hour = h; min = m; sec = s; }

19

20 // Accessor functions

21 int getHour() const

22 { return hour; }

23

M15_GADD6253_07_SE_C15 Page 929 Wednesday, January 12, 2011 8:06 PM

930 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

24 int getMin() const

25 { return min; }

26

27 int getSec() const

28 { return sec; }

29 };

30 #endif

These classes are designed to hold integers that represent the date and time. They both can

be used as base classes for a third class we will call DateTime:

Contents of DateTime.h

 1 // Specification file for the DateTime class

 2 #ifndef DATETIME_H

 3 #define DATETIME_H

 4 #include <string>

 5 #include "Date.h"

 6 #include "Time.h"

 7 using namespace std;

 8

 9 class DateTime : public Date, public Time

10 {

11 public:

12 // Default constructor

13 DateTime();

14

15 // Constructor

16 DateTime(int, int, int, int, int, int);

17

18 // The showDateTime function displays the

19 // date and the time.

20 void showDateTime() const;

21 };

22 #endif

In line 9, the rst line in the DateTime declaration reads

class DateTime : public Date, public Time

Notice there are two base classes listed, separated by a comma. Each base class has its

own access speci cation. The general format of the rst line of a class declaration with

multiple base classes is

The notation in the square brackets indicates that the list of base classes with their access

speci cations may be repeated. (It is possible to have several base classes.)

 class DerivedClassName : AccessSpecification BaseClassName,

 AccessSpecification BaseClassName [, ...]

M15_GADD6253_07_SE_C15 Page 930 Wednesday, January 12, 2011 8:06 PM

15.8 Multiple Inheritance

931

Contents of

DateTime.cpp

 1 // Implementation file for the DateTime class

 2 #include <iostream>

 3 #include <string>

 4 #include "DateTime.h"

 5 using namespace std;

 6

 7 //**

 8 // Default constructor *

 9 // Note that this constructor does nothing other *

10 // than call default base class constructors. *

11 //**

12 DateTime::DateTime() : Date(), Time()

13 { }

14

15 //**

16 // Constructor *

17 // Note that this constructor does nothing other *

18 // than call base class constructors. *

19 //**

20 DateTime::DateTime(int dy, int mon, int yr, int hr, int mt, int sc) :

21 Date(dy, mon, yr), Time(hr, mt, sc)

22 { }

23

24 //**

25 // The showDateTime member function displays the *

26 // date and the time. *

27 //**

28 void DateTime::showDateTime() const

29 {

30 // Display the date in the form MM/DD/YYYY.

31 cout << getMonth() << "/" << getDay() << "/" << getYear() << " ";

32

33 // Display the time in the form HH:MM:SS.

34 cout << getHour() << ":" << getMin() << ":" << getSec() << endl;

35 }

The class has two constructors: a default constructor and a constructor that accepts argu-

ments for each component of a date and time. Let s look at the function header for the

default constructor, in line 12:

DateTime::DateTime() : Date(), Time()

After the

DateTime

 constructor s parentheses is a colon, followed by calls to the

Date

constructor and the

Time

 constructor. The calls are separated by a comma. When using

multiple inheritance, the general format of a derived class s constructor header is

Look at the function header for the second constructor, which appears in lines 20 and 21:

DateTime::DateTime(int dy, int mon, int yr, int hr, int mt, int sc) :

 Date(dy, mon, yr), Time(hr, mt, sc)

DerivedClassName

(

ParameterList

) :

BaseClassName

(

ArgumentList

),

BaseClassName

(

ArgumentList

)[, ...]

M15_GADD6253_07_SE_C15 Page 931 Thursday, January 20, 2011 7:45 PM

932

Chapter 15 Inheritance, Polymorphism, and Virtual Functions

This

DateTime

 constructor accepts arguments for the day (

dy

), month (

mon

), year (

yr

),

hour (

hr

), minute (

mt

), and second (

sc

). The

dy

,

mon

, and

yr

 parameters are passed as

arguments to the

Date

 constructor. The

hr

,

mt

, and

sc

 parameters are passed as argu-

ments to the

Time

 constructor.

The order that the base class constructor calls appear in the list does not matter. They are

always called in the order of inheritance. That is, they are always called in the order they

are listed in the rst line of the class declaration. Here is line 9 from the

DateTime.h

 le:

class DateTime : public Date, public Time

Because

Date

 is listed before

Time

 in the

DateTime

 class declaration, the

Date

 constructor

will always be called rst. If the classes use destructors, they are always called in reverse

order of inheritance. Program 15-18 shows these classes in use.

Program 15-18

 1 // This program demonstrates a class with multiple inheritance.

 2 #include "DateTime.h"

 3 using namespace std;

 4

 5 int main()

 6 {

 7 // Define a DateTime object and use the default

 8 // constructor to initialize it.

 9 DateTime emptyDay;

 10

 11 // Display the object's date and time.

 12 emptyDay.showDateTime();

 13

 14 // Define a DateTime object and initialize it

 15 // with the date 2/4/1960 and the time 5:32:27.

 16 DateTime pastDay(2, 4, 1960, 5, 32, 27);

 17

 18 // Display the object's date and time.

 19 pastDay.showDateTime();

 20 return 0;

 21 }

Program Output

 1/1/1900 0:0:0

 4/2/1960 5:32:27

NOTE:

It should be noted that multiple inheritance opens the opportunity for a derived

class to have ambiguous members. That is, two base classes may have member variables or

functions of the same name. In situations like these, the derived class should always rede ne

or override the member functions. Calls to the member functions of the appropriate base

class can be performed within the derived class using the scope resolution operator (::). The

derived class can also access the ambiguously named member variables of the correct base

class using the scope resolution operator. If these steps aren t taken, the compiler will

generate an error when it can t tell which member is being accessed.

M15_GADD6253_07_SE_C15 Page 932 Thursday, January 20, 2011 7:46 PM

15.8 Multiple Inheritance 933

Checkpoint

 www.myprogramminglab.com

15.16 Does the following diagram depict multiple inheritance or a chain of inheritance?

15.17 Does the following diagram depict multiple inheritance or a chain of inheritance?

15.18 Examine the following classes. The table lists the variables that are members of

the Third class (some are inherited). Complete the table by lling in the access

speci cation each member will have in the Third class. Write inaccessible if a

member is inaccessible to the Third class.

class First

{

 private:

 int a;

 protected:

 double b;

 public:

 long c;

};

class Second : protected First

{

 private:

 int d;

 protected:

 double e;

 public:

 long f;

};

Class A

Class B

Class C

Class A Class B

Class C

M15_GADD6253_07_SE_C15 Page 933 Wednesday, January 12, 2011 8:06 PM

934 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

class Third : public Second

{

 private:

 int g;

 protected:

 double h;

 public:

 long i;

};

15.19 Examine the following class declarations:

class Van

{

protected:

 int passengers;

public:

 Van(int p)

 { passengers = p; }

};

class FourByFour

{

protected:

 double cargoWeight;

public:

 FourByFour(float w)

 { cargoWeight = w; }

};

Write the declaration of a class named SportUtility. The class should be

derived from both the Van and FourByFour classes above. (This should be a case

of multiple inheritance, where both Van and FourByFour are base classes.)

Member Variable Access Speci cation in Third Class

 a

 b

 c

 d

 e

 f

 g

 h

 i

M15_GADD6253_07_SE_C15 Page 934 Wednesday, January 12, 2011 8:06 PM

Review Questions and Exercises 935

Review Questions and Exercises

Short Answer

1. What is an is a relationship?

2. A program uses two classes: Dog and Poodle. Which class is the base class and which
is the derived class?

3. How does base class access specification differ from class member access specification?

4. What is the difference between a protected class member and a private class member?

5. Can a derived class ever directly access the private members of its base class?

6. Which constructor is called first, that of the derived class or the base class?

7. What is the difference between redefining a base class function and overriding a base
class function?

8. When does static binding take place? When does dynamic binding take place?

9. What is an abstract base class?

10. A program has a class Potato, which is derived from the class Vegetable, which is
derived from the class Food. Is this an example of multiple inheritance? Why or why not?

11. What base class is named in the line below?

class Pet : public Dog

12. What derived class is named in the line below?

class Pet : public Dog

13. What is the class access specification of the base class named below?

class Pet : public Dog

14. What is the class access specification of the base class named below?

class Pet : Fish

15. Protected members of a base class are like __________ members, except they may be
accessed by derived classes.

16. Complete the table below by filling in private, protected, public, or inaccessible in the
right-hand column:

17. Complete the table on the next page by filling in private, protected, public, or inacces-
sible in the right-hand column:

In a private base class, this base class

MEMBER access speci cation

becomes this access speci cation

in the derived class.

private

protected

public

M15_GADD6253_07_SE_C15 Page 935 Wednesday, January 12, 2011 8:06 PM

936 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

18. Complete the table below by filling in private, protected, public, or inaccessible in the
right-hand column:

Fill-in-the-Blank

19. A derived class inherits the __________ of its base class.

20. When both a base class and a derived class have constructors, the base class s con-
structor is called __________ (first/last).

21. When both a base class and a derived class have destructors, the base class s construc-
tor is called __________ (first/last).

22. An overridden base class function may be called by a function in a derived class by
using the __________ operator.

23. When a derived class redefines a function in a base class, which version of the function
do objects that are defined of the base class call? __________

24. A(n) __________ member function in a base class expects to be overridden in a
derived class.

25. __________ binding is when the compiler binds member function calls at compile time.

26. __________ binding is when a function call is bound at runtime.

27. __________ is when member functions in a class hierarchy behave differently, depending
upon which object performs the call.

28. When a pointer to a base class is made to point to a derived class, the pointer ignores
any __________ the derived class performs, unless the function is __________.

29. A(n) __________ class cannot be instantiated.

30. A(n) __________ function has no body, or definition, in the class in which it is declared.

31. A(n) __________ of inheritance is where one class is derived from a second class,
which in turn is derived from a third class.

32. __________ is where a derived class has two or more base classes.

33. In multiple inheritance, the derived class should always __________ a function that
has the same name in more than one base class.

In a protected base class, this base class

MEMBE access speci cation

becomes this access speci cation

in the derived class.

private

protected

public

In a public base class, this base class

MEMBER access speci cation

becomes this access speci cation

in the derived class.

private

protected

public

M15_GADD6253_07_SE_C15 Page 936 Wednesday, January 12, 2011 8:06 PM

Review Questions and Exercises 937

Algorithm Workbench

34. Write the first line of the declaration for a Poodle class. The class should be derived
from the Dog class with public base class access.

35. Write the first line of the declaration for a SoundSystem class. Use multiple inherit-
ance to base the class on the CDplayer class, the Tuner class, and the
CassettePlayer class. Use public base class access in all cases.

36. Suppose a class named Tiger is derived from both the Felis class and the
Carnivore class. Here is the first line of the Tiger class declaration:

 class Tiger : public Felis, public Carnivore

Here is the function header for the Tiger constructor:

 Tiger(int x, int y) : Carnivore(x), Felis(y)

Which base class constructor is called rst, Carnivore or Felis?

37. Write the declaration for class B. The class s members should be

m, an integer. This variable should not be accessible to code outside the class or to

member functions in any class derived from class B.

n, an integer. This variable should not be accessible to code outside the class, but

should be accessible to member functions in any class derived from class B.

setM, getM, setN, and getN. These are the set and get functions for the member

variables m and n. These functions should be accessible to code outside the class.

calc, a public virtual member function that returns the value of m times n.

Next write the declaration for class D, which is derived from class B. The class s

members should be

q, a float. This variable should not be accessible to code outside the class but

should be accessible to member functions in any class derived from class D.

r, a float. This variable should not be accessible to code outside the class, but

should be accessible to member functions in any class derived from class D.

setQ, getQ, setR, and getR. These are the set and get functions for the member

variables q and r. These functions should be accessible to code outside the class.

calc, a public member function that overrides the base class calc function. This

function should return the value of q times r.

True or False

38. T F The base class s access speci cation affects the way base class member functions

may access base class member variables.

39. T F The base class s access speci cation affects the way the derived class inherits

members of the base class.

40. T F Private members of a private base class become inaccessible to the derived class.

41. T F Public members of a private base class become private members of the

derived class.

42. T F Protected members of a private base class become public members of the

derived class.

43. T F Public members of a protected base class become private members of the

derived class.

M15_GADD6253_07_SE_C15 Page 937 Wednesday, January 12, 2011 8:06 PM

938 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

44. T F Private members of a protected base class become inaccessible to the

derived class.

45. T F Protected members of a public base class become public members of the

derived class.

46. T F The base class constructor is called after the derived class constructor.

47. T F The base class destructor is called after the derived class destructor.

48. T F It isn t possible for a base class to have more than one constructor.

49. T F Arguments are passed to the base class constructor by the derived class

constructor.

50. T F A member function of a derived class may not have the same name as a

member function of the base class.

51. T F Pointers to a base class may be assigned the address of a derived class object.

52. T F A base class may not be derived from another class.

Find the Errors

Each of the class declarations and/or member function de nitions below has errors. Find as

many as you can.

53. class Car, public Vehicle

{

 public:

 Car();

 ~Car();

 protected:

 int passengers;

}

54. class Truck, public : Vehicle, protected

{

 private:

 double cargoWeight;

 public:

 Truck();

 ~Truck();

};

55. class SnowMobile : Vehicle

{

 protected:

 int horsePower;

 double weight;

 public:

 SnowMobile(int h, double w), Vehicle(h)

 { horsePower = h; }

 ~SnowMobile();

};

56. class Table : public Furniture

{

 protected:

 int numSeats;

M15_GADD6253_07_SE_C15 Page 938 Wednesday, January 12, 2011 8:06 PM

Review Questions and Exercises 939

 public:

 Table(int n) : Furniture(numSeats)

 { numSeats = n; }

 ~Table();

};

57. class Tank : public Cylinder

{

 private:

 int fuelType;

 double gallons;

 public:

 Tank();

 ~Tank();

 void setContents(double);

 void setContents(double);

};

58. class Three : public Two : public One

{

 protected:

 int x;

 public:

 Three(int a, int b, int c), Two(b), Three(c)

 { x = a; }

 ~Three();

};

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. Employee and ProductionWorker Classes

Design a class named Employee. The class should keep the following information in

member variables:

Employee name

Employee number

Hire date

Write one or more constructors and the appropriate accessor and mutator functions

for the class.

Next, write a class named ProductionWorker that is derived from the Employee

class. The ProductionWorker class should have member variables to hold the follow-

ing information:

Shift (an integer)

Hourly pay rate (a double)

The workday is divided into two shifts: day and night. The shift variable will hold an

integer value representing the shift that the employee works. The day shift is shift 1

and the night shift is shift 2. Write one or more constructors and the appropriate

accessor and mutator functions for the class. Demonstrate the classes by writing a

program that uses a ProductionWorker object.

VideoNote

Solving the

Employee and

Production-

Worker Classes

Problem

Programming Challenges

M15_GADD6253_07_SE_C15 Page 939 Wednesday, January 12, 2011 8:06 PM

940 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

2. ShiftSupervisor Class

In a particular factory a shift supervisor is a salaried employee who supervises a

shift. In addition to a salary, the shift supervisor earns a yearly bonus when his or

her shift meets production goals. Design a ShiftSupervisor class that is derived

from the Employee class you created in Programming Challenge 1. The

ShiftSupervisor class should have a member variable that holds the annual salary

and a member variable that holds the annual production bonus that a shift supervi-

sor has earned. Write one or more constructors and the appropriate accessor and

mutator functions for the class. Demonstrate the class by writing a program that

uses a ShiftSupervisor object.

3. TeamLeader Class

In a particular factory, a team leader is an hourly paid production worker who leads a

small team. In addition to hourly pay, team leaders earn a xed monthly bonus. Team

leaders are required to attend a minimum number of hours of training per year.

Design a TeamLeader class that extends the ProductionWorker class you designed in

Programming Challenge 1. The TeamLeader class should have member variables for

the monthly bonus amount, the required number of training hours, and the number of

training hours that the team leader has attended. Write one or more constructors and

the appropriate accessor and mutator functions for the class. Demonstrate the class by

writing a program that uses a TeamLeader object.

4. Time Format

In Program 15-18, the le Time.h contains a Time class. Design a class called

MilTime that is derived from the Time class. The MilTime class should convert time

in military (24-hour) format to the standard time format used by the Time class. The

class should have the following member variables:

milHours: Contains the hour in 24-hour format. For example, 1:00 pm would

be stored as 1300 hours, and 4:30 pm would be stored as 1630

hours.

milSeconds: Contains the seconds in standard format.

The class should have the following member functions:

Constructor: The constructor should accept arguments for the hour and seconds,

in military format. The time should then be converted to standard

time and stored in the hours, min, and sec variables of the Time

class.

setTime: Accepts arguments to be stored in the milHours and milSeconds

variables. The time should then be converted to standard time and

stored in the hours, min, and sec variables of the Time class.

getHour: Returns the hour in military format.

getStandHr: Returns the hour in standard format.

Demonstrate the class in a program that asks the user to enter the time in military for-

mat. The program should then display the time in both military and standard format.

Input Validation: The MilTime class should not accept hours greater than 2359, or

less than 0. It should not accept seconds greater than 59 or less than 0.

M15_GADD6253_07_SE_C15 Page 940 Wednesday, January 12, 2011 8:06 PM

Review Questions and Exercises 941

5. Time Clock

Design a class named TimeClock. The class should be derived from the MilTime
class you designed in Programming Challenge 4. The class should allow the pro-
grammer to pass two times to it: starting time and ending time. The class should
have a member function that returns the amount of time elapsed between the two
times. For example, if the starting time is 900 hours (9:00 am), and the ending time
is 1300 hours (1:00 pm), the elapsed time is 4 hours.

Input Validation: The class should not accept hours greater than 2359 or less than 0.

6. Essay class

Design an Essay class that is derived from the GradedActivity class presented in
this chapter. The Essay class should determine the grade a student receives on an
essay. The student s essay score can be up to 100, and is determined in the following
manner:

* Grammar: 30 points
* Spelling: 20 points
* Correct length: 20 points
* Content: 30 points

Demonstrate the class in a simple program.

7. PersonData and CustomerData classes

Design a class named PersonData with the following member variables:

* lastName

* firstName

* address

* city

* state

* zip

* phone

Write the appropriate accessor and mutator functions for these member variables.

Next, design a class named CustomerData, which is derived from the PersonData
class. The CustomerData class should have the following member variables:

* customerNumber

* mailingList

The customerNumber variable will be used to hold a unique integer for each cus-
tomer. The mailingList variable should be a bool. It will be set to true if the cus-
tomer wishes to be on a mailing list, or false if the customer does not wish to be on
a mailing list. Write appropriate accessor and mutator functions for these member
variables. Demonstrate an object of the CustomerData class in a simple program.

8. PreferredCustomer Class

A retail store has a preferred customer plan where customers may earn discounts on
all their purchases. The amount of a customer s discount is determined by the amount
of the customer s cumulative purchases in the store.

* When a preferred customer spends $500, he or she gets a 5% discount on all
future purchases.

Programming Challenges

M15_GADD6253_07_SE_C15 Page 941 Wednesday, January 12, 2011 8:06 PM

942 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

* When a preferred customer spends $1,000, he or she gets a 6% discount on all
future purchases.

* When a preferred customer spends $1,500, he or she gets a 7% discount on all
future purchases.

* When a preferred customer spends $2,000 or more, he or she gets a 10% discount
on all future purchases.

Design a class named PreferredCustomer, which is derived from the CustomerData
class you created in Programming Challenge 7. The PreferredCustomer class should
have the following member variables:

* purchasesAmount (a double)
* discountLevel (a double)

The purchasesAmount variable holds the total of a customer s purchases to date. The
discountLevel variable should be set to the correct discount percentage, according to
the store s preferred customer plan. Write appropriate member functions for this class
and demonstrate it in a simple program.

Input Validation: Do not accept negative values for any sales gures.

9. File Filter

A le lter reads an input le, transforms it in some way, and writes the results to an out-
put le. Write an abstract le lter class that de nes a pure virtual function for transform-
ing a character. Create one derived class of your le lter class that performs encryption,
another that transforms a le to all uppercase, and another that creates an unchanged
copy of the original le. The class should have the following member function:

void doFilter(ifstream &in, ofstream &out)

This function should be called to perform the actual ltering. The member function
for transforming a single character should have the prototype:

char transform(char ch)

The encryption class should have a constructor that takes an integer as an argument
and uses it as the encryption key.

10. File Double-Spacer

Create a derived class of the abstract lter class of Programming Challenge 9 that
double-spaces a le: that is, it inserts a blank line between any two lines of the le.

11. Course Grades

In a course, a teacher gives the following tests and assignments:

* A lab activity that is observed by the teacher and assigned a numeric score.
* A pass/fail exam that has 10 questions. The minimum passing score is 70.
* An essay that is assigned a numeric score.
* A final exam that has 50 questions.

Write a class named CourseGrades. The class should have a member named grades
that is an array of GradedActivity pointers. The grades array should have four
elements, one for each of the assignments previously described. The class should have
the following member functions:

M15_GADD6253_07_SE_C15 Page 942 Wednesday, January 12, 2011 8:06 PM

Review Questions and Exercises 943

setLab: This function should accept the address of a GradedActivity

object as its argument. This object should already hold the

student s score for the lab activity. Element 0 of the grades array

should reference this object.

setPassFailExam: This function should accept the address of a PassFailExam

object as its argument. This object should already hold the

student s score for the pass/fail exam. Element 1 of the grades

array should reference this object.

setEssay: This function should accept the address of an Essay object as its

argument. (See Programming Challenge 6 for the Essay class. If

you have not completed Programming Challenge 6, use a

GradedActivity object instead.) This object should already

hold the student s score for the essay. Element 2 of the grades

array should reference this object.

setPassFailExam: This function should accept the address of a FinalExam object

as its argument. This object should already hold the student s

score for the nal exam. Element 3 of the grades array should

reference this object.

print: This function should display the numeric scores and grades for

each element in the grades array.

Demonstrate the class in a program.

12. Ship, CruiseShip, and CargoShip Classes

Design a Ship class that has the following members:

* A member variable for the name of the ship (a string)

* A member variable for the year that the ship was built (a string)

* A constructor and appropriate accessors and mutators

* A virtual print function that displays the ship s name and the year it was built.

Design a CruiseShip class that is derived from the Ship class. The CruiseShip class

should have the following members:

* A member variable for the maximum number of passengers (an int)

* A constructor and appropriate accessors and mutators

* A print function that overrides the print function in the base class. The

CruiseShip class s print function should display only the ship s name and the

maximum number of passengers.

Design a CargoShip class that is derived from the Ship class. The CargoShip class

should have the following members:

* A member variable for the cargo capacity in tonnage (an int).

* A constructor and appropriate accessors and mutators.

* A print function that overrides the print function in the base class. The

CargoShip class s print function should display only the ship s name and the

ship s cargo capacity.

Demonstrate the classes in a program that has an array of Ship pointers. The array

elements should be initialized with the addresses of dynamically allocated Ship,

Programming Challenges

M15_GADD6253_07_SE_C15 Page 943 Wednesday, January 12, 2011 8:06 PM

944 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

CruiseShip, and CargoShip objects. (See Program 15-14, lines 17 through 22, for an

example of how to do this.) The program should then step through the array, calling

each object s print function.

13. Pure Abstract Base Class Project

De ne a pure abstract base class called BasicShape. The BasicShape class should

have the following members:

Private Member Variable:

area, a double used to hold the shape s area.

Public Member Functions:

getArea. This function should return the value in the member variable area.

calcArea. This function should be a pure virtual function.

Next, de ne a class named Circle. It should be derived from the BasicShape class.

It should have the following members:

Private Member Variables:

centerX, a long integer used to hold the x coordinate of the circle s center.

centerY, a long integer used to hold the y coordinate of the circle s center.

radius, a double used to hold the circle s radius.

Public Member Functions:

constructor accepts values for centerX, centerY, and radius. Should call the

overridden calcArea function described below.

getCenterX returns the value in centerX.

getCenterY returns the value in centerY.

calcArea calculates the area of the circle (area = 3.14159 * radius * radius)

and stores the result in the inherited member area.

Next, de ne a class named Rectangle. It should be derived from the BasicShape

class. It should have the following members:

Private Member Variables:

width, a long integer used to hold the width of the rectangle.

length, a long integer used to hold the length of the rectangle.

Public Member Functions:

constructor accepts values for width and length. Should call the overridden

calcArea function described below.

M15_GADD6253_07_SE_C15 Page 944 Wednesday, January 12, 2011 8:06 PM

Review Questions and Exercises 945

getWidth returns the value in width.

getLength returns the value in length.

calcArea calculates the area of the rectangle (area = length * width) and stores

the result in the inherited member area.

After you have created these classes, create a driver program that de nes a Circle

object and a Rectangle object. Demonstrate that each object properly calculates and

reports its area.

Group Project

14. Bank Accounts

This program should be designed and written by a team of students. Here are some

suggestions:

One or more students may work on a single class.

The requirements of the program should be analyzed so each student is given

about the same work load.

The parameters and return types of each function and class member function

should be decided in advance.

The program will be best implemented as a multi-file program.

Design a generic class to hold the following information about a bank account:

Balance

Number of deposits this month

Number of withdrawals

Annual interest rate

Monthly service charges

The class should have the following member functions:

Constructor: Accepts arguments for the balance and annual interest rate.

deposit: A virtual function that accepts an argument for the amount of the

deposit. The function should add the argument to the account bal-

ance. It should also increment the variable holding the number of

deposits.

withdraw: A virtual function that accepts an argument for the amount of the

withdrawal. The function should subtract the argument from the bal-

ance. It should also increment the variable holding the number of

withdrawals.

calcInt: A virtual function that updates the balance by calculating the

monthly interest earned by the account, and adding this interest to

the balance. This is performed by the following formulas:

Monthly Interest Rate = (Annual Interest Rate / 12)
Monthly Interest = Balance * Monthly Interest Rate
Balance = Balance + Monthly Interest

Programming Challenges

M15_GADD6253_07_SE_C15 Page 945 Wednesday, January 12, 2011 8:06 PM

946 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

monthlyProc: A virtual function that subtracts the monthly service charges from
the balance, calls the calcInt function, and then sets the variables
that hold the number of withdrawals, number of deposits, and
monthly service charges to zero.

Next, design a savings account class, derived from the generic account class. The sav-
ings account class should have the following additional member:

status (to represent an active or inactive account)

If the balance of a savings account falls below $25, it becomes inactive. (The status
member could be a ag variable.) No more withdrawals may be made until the bal-
ance is raised above $25, at which time the account becomes active again. The savings
account class should have the following member functions:

withdraw: A function that checks to see if the account is inactive before a with-
drawal is made. (No withdrawal will be allowed if the account is not
active.) A withdrawal is then made by calling the base class version
of the function.

deposit: A function that checks to see if the account is inactive before a
deposit is made. If the account is inactive and the deposit brings the
balance above $25, the account becomes active again. The deposit is
then made by calling the base class version of the function.

monthlyProc: Before the base class function is called, this function checks the num-
ber of withdrawals. If the number of withdrawals for the month is
more than 4, a service charge of $1 for each withdrawal above 4 is
added to the base class variable that holds the monthly service charges.
(Don t forget to check the account balance after the service charge is
taken. If the balance falls below $25, the account becomes inactive.)

Next, design a checking account class, also derived from the generic account class. It
should have the following member functions:

withdraw: Before the base class function is called, this function will determine if a
withdrawal (a check written) will cause the balance to go below $0. If
the balance goes below $0, a service charge of $15 will be taken from
the account. (The withdrawal will not be made.) If there isn t enough
in the account to pay the service charge, the balance will become nega-
tive and the customer will owe the negative amount to the bank.

monthlyProc: Before the base class function is called, this function adds the monthly
fee of $5 plus $0.10 per withdrawal (check written) to the base class
variable that holds the monthly service charges.

Write a complete program that demonstrates these classes by asking the user to enter
the amounts of deposits and withdrawals for a savings account and checking account.
The program should display statistics for the month, including beginning balance,
total amount of deposits, total amount of withdrawals, service charges, and ending
balance.

NOTE: You may need to add more member variables and functions to the classes than
those listed above.

M15_GADD6253_07_SE_C15 Page 946 Wednesday, January 12, 2011 8:06 PM

947

C
H

A
P

T
E

R

16

Exceptions, Templates, and the

Standard Template Library (S

TL)

16.1

Exceptions

CONCEPT:

Exceptions are used to signal errors or unexpected events that occur

while a program is running.

Error testing is usually a straightforward process involving

if

 statements or other control

mechanisms. For example, the following code segment will trap a division-by-zero error

before it occurs:

if (denominator == 0)

 cout << "ERROR: Cannot divide by zero.\n";

else

 quotient = numerator / denominator;

But what if similar code is part of a function that returns the quotient, as in the following

example?

TOPICS

16.1 Exceptions

16.2 Function Templates

16.3 Focus on Software Engineering:

Where to Start When

De ning Templates

16.4 Class Templates

16.5 Introduction to the Standard

Template Library (STL)

M16_GADD6253_07_SE_C16 Page 947 Wednesday, January 12, 2011 3:55 PM

948

Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

// An unreliable division function

double divide(int numerator, int denominator)

{

 if (denominator == 0)

 {

 cout << "ERROR: Cannot divide by zero.\n";

 return 0;

 }

 else

 return static_cast<double>(numerator) / denominator;

}

Functions commonly signal error conditions by returning a predetermined value. Appar-

ently, the function in this example returns 0 when division by zero has been attempted.

This is unreliable, however, because 0 is a valid result of a division operation. Even though

the function displays an error message, the part of the program that calls the function will

not know when an error has occurred. Problems like these require sophisticated error han-

dling techniques.

Throwing an Exception

One way of handling complex error conditions is with

exceptions

. An exception is a value

or an object that signals an error. When the error occurs, an exception is thrown. For

example, the following code shows the

divide

 function, modi ed to throw an exception

when division by zero has been attempted.

double divide(int numerator, int denominator)

{

 if (denominator == 0)

 throw "ERROR: Cannot divide by zero.\n";

 else

 return static_cast<double>(numerator) / denominator;

}

The following statement causes the exception to be thrown.

throw "ERROR: Cannot divide by zero.\n";

The

throw

 key word is followed by an argument, which can be any value. As you will see,

the value of the argument is used to determine the nature of the error. The function above

simply throws a string containing an error message.

The line containing a

throw

 statement is known as the

throw point

. When a

throw

 state-

ment is executed, control is passed to another part of the program known as an

exception

handler

. When an exception is thrown by a function, the function aborts.

VideoNote

Throwing an

Exception

M16_GADD6253_07_SE_C16 Page 948 Wednesday, January 12, 2011 3:55 PM

16.1 Exceptions

949

Handling an Exception

To handle an exception, a program must have a

try/catch

 construct. The general format of

the try/catch construct is:

The rst part of the construct is the

try block

. This starts with the key word

try

 and is fol-

lowed by a block of code executing any statements that might directly or indirectly cause

an exception to be thrown. The try block is immediately followed by one or more

catch

blocks

, which are the exception handlers. A catch block starts with the key word

catch

,

followed by a set of parentheses containing the de nition of an exception parameter. For

example, here is a try/catch construct that can be used with the

divide

 function:

try

{

 quotient = divide(num1, num2);

 cout << "The quotient is " << quotient << endl;

}

catch (string exceptionString)

{

 cout << exceptionString;

}

Because the

divide

 function throws an exception whose value is a string, there must be

an exception handler that catches a string. The catch block shown catches the error mes-

sage in the

exceptionString

 parameter, and then displays it with

cout

. Now let s look at

an entire program to see how

throw

,

try

, and

catch

 work together. In the rst sample run

of Program 16-1, valid data are given. This shows how the program should run with no

errors. In the second sample running, a denominator of 0 is given. This shows the result of

the exception being thrown.

 try

 {

 // code here calls functions or object member

 // functions that might throw an exception.

 }

 catch(

ExceptionParameter

)

 {

 // code here handles the exception

 }

 // Repeat as many catch blocks as needed.

Program 16-1

 1 // This program demonstrates an exception being thrown and caught.

 2 #include <iostream>

 3 #include <string>

 4 using namespace std;

 5

 6 // Function prototype

 7 double divide(int, int);

 8

 9 int main()

(program continues)

VideoNote

Handling an

Exception

M16_GADD6253_07_SE_C16 Page 949 Wednesday, January 12, 2011 3:55 PM

950

Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

 10 {

 11 int num1, num2; // To hold two numbers

 12 double quotient; // To hold the quotient of the numbers

 13

 14 // Get two numbers.

 15 cout << "Enter two numbers: ";

 16 cin >> num1 >> num2;

 17

 18 // Divide num1 by num2 and catch any

 19 // potential exceptions.

 20 try

 21 {

 22 quotient = divide(num1, num2);

 23 cout << "The quotient is " << quotient << endl;

 24 }

 25 catch (string exceptionString)

 26 {

 27 cout << exceptionString;

 28 }

 29

 30 cout << "End of the program.\n";

 31 return 0;

 32 }

 33

 34 //**

 35 // The divide function divides the numerator *

 36 // by the denominator. If the denominator is *

 37 // zero, the function throws an exception. *

 38 //**

 39

 40 double divide(int numerator, int denominator)

 41 {

 42 if (denominator == 0)

 43 {

 44 string exceptionString = "ERROR: Cannot divide by zero.\n";

 45 throw exceptionString;

 46 }

 47

 48 return static_cast<double>(numerator) / denominator;

 49 }

Program Output with Example Input Shown in Bold

Enter two numbers:

12 2 [Enter]

The quotient is 6

End of the program.

Program Output with Different Example Input Shown in Bold

Enter two numbers:

12 0 [Enter]

ERROR: Cannot divide by zero.

End of the program.

Program 16-1

(continued)

M16_GADD6253_07_SE_C16 Page 950 Wednesday, January 12, 2011 3:55 PM

16.1 Exceptions

951

As you can see from the second output screen, the exception caused the program to jump out of

the

divide

 function and into the catch block. After the catch block has nished, the program

resumes with the rst statement after the try/catch construct. This is illustrated in Figure 16-1.

In the rst output screen the user entered nonnegative values. No exception was thrown in

the try block, so the program skipped the catch block and jumped to the statement immedi-

ately following the try/catch construct, which is in line 30. This is illustrated in Figure 16-2.

What if an Exception Is Not Caught?

There are two possible ways for a thrown exception to go uncaught. The rst possibility is

for the try/catch construct to contain no catch blocks with an exception parameter of the

right data type. The second possibility is for the exception to be thrown from outside a try

block. In either case, the exception will cause the entire program to abort execution.

Object-Oriented Exception Handling with Classes

Now that you have an idea of how the exception mechanism in C++ works, we will examine

an object-oriented approach to exception handling. Recall the

Rectangle

 class that was

introduced in Chapter 13. That class had the mutator functions

setWidth

 and

setLength

for setting the rectangle s width and length. If a negative value was passed to either of these

functions, the class displayed an error message and aborted the program. The following

code shows an improved version of the

Rectangle

 class. This version throws an exception

Figure 16-1

Figure 16-2

try

{

 quotient = divide(num1, num2);

 cout << "The quotient is " << quotient << endl;

}

catch (string exceptionString)

{

 cout << exceptionString;

}

cout << "End of the program.\n";

return 0;

... then this statement

 is skipped.

If this statement

throws an exception...

If the exception is a string,

the program jumps to

this catch clause.

After the catch block is

finished, the program

resumes here.

try

{

 quotient = divide(num1, num2);

 cout << "The quotient is " << quotient << endl;

}

catch (string exceptionString)

{

 cout << exceptionString;

}

cout << "End of the program.\n";

return 0;

If no exception is thrown in the

try block, the program jumps

to the statement that immediately

follows the try/catch construct.

M16_GADD6253_07_SE_C16 Page 951 Wednesday, January 12, 2011 3:55 PM

952

Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

when a negative value is passed to

setWidth

 or

setLength

. (These les are stored in the

Student Source Code Folder

Chapter 16\Rectangle Version 1

.)

Contents of

Rectangle.h

 (Version 1)

 1 // Specification file for the Rectangle class

 2 #ifndef RECTANGLE_H

 3 #define RECTANGLE_H

 4

 5 class Rectangle

 6 {

 7 private:

 8 double width; // The rectangle's width

 9 double length; // The rectangle's length

10 public:

11 // Exception class

12 class NegativeSize

13 { }; // Empty class declaration

14

15 // Default constructor

16 Rectangle()

17 { width = 0.0; length = 0.0; }

18

19 // Mutator functions, defined in Rectangle.cpp

20 void setWidth(double);

21 void setLength(double);

22

23 // Accessor functions

24 double getWidth() const

25 { return width; }

26

27 double getLength() const

28 { return length; }

29

30 double getArea() const

31 { return width * length; }

32 };

33 #endif

Notice the empty class declaration that appears in the public section, in lines 12 and 13. The

NegativeSize

 class has no members. The only important part of the class is its name,

which will be used in the exception-handling code. Now look at the

Rectangle.cpp

 le,

where the

setWidth

 and

setLength

 member functions are de ned.

Contents of

Rectangle.cpp

 (Version 1)

 1 // Implementation file for the Rectangle class.

 2 #include "Rectangle.h"

 3

 4 //***

 5 // setWidth sets the value of the member variable width. *

 6 //***

 7

 8 void Rectangle::setWidth(double w)

M16_GADD6253_07_SE_C16 Page 952 Wednesday, January 12, 2011 3:55 PM

16.1 Exceptions

953

 9 {

10 if (w >= 0)

11 width = w;

12 else

13 throw NegativeSize();

14 }

15

16 //***

17 // setLength sets the value of the member variable length. *

18 //***

19

20 void Rectangle::setLength(double len)

21 {

22 if (len >= 0)

23 length = len;

24 else

25 throw NegativeSize();

26 }

In the

setWidth

 function, the parameter

w

 is tested by the

if

 statement in line 10. If

w

 is

greater than or equal to 0, its value is assigned to the

width

 member variable. If

w

 holds a

negative number, however, the statement in line 13 is executed:

throw NegativeSize();

The

throw

 statement s argument,

NegativeSize()

, causes an instance of the

NegativeSize

class to be created and thrown as an exception.

The same series of events takes place in the

setLength

 function. If the value in the

len

parameter is greater than or equal to 0, its value is assigned to the

length member vari-

able. If len holds a negative number, an instance of the NegativeSize class is thrown as

an exception in line 25.

This way of reporting errors is much more graceful than simply aborting the program.

Any code that uses the Rectangle class must simply have a catch block to handle the

NegativeSize exceptions that the Rectangle class might throw. Program 16-2 shows

an example. (This le is stored in the Student Source Code Folder Chapter 16\

Rectangle Version 1.)

Program 16-2

 1 // This program demonstrates Rectangle class exceptions.

 2 #include <iostream>

 3 #include "Rectangle.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 double width;

 9 double length;

 10

 11 // Create a Rectangle object.

 12 Rectangle myRectangle;

 13

(program continues)

M16_GADD6253_07_SE_C16 Page 953 Wednesday, January 12, 2011 3:55 PM

954 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

The catch statement in line 28 catches the NegativeSize exception when it is thrown

by any of the statements in the try block. Inside the catch statement s parentheses is the

name of the NegativeSize class. Because the NegativeSize class is declared inside the

Rectangle class, we have to fully qualify the class name with the scope resolution operator.

Notice that we did not de ne a parameter of the NegativeSize class in the catch statement.

In this case the catch statement only needs to specify the type of exception it handles.

Multiple Exceptions

The programs we have studied so far test only for a single type of error and throw only a

single type of exception. In many cases a program will need to test for several different

types of errors, and signal which one has occurred. C++ allows you to throw and catch

multiple exceptions. The only requirement is that each different exception be of a different

type. You then code a separate catch block for each type of exception that may be thrown

in the try block.

 14 // Get the width and length.

 15 cout << "Enter the rectangle's width: ";

 16 cin >> width;

 17 cout << "Enter the rectangle's length: ";

 18 cin >> length;

 19

 20 // Store these values in the Rectangle object.

 21 try

 22 {

 23 myRectangle.setWidth(width);

 24 myRectangle.setLength(length);

 25 cout << "The area of the rectangle is "

 26 << myRectangle.getArea() << endl;

 27 }

 28 catch (Rectangle::NegativeSize)

 29 {

 30 cout << "Error: A negative value was entered.\n";

 31 }

 32 cout << "End of the program.\n";

 33

 34 return 0;

 35 }

Program Output with Example Input Shown in Bold

Enter the rectangle's width: 10 [Enter]
Enter the rectangle's length: 20 [Enter]
The area of the rectangle is 200

End of the program.

Program Output with Different Example Input Shown in Bold

Enter the rectangle's width: 5 [Enter]
Enter the rectangle's length: 5 [Enter]
Error: A negative value was entered.

End of the program.

Program 16-2 (continued)

M16_GADD6253_07_SE_C16 Page 954 Wednesday, January 12, 2011 3:55 PM

16.1 Exceptions 955

For example, suppose we wish to expand the Rectangle class so it throws one type of

exception when a negative value is speci ed for the width, and another type of exception

when a negative value is speci ed for the length. First, we declare two different exception

classes, such as:

// Exception class for a negative width

class NegativeWidth

 { };

// Exception class for a negative length

class NegativeLength

 { };

An instance of NegativeWidth will be thrown when a negative value is speci ed for the

width, and an instance of NegativeLength will be thrown when a negative value is spec-

i ed for the length. The code for the modi ed Rectangle class is shown here. (These

les are stored in the Student Source Code Folder Chapter 16\Rectangle Version 2.)

Contents of Rectangle.h (Version 2)

 1 // Specification file for the Rectangle class

 2 #ifndef RECTANGLE_H

 3 #define RECTANGLE_H

 4

 5 class Rectangle

 6 {

 7 private:

 8 double width; // The rectangle's width

 9 double length; // The rectangle's length

10 public:

11 // Exception class for a negative width

12 class NegativeWidth

13 { };

14

15 // Exception class for a negative length

16 class NegativeLength

17 { };

18

19 // Default constructor

20 Rectangle()

21 { width = 0.0; length = 0.0; }

22

23 // Mutator functions, defined in Rectangle.cpp

24 void setWidth(double);

25 void setLength(double);

26

27 // Accessor functions

28 double getWidth() const

29 { return width; }

30

31 double getLength() const

32 { return length; }

33

M16_GADD6253_07_SE_C16 Page 955 Wednesday, January 12, 2011 3:55 PM

956 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

34 double getArea() const

35 { return width * length; }

36 };

37 #endif

Contents of Rectangle.cpp (Version 2)

 1 // Implementation file for the Rectangle class.

 2 #include "Rectangle.h"

 3

 4 //***

 5 // setWidth sets the value of the member variable width. *

 6 //***

 7

 8 void Rectangle::setWidth(double w)

 9 {

10 if (w >= 0)

11 width = w;

12 else

13 throw NegativeWidth();

14 }

15

16 //***

17 // setLength sets the value of the member variable length. *

18 //***

19

20 void Rectangle::setLength(double len)

21 {

22 if (len >= 0)

23 length = len;

24 else

25 throw NegativeLength();

26 }

Notice that in the de nition of the setWidth function (in Rectangle.cpp) that an instance

of the NegativeWidth class is thrown in line 13. In the de nition of the setLength func-

tion an instance of the NegativeLength class is thrown in line 25. Program 16-3 demon-

strates this class. (This le is stored in the Student Source Code Folder Chapter

16\Rectangle Version 2.)

Program 16-3

 1 // This program demonstrates Rectangle class exceptions.

 2 #include <iostream>

 3 #include "Rectangle.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 double width;

 9 double length;

 10

M16_GADD6253_07_SE_C16 Page 956 Wednesday, January 12, 2011 3:55 PM

16.1 Exceptions 957

 11 // Create a Rectangle object.

 12 Rectangle myRectangle;

 13

 14 // Get the width and length.

 15 cout << "Enter the rectangle's width: ";

 16 cin >> width;

 17 cout << "Enter the rectangle's length: ";

 18 cin >> length;

 19

 20 // Store these values in the Rectangle object.

 21 try

 22 {

 23 myRectangle.setWidth(width);

 24 myRectangle.setLength(length);

 25 cout << "The area of the rectangle is "

 26 << myRectangle.getArea() << endl;

 27 }

 28 catch (Rectangle::NegativeWidth)

 29 {

 30 cout << "Error: A negative value was given "

 31 << "for the rectangle's width.\n";

 32 }

 33 catch (Rectangle::NegativeLength)

 34 {

 35 cout << "Error: A negative value was given "

 36 << "for the rectangle's length.\n";

 37 }

 38

 39 cout << "End of the program.\n";

 40 return 0;

 41 }

Program Output with Example Input Shown in Bold

Enter the rectangle's width: 10 [Enter]
Enter the rectangle's length: 20 [Enter]
The area of the rectangle is 200

End of the program.

Program Output with Different Example Input Shown in Bold

Enter the rectangle's width: 5 [Enter]
Enter the rectangle's length: 5 [Enter]
Error: A negative value was given for the rectangle's width.

End of the program.

Program Output with Different Example Input Shown in Bold

Enter the rectangle's width: 5 [Enter]
Enter the rectangle's length: 5 [Enter]
Error: A negative value was given for the rectangle's length.

End of the program.

M16_GADD6253_07_SE_C16 Page 957 Wednesday, January 12, 2011 3:55 PM

958 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

The try block, in lines 21 through 27, contains code that can throw two different types of

exceptions. The statement in line 23 can potentially throw a NegativeWidth exception,

and the statement in line 24 can potentially throw a NegativeLength exception. To handle

each of these types of exception, there are two catch statements. The statement in line 28

catches NegativeWidth exceptions, and the statement in line 33 catches NegativeLength

exceptions.

When an exception is thrown by code in the try block, C++ searches the try/catch con-

struct for a catch statement that can handle the exception. If the construct contains a

catch statement that is compatible with the exception, control of the program is passed to

the catch block.

Using Exception Handlers to Recover from Errors

Program 16-3 demonstrates how a try/catch construct can have several catch statements

in order to handle different types of exceptions. However, the program does not use the

exception handlers to recover from any of the errors. When the user enters a negative

value for either the width or the length, this program still halts. Program 16-4 shows a

better example of effective exception handling. It attempts to recover from the exceptions

and get valid data from the user. (This le is stored in the Student Source Code Folder

Chapter 16\Rectangle Version 2.)

Program 16-4

 1 // This program handles the Rectangle class exceptions.

 2 #include <iostream>

 3 #include "Rectangle.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 double width; // Rectangle's width

 9 double length; // Rectangle's length

 10 bool tryAgain = true; // Flag to reread input

 11

 12 // Create a Rectangle object.

 13 Rectangle myRectangle;

 14

 15 // Get the rectangle's width.

 16 cout << "Enter the rectangle's width: ";

 17 cin >> width;

 18

 19 // Store the width in the myRectangle object.

 20 while (tryAgain)

 21 {

 22 try

 23 {

 24 myRectangle.setWidth(width);

 25 // If no exception was thrown, then the

 26 // next statement will execute.

 27 tryAgain = false;

 28 }

M16_GADD6253_07_SE_C16 Page 958 Wednesday, January 12, 2011 3:55 PM

16.1 Exceptions 959

Let s look at how this program recovers from a NegativeWidth exception. In line 10 a

bool ag variable, tryAgain, is de ned and initialized with the value true. This variable

will indicate whether we need to get a value from the user again. Lines 16 and 17 prompt

the user to enter the rectangle s width. Then the program enters the while loop in lines 20

through 34. The loop repeats as long as tryAgain is true. Inside the loop, the Rectangle

class s setWidth member function is called in line 24. This statement is in a try block. If a

NegativeWidth exception is thrown, the program will jump to the catch statement in

line 29. In the catch block that follows, the user is asked to enter a nonnegative number.

 29 catch (Rectangle::NegativeWidth)

 30 {

 31 cout << "Please enter a nonnegative value: ";

 32 cin >> width;

 33 }

 34 }

 35

 36 // Get the rectangle's length.

 37 cout << "Enter the rectangle's length: ";

 38 cin >> length;

 39

 40 // Store the length in the myRectangle object.

 41 tryAgain = true;

 42 while (tryAgain)

 43 {

 44 try

 45 {

 46 myRectangle.setLength(length);

 47 // If no exception was thrown, then the

 48 // next statement will execute.

 49 tryAgain = false;

 50 }

 51 catch (Rectangle::NegativeLength)

 52 {

 53 cout << "Please enter a nonnegative value: ";

 54 cin >> length;

 55 }

 56 }

 57

 58 // Display the area of the rectangle.

 59 cout << "The rectangle's area is "

 60 << myRectangle.getArea() << endl;

 61 return 0;

 62 }

Program Output with Example Input Shown in Bold

Enter the rectangle's width: 1 [Enter]
Please enter a nonnegative value: 10 [Enter]
Enter the rectangle's length: 5 [Enter]
Please enter a nonnegative value: 50 [Enter]
The rectangle's area is 500

M16_GADD6253_07_SE_C16 Page 959 Wednesday, January 12, 2011 3:55 PM

960 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

The program then jumps out of the try/catch construct. Because tryAgain is still true,

the loop will repeat.

If a nonnegative number is passed to the setWidth member function in line 24, no

exception will be thrown. In that case, the statement in line 27 will execute, which sets

tryAgain to false. The program then jumps out of the try/catch construct. Because

tryAgain is now false, the loop will not repeat.

The same strategy is used in lines 37 through 56 to get and validate the rectangle s length.

Extracting Data from the Exception Class

Sometimes we might want an exception object to pass data back to the exception handler.

For example, suppose we would like the Rectangle class not only to signal when a nega-

tive value has been given, but also to pass the value back. This can be accomplished by

giving the exception class members in which data can be stored.

In our next modi cation of the Rectangle class, the NegativeWidth and NegativeLength

classes have been expanded, each with a member variable and a constructor. Here is the code

for the NegativeWidth class:

class NegativeWidth

{

private:

 double value;

public:

 NegativeWidth(double val)

 { value = val; }

 double getValue() const

 { return value; }

};

When we throw this exception, we want to pass the invalid value as an argument to the

class s constructor. This is done in the setWidth member function with the following

statement:

throw NegativeWidth(w);

This throw statement creates an instance of the NegativeWidth class and passes a

copy of the w variable to the constructor. The constructor then stores this number in

NegativeWidth s member variable, value. The class instance carries this member vari-

able to the catch block that intercepts the exception.

In the catch block, the value is extracted with code such as

catch (Rectangle::NegativeWidth e)

{

 cout << "Error: " << e.getValue()

 << " is an invalid value for the"

 << " rectangle's width.\n";

}

M16_GADD6253_07_SE_C16 Page 960 Wednesday, January 12, 2011 3:55 PM

16.1 Exceptions 961

Notice that the catch block de nes a parameter object named e. This is necessary because

we want to call the class s getValue function to retrieve the value that caused the

exception.

Here is the code for the NegativeLength class:

class NegativeLength

{

private:

 double value;

public:

 NegativeLength(double val)

 { value = val; }

 double getValue() const

 { return value; }

};

This class also has a member variable named value, and a constructor that initializes the

variable. When we throw this exception, we follow the sane general steps that were just

described for the NegativeWidth exception. The complete code for the revised Rectangle

class is shown here. Program 16-5 demonstrates these classes. (These les are stored in the

Student Source Code Folder Chapter 16\Rectangle Version 3.)

Contents of Rectangle.h (Version 3)

 1 // Specification file for the Rectangle class

 2 #ifndef RECTANGLE_H

 3 #define RECTANGLE_H

 4

 5 class Rectangle

 6 {

 7 private:

 8 double width; // The rectangle's width

 9 double length; // The rectangle's length

10 public:

11 // Exception class for a negative width

12 class NegativeWidth

13 {

14 private:

15 double value;

16 public:

17 NegativeWidth(double val)

18 { value = val; }

19

20 double getValue() const

21 { return value; }

22 };

23

24 // Exception class for a negative length

25 class NegativeLength

26 {

27 private:

28 double value;

M16_GADD6253_07_SE_C16 Page 961 Wednesday, January 12, 2011 3:55 PM

962 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

29 public:

30 NegativeLength(double val)

31 { value = val; }

32

33 double getValue() const

34 { return value; }

35 };

36

37 // Default constructor

38 Rectangle()

39 { width = 0.0; length = 0.0; }

40

41 // Mutator functions, defined in Rectangle.cpp

42 void setWidth(double);

43 void setLength(double);

44

45 // Accessor functions

46 double getWidth() const

47 { return width; }

48

49 double getLength() const

50 { return length; }

51

52 double getArea() const

53 { return width * length; }

54 };

55 #endif

Contents of Rectangle.cpp (Version 3)

 1 // Implementation file for the Rectangle class.

 2 #include "Rectangle.h"

 3

 4 //***

 5 // setWidth sets the value of the member variable width. *

 6 //***

 7

 8 void Rectangle::setWidth(double w)

 9 {

10 if (w >= 0)

11 width = w;

12 else

13 throw NegativeWidth(w);

14 }

15

16 //***

17 // setLength sets the value of the member variable length. *

18 //***

19

20 void Rectangle::setLength(double len)

21 {

22 if (len >= 0)

23 length = len;

24 else

25 throw NegativeLength(len);

26 }

M16_GADD6253_07_SE_C16 Page 962 Wednesday, January 12, 2011 3:55 PM

16.1 Exceptions 963

Program 16-5

 1 // This program demonstrates Rectangle class exceptions.

 2 #include <iostream>

 3 #include "Rectangle.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 double width;

 9 double length;

 10

 11 // Create a Rectangle object.

 12 Rectangle myRectangle;

 13

 14 // Get the width and length.

 15 cout << "Enter the rectangle's width: ";

 16 cin >> width;

 17 cout << "Enter the rectangle's length: ";

 18 cin >> length;

 19

 20 // Store these values in the Rectangle object.

 21 try

 22 {

 23 myRectangle.setWidth(width);

 24 myRectangle.setLength(length);

 25 cout << "The area of the rectangle is "

 26 << myRectangle.getArea() << endl;

 27 }

 28 catch (Rectangle::NegativeWidth e)

 29 {

 30 cout << "Error: " << e.getValue()

 31 << " is an invalid value for the"

 32 << " rectangle's width.\n";

 33 }

 34 catch (Rectangle::NegativeLength e)

 35 {

 36 cout << "Error: " << e.getValue()

 37 << " is an invalid value for the"

 38 << " rectangle's length.\n";

 39 }

 40

 41 cout << "End of the program.\n";

 42 return 0;

 43 }

Program Output with Example Input Shown in Bold

Enter the rectangle's width: 1 [Enter]
Enter the rectangle's length: 10 [Enter]
Error: -1 is an invalid value for the rectangle's width.

End of the program.

(program output continues)

M16_GADD6253_07_SE_C16 Page 963 Wednesday, January 12, 2011 3:55 PM

964 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Unwinding the Stack

Once an exception has been thrown, the program cannot jump back to the throw point.

The function that executes a throw statement will immediately terminate. If that function

was called by another function, and the exception is not caught, then the calling function

will terminate as well. This process, known as unwinding the stack, continues for the entire

chain of nested function calls, from the throw point, all the way back to the try block.

If an exception is thrown by the member function of a class object, then the class destruc-

tor is called. If statements in the try block or branching from the try block created any

other objects, their destructors will be called as well.

Rethrowing an Exception

It is possible for try blocks to be nested. For example, look at this code segment:

try

{

 doSomething();

}

catch(exception1)

{

 // code to handle exception 1

}

catch(exception2)

{

 // code to handle exception 2

}

In this try block, the function doSomething is called. There are two catch blocks, one that

handles exception1, and another that handles exception2. If the doSomething function

also has a try block, then it is nested inside the one shown.

With nested try blocks, it is sometimes necessary for an inner exception handler to pass an

exception to an outer exception handler. Sometimes, both an inner and an outer catch

block must perform operations when a particular exception is thrown. These situations

require that the inner catch block rethrow the exception so the outer catch block has a

chance to catch it.

A catch block can rethrow an exception with the throw; statement. For example, suppose

the doSomething function (called in the throw block above) calls the doSomethingElse

function, which potentially can throw exception1 or exception3. Suppose doSomething

does not want to handle exception1. Instead, it wants to rethrow it to the outer block. The

following code segment illustrates how this is done:

Program Output with Different Example Input Shown in Bold

Enter the rectangle's width: 5 [Enter]
Enter the rectangle's length: 1 [Enter]
Error: -1 is an invalid value for the rectangle's length.

End of the program.

Program 16-5 (continued)

M16_GADD6253_07_SE_C16 Page 964 Wednesday, January 12, 2011 3:55 PM

16.1 Exceptions 965

try

{

 doSomethingElse();

}

catch(exception1)

{

 throw; // Rethrow the exception

}

catch(exception3)

{

 // Code to handle exception 3

}

When the rst catch block catches exception1, the throw; statement simply throws the

exception again. The catch block in the outer try/catch construct will then handle the

exception.

Handling the bad_alloc Exception

Recall from Chapter 9 that when the new operator fails to allocate memory, an exception

is thrown. Now that you ve seen how to handle exceptions, you can write code that deter-

mines whether the new operator was successful.

When the new operator fails to allocate memory, C++ throws a bad_alloc exception. The

bad_alloc exception type is de ned in the new header le, so any program that attempts

to catch this exception should have the following directive:

#include <new>

The bad_alloc exception is in the std namespace, so be sure to have the using

namespace std; statement in your code as well.

Here is the general format of a try/catch construct that catches the bad_alloc exception:

try

{

 // Code that uses the new operator

}

catch (bad_alloc)

{

 // Code that responds to the error

}

Program 16-6 shows an example. The program uses the new operator to allocate a 10,000-

element array of doubles. If the new operator fails, an error message is displayed.

Program 16-6

 1 // This program demonstrates the bad_alloc exception.

 2 #include <iostream>

 3 #include <new> // Needed for bad_alloc

 4 using namespace std;

 5

(program continues)

M16_GADD6253_07_SE_C16 Page 965 Wednesday, January 12, 2011 3:55 PM

966 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Checkpoint

 www.myprogramminglab.com

16.1 What is the difference between a try block and a catch block?

16.2 What happens if an exception is thrown, but not caught?

16.3 If multiple exceptions can be thrown, how does the catch block know which

exception to catch?

16.4 After the catch block has handled the exception, where does program execution

resume?

16.5 How can an exception pass data back to the exception handler?

16.2 Function Templates

CONCEPT: A function template is a generic function that can work with any data

type. The programmer writes the speci cations of the function, but

substitutes parameters for data types. When the compiler encounters a

call to the function, it generates code to handle the speci c data type(s)

used in the call.

Introduction

Overloaded functions make programming convenient because only one function name

must be remembered for a set of functions that perform similar operations. Each of the

functions, however, must still be written individually, even if they perform the same oper-

ation. For example, suppose a program uses the following overloaded square functions.

int square(int number)

{

 return number * number;

}

 6 int main()

 7 {

 8 double *ptr; // Pointer to double

 9

 10 try

 11 {

 12 ptr = new double [10000];

 13 }

 14 catch (bad_alloc)

 15 {

 16 cout << "Insufficient memory.\n";

 17 }

 18

 19 return 0;

 20 }

Program 16-6 (continued)

M16_GADD6253_07_SE_C16 Page 966 Wednesday, January 12, 2011 3:55 PM

16.2 Function Templates 967

double square(double number)

{

 return number * number;

}

The only differences between these two functions are the data types of their return values

and their parameters. In situations like this, it is more convenient to write a function tem-

plate than an overloaded function. Function templates allow you to write a single function

de nition that works with many different data types, instead of having to write a separate

function for each data type used.

A function template is not an actual function, but a mold the compiler uses to generate

one or more functions. When writing a function template, you do not have to specify

actual types for the parameters, return value, or local variables. Instead, you use a type

parameter to specify a generic data type. When the compiler encounters a call to the func-

tion, it examines the data types of its arguments and generates the function code that will

work with those data types. (The generated code is known as a template function.)

Here is a function template for the square function:

template <class T>

T square(T number)

{

 return number * number;

}

The beginning of a function template is marked by a template pre x, which begins with

the key word template. Next is a set of angled brackets that contains one or more generic

data types used in the template. A generic data type starts with the key word class fol-

lowed by a parameter name that stands for the data type. The example just given only

uses one, which is named T. (If there were more, they would be separated by commas.)

After this, the function de nition is written as usual, except the type parameters are sub-

stituted for the actual data type names. In the example the function header reads

T square(T number)

T is the type parameter, or generic data type. The header de nes square as a function that

returns a value of type T and uses a parameter, number, which is also of type T. As men-

tioned before, the compiler examines each call to square and lls in the appropriate data

type for T. For example, the following call uses an int argument:

int y, x = 4;

y = square(x);

This code will cause the compiler to generate the function

int square(int number)

{

 return number * number;

}

while the following statements

double y, f = 6.2

y = square(f);

VideoNote

Writing a

Function

Template

M16_GADD6253_07_SE_C16 Page 967 Wednesday, January 12, 2011 3:55 PM

968 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

will generate the function

double square(double number)

{

 return number * number;

}

Program 16-7 demonstrates how this function template is used.

Because the compiler encountered two calls to square in Program 16-7, each with a differ-

ent parameter type, it generated the code for two instances of the function: one with an

int parameter and int return type, the other with a double parameter and double

return type. This is illustrated in Figure 16-3.

Notice in Program 16-7 that the template appears before all calls to square. As with reg-

ular functions, the compiler must already know the template s contents when it encounters

Program 16-7

 1 // This program uses a function template.

 2 #include <iostream>

 3 #include <iomanip>

 4 using namespace std;

 5

 6 // Template definition for square function.

 7 template <class T>

 8 T square(T number)

 9 {

 10 return number * number;

 11 }

 12

 13 int main()

 14 {

 15 int userInt; // To hold integer input

 16 double userDouble; // To hold double input

 17

 18 cout << setprecision(5);

 19 cout << "Enter an integer and a floating-point value: ";

 20 cin >> userInt >> userDouble;

 21 cout << "Here are their squares: ";

 22 cout << square(userInt) << " and "

 23 << square(userDouble) << endl;

 24 return 0;

 25 }

Program Output with Example Input Shown in Bold

Enter an integer and a floating-point value: 12 4.2 [Enter]
Here are their squares: 144 and 17.64

NOTE: All type parameters de ned in a function template must appear at least once in

the function parameter list.

M16_GADD6253_07_SE_C16 Page 968 Wednesday, January 12, 2011 3:55 PM

16.2 Function Templates 969

a call to the template function. Templates, therefore, should be placed near the top of the

program or in a header le.

Program 16-8 shows another example of a function template. The function, swapVars,

uses two references to type T as parameters. The function swaps the contents of the vari-

ables referenced by the parameters.

Figure 16-3

NOTE: A function template is merely the speci cation of a function and by itself does

not cause memory to be used. An actual instance of the function is created in memory

when the compiler encounters a call to the template function.

Program 16-8

 1 // This program demonstrates the swapVars function template.

 2 #include <iostream>

 3 using namespace std;

 4

 5 template <class T>

 6 void swapVars(T &var1, T &var2)

 7 {

 8 T temp;

 9

 10 temp = var1;

 11 var1 = var2;

 12 var2 = temp;

 13 }

 14

 15 int main()

 16 {

 17 char firstChar, secondChar; // Two chars

 18 int firstInt, secondInt; // Two ints

 19 double firstDouble, secondDouble; // Two doubles

 20

(program continues)

Function Calls
Function Template

Generated Function Code

(Template Function)

int x = 4, y;

y = square(x);

double x = 12.5, y;

y = square(x);

template <class T>

 T square (T number)

 {

 return number * number;

 }

int square(int number)

{

 return number * number;

}

double square(double number)

{

 return number * number;

}

M16_GADD6253_07_SE_C16 Page 969 Wednesday, January 12, 2011 3:55 PM

970 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Using Operators in Function Templates

The square template shown earlier uses the * operator with the number parameter. This

works well as long as number is of a primitive data type such as int, float, etc. If a user-

de ned class object is passed to the square function, however, the class must contain code

for an overloaded * operator. If not, the compiler will generate a function with an error.

Always remember that a class object passed to a function template must support all the

operations the function will perform on the object. For instance, if the function performs a

comparison on the object (with >, <, ==, or another relational operator), those operators

must be overloaded by the class object.

Function Templates with Multiple Types

More than one generic type may be used in a function template. Each type must have its

own parameter, as shown in Program 16-9. This program uses a function template named

larger. This template uses two type parameters: T1 and T2. The sizes of the function

parameters, var1 and var2, are compared and the function returns the number of bytes

occupied by the larger of the two. Because the function parameters are speci ed with dif-

ferent types, the function generated from this template can accept two arguments of differ-

ent types.

 21 // Get and swapVars two chars

 22 cout << "Enter two characters: ";

 23 cin >> firstChar >> secondChar;

 24 swapVars(firstChar, secondChar);

 25 cout << firstChar << " " << secondChar << endl;

 26

 27 // Get and swapVars two ints

 28 cout << "Enter two integers: ";

 29 cin >> firstInt >> secondInt;

 30 swapVars(firstInt, secondInt);

 31 cout << firstInt << " " << secondInt << endl;

 32

 33 // Get and swapVars two doubles

 34 cout << "Enter two floating-point numbers: ";

 35 cin >> firstDouble >> secondDouble;

 36 swapVars(firstDouble, secondDouble);

 37 cout << firstDouble << " " << secondDouble << endl;

 38 return 0;

 39 }

Program Output with Example Input Shown in Bold

Enter two characters: A B [Enter]
B A

Enter two integers: 5 10 [Enter]
10 5

Enter two floating-point numbers: 1.2 9.6 [Enter]
9.6 1.2

Program 16-8 (continued)

M16_GADD6253_07_SE_C16 Page 970 Wednesday, January 12, 2011 3:55 PM

16.2 Function Templates 971

Overloading with Function Templates

Function templates may be overloaded. As with regular functions, function templates are

overloaded by having different parameter lists. For example, there are two overloaded

versions of the sum function in Program 16-10. The rst version accepts two arguments,

and the second version accepts three.

Program 16-9

 1 // This program demonstrates a function template

 2 // with two type parameters.

 3 #include <iostream>

 4 using namespace std;

 5

 6 template <class T1, class T2>

 7 int largest(const T1 &var1, T2 &var2)

 8 {

 9 if (sizeof(var1) > sizeof(var2))

 10 return sizeof(var1);

 11 else

 12 return sizeof(var2);

 13 }

 14

 15 int main()

 16 {

 17 int i = 0;

 18 char c = ' ';

 19 float f = 0.0;

 20 double d = 0.0;

 21

 22 cout << "Comparing an int and a double, the largest\n"

 23 << "of the two is " << largest(i, d) << " bytes.\n";

 24

 25 cout << "Comparing a char and a float, the largest\n"

 26 << "of the two is " << largest(c, f) << " bytes.\n";

 27

 28 return 0;

 29 }

Program Output

Comparing an int and a double, the largest

of the two is 8 bytes.

Comparing a char and a float, the largest

of the two is 4 bytes.

NOTE: Each type parameter declared in the template pre x must be used somewhere in

the template de nition.

M16_GADD6253_07_SE_C16 Page 971 Wednesday, January 12, 2011 3:55 PM

972 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

There are other ways to perform overloading with function templates as well. For exam-

ple, a program might contain a regular (nontemplate) version of a function as well as a

template version. As long as each has a different parameter list, they can coexist as over-

loaded functions.

16.3
Focus on Software Engineering: Where to Start
When De ning Templates

Quite often, it is easier to convert an existing function into a template than to write a tem-

plate from scratch. With this in mind, you should start designing a function template by

Program 16-10

 1 // This program demonstrates an overloaded function template.

 2 #include <iostream>

 3 using namespace std;

 4

 5 template <class T>

 6 T sum(T val1, T val2)

 7 {

 8 return val1 + val2;

 9 }

 10

 11 template <class T>

 12 T sum(T val1, T val2, T val3)

 13 {

 14 return val1 + val2 + val3;

 15 }

 16

 17 int main()

 18 {

 19 double num1, num2, num3;

 20

 21 // Get two values and display their sum.

 22 cout << "Enter two values: ";

 23 cin >> num1 >> num2;

 24 cout << "Their sum is " << sum(num1, num2) << endl;

 25

 26 // Get three values and display their sum.

 27 cout << "Enter three values: ";

 28 cin >> num1 >> num2 >> num3;

 29 cout << "Their sum is " << sum(num1, num2, num3) << endl;

 30 return 0;

 31 }

Program Output with Example Input Shown in Bold

Enter two values: 12.5 6.9 [Enter]
Their sum is 19.4

Enter three values: 45.76 98.32 10.51 [Enter]
Their sum is 154.59

M16_GADD6253_07_SE_C16 Page 972 Wednesday, January 12, 2011 3:55 PM

16.4 Class Templates 973

writing it rst as a regular function. For example, the swapVars template in Program 16-8

would have been started as something like the following:

void swapVars(int &var1, int &var2)

{

 int temp;

 temp = var1;

 var1 = var2;

 var2 = temp;

}

Once this function is properly tested and debugged, converting it to a template is a simple

process. First, the template <class T> header is added, then all the references to int that

must be changed are replaced with the data type parameter T.

Checkpoint

 www.myprogramminglab.com

16.6 When does the compiler actually generate code for a function template?

16.7 The following function accepts an int argument and returns half of its value as a

double:

 double half(int number)

 {

 return number / 2.0;

 }

Write a template that will implement this function to accept an argument of any

type.

16.8 What must you be sure of when passing a class object to a function template that

uses an operator, such as * or >?

16.9 What is the best method for writing a function template?

16.4 Class Templates

CONCEPT: Templates may also be used to create generic classes and abstract data

types. Class templates allow you to create one general version of a class

without having to duplicate code to handle multiple data types.

Recall the IntArray class from Chapter 14. By overloading the [] operator, this class

allows you to implement int arrays that perform bounds checking. But suppose you

would like to have a version of this class for other data types? Of course, you could design

specialized classes such as LongArray, FloatArray, DoubleArray, and so forth. A better

solution, however, is to design a single class template that works with any primitive data

type. In this section, we will convert the IntArray class into a generalized template

named SimpleVector.

Declaring a class template is very similar to declaring a function template. First, a tem-

plate pre x, such as template<class T>, is placed before the class declaration. As with

M16_GADD6253_07_SE_C16 Page 973 Wednesday, January 12, 2011 3:55 PM

974 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

function templates, T (or whatever identi er you choose to use) is a data type parameter.

Then, throughout the class declaration, the data type parameter is used where you wish to

support any data type. Below is the SimpleVector class template declaration.

Contents of SimpleVector.h

 1 // SimpleVector class template

 2 #ifndef SIMPLEVECTOR_H

 3 #define SIMPLEVECTOR_H

 4 #include <iostream>

 5 #include <new> // Needed for bad_alloc exception

 6 #include <cstdlib> // Needed for the exit function

 7 using namespace std;

 8

 9 template <class T>

 10 class SimpleVector

 11 {

 12 private:

 13 T *aptr; // To point to the allocated array

 14 int arraySize; // Number of elements in the array

 15 void memError(); // Handles memory allocation errors

 16 void subError(); // Handles subscripts out of range

 17

 18 public:

 19 // Default constructor

 20 SimpleVector()

 21 { aptr = 0; arraySize = 0;}

 22

 23 // Constructor declaration

 24 SimpleVector(int);

 25

 26 // Copy constructor declaration

 27 SimpleVector(const SimpleVector &);

 28

 29 // Destructor declaration

 30 ~SimpleVector();

 31

 32 // Accessor to return the array size

 33 int size() const

 34 { return arraySize; }

 35

 36 // Accessor to return a specific element

 37 T getElementAt(int position);

 38

 39 // Overloaded [] operator declaration

 40 T &operator[](const int &);

 41 };

 42

 43 //***

 44 // Constructor for SimpleVector class. Sets the size of the *

 45 // array and allocates memory for it. *

 46 //***

 47

M16_GADD6253_07_SE_C16 Page 974 Wednesday, January 12, 2011 3:55 PM

16.4 Class Templates 975

 48 template <class T>

 49 SimpleVector<T>::SimpleVector(int s)

 50 {

 51 arraySize = s;

 52 // Allocate memory for the array.

 53 try

 54 {

 55 aptr = new T [s];

 56 }

 57 catch (bad_alloc)

 58 {

 59 memError();

 60 }

 61

 62 // Initialize the array.

 63 for (int count = 0; count < arraySize; count++)

 64 *(aptr + count) = 0;

 65 }

 66

 67 //***

 68 // Copy Constructor for SimpleVector class. *

 69 //***

 70

 71 template <class T>

 72 SimpleVector<T>::SimpleVector(const SimpleVector &obj)

 73 {

 74 // Copy the array size.

 75 arraySize = obj.arraySize;

 76

 77 // Allocate memory for the array.

 78 aptr = new T [arraySize];

 79 if (aptr == 0)

 80 memError();

 81

 82 // Copy the elements of obj's array.

 83 for(int count = 0; count < arraySize; count++)

 84 *(aptr + count) = *(obj.aptr + count);

 85 }

 86

 87 //**************************************

 88 // Destructor for SimpleVector class. *

 89 //**************************************

 90

 91 template <class T>

 92 SimpleVector<T>::~SimpleVector()

 93 {

 94 if (arraySize > 0)

 95 delete [] aptr;

 96 }

 97

 98 //***

 99 // memError function. Displays an error message and *

100 // terminates the program when memory allocation fails. *

101 //***

102

M16_GADD6253_07_SE_C16 Page 975 Wednesday, January 12, 2011 3:55 PM

976 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

103 template <class T>

104 void SimpleVector<T>::memError()

105 {

106 cout << "ERROR:Cannot allocate memory.\n";

107 exit(EXIT_FAILURE);

108 }

109

110 //***

111 // subError function. Displays an error message and *

112 // terminates the program when a subscript is out of range. *

113 //***

114

115 template <class T>

116 void SimpleVector<T>::subError()

117 {

118 cout << "ERROR: Subscript out of range.\n";

119 exit(EXIT_FAILURE);

120 }

121

122 //***

123 // getElementAt function. The argument is a subscript. *

124 // This function returns the value stored at the *

125 // subcript in the array. *

126 //***

127

128 template <class T>

129 T SimpleVector<T>::getElementAt(int sub)

130 {

131 if (sub < 0 || sub >= arraySize)

132 subError();

133 return aptr[sub];

134 }

135

136 //***

137 // Overloaded [] operator. The argument is a subscript. *

138 // This function returns a reference to the element *

139 // in the array indexed by the subscript. *

140 //***

141

142 template <class T>

143 T &SimpleVector<T>::operator[](const int &sub)

144 {

145 if (sub < 0 || sub >= arraySize)

146 subError();

147 return aptr[sub];

148 }

149 #endif

NOTE: The arraySize member variable is declared as an int. This is because it holds

the size of the array, which will be an integer value, regardless of the data type of the

array. This is also why the size member function returns an int.

M16_GADD6253_07_SE_C16 Page 976 Wednesday, January 12, 2011 3:55 PM

16.4 Class Templates 977

De ning Objects of the Class Template

Class template objects are de ned like objects of ordinary classes, with one small differ-

ence: the data type you wish to pass to the type parameter must be speci ed. Placing the

data type name inside angled brackets immediately following the class name does this. For

example, the following statements create two SimpleVector objects: intTable and

doubleTable.

SimpleVector<int> intTable(10);

SimpleVector<double> doubleTable(10);

In the de nition of intTable, the data type int will be used in the template everywhere

the type parameter T appears. This will cause intTable to store an array of ints. Like-

wise, the de nition of doubleTable passes the data type double into the parameter T,

causing it to store an array of doubles. This is demonstrated in Program 16-11.

Program 16-11

 1 // This program demonstrates the SimpleVector template.

 2 #include <iostream>

 3 #include "SimpleVector.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int SIZE = 10; // Number of elements

 9 int count; // Loop counter

 10

 11 // Create a SimpleVector of ints.

 12 SimpleVector<int> intTable(SIZE);

 13

 14 // Create a SimpleVector of doubles.

 15 SimpleVector<double> doubleTable(SIZE);

 16

 17 // Store values in the two SimpleVectors.

 18 for (count = 0; count < SIZE; count++)

 19 {

 20 intTable[count] = (count * 2);

 21 doubleTable[count] = (count * 2.14);

 22 }

 23

 24 // Display the values in the SimpleVectors.

 25 cout << "These values are in intTable:\n";

 26 for (count = 0; count < SIZE; count++)

 27 cout << intTable[count] << " ";

 28 cout << endl;

 29 cout << "These values are in doubleTable:\n";

 30 for (count = 0; count < SIZE; count++)

 31 cout << doubleTable[count] << " ";

 32 cout << endl;

 33

(program continues)

M16_GADD6253_07_SE_C16 Page 977 Wednesday, January 12, 2011 3:55 PM

978 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

 34 // Use the standard + operator on the elements.

 35 cout << "\nAdding 5 to each element of intTable"

 36 << " and doubleTable.\n";

 37 for (count = 0; count < SIZE; count++)

 38 {

 39 intTable[count] = intTable[count] + 5;

 40 doubleTable[count] = doubleTable[count] + 5.0;

 41 }

 42

 43 // Display the values in the SimpleVectors.

 44 cout << "These values are in intTable:\n";

 45 for (count = 0; count < SIZE; count++)

 46 cout << intTable[count] << " ";

 47 cout << endl;

 48 cout << "These values are in doubleTable:\n";

 49 for (count = 0; count < SIZE; count++)

 50 cout << doubleTable[count] << " ";

 51 cout << endl;

 52

 53 // Use the standard ++ operator on the elements.

 54 cout << "\nIncrementing each element of intTable and"

 55 << " doubleTable.\n";

 56 for (count = 0; count < SIZE; count++)

 57 {

 58 intTable[count]++;

 59 doubleTable[count]++;

 60 }

 61

 62 // Display the values in the SimpleVectors.

 63 cout << "These values are in intTable:\n";

 64 for (count = 0; count < SIZE; count++)

 65 cout << intTable[count] << " ";

 66 cout << endl;

 67 cout << "These values are in doubleTable:\n";

 68 for (count = 0; count < SIZE; count++)

 69 cout << doubleTable[count] << " ";

 70 cout << endl;

 71

 72 return 0;

 73 }

Program Output

These values are in intTable:

0 2 4 6 8 10 12 14 16 18

These values are in doubleTable:

0 2.14 4.28 6.42 8.56 10.7 12.84 14.98 17.12 19.26

Program 16-11 (continued)

M16_GADD6253_07_SE_C16 Page 978 Wednesday, January 12, 2011 3:55 PM

16.4 Class Templates 979

Class Templates and Inheritance

Inheritance can easily be applied to class templates. For example, in the following tem-

plate, SearchableVector is derived from the SimpleVector class.

Contents of SearchableVector.h

 1 #ifndef SEARCHABLEVECTOR_H

 2 #define SEARCHABLEVECTOR_H

 3 #include "SimpleVector.h"

 4

 5 template <class T>

 6 class SearchableVector : public SimpleVector<T>

 7 {

 8 public:

 9 // Default constructor

10 SearchableVector() : SimpleVector<T>()

11 {}

12

13 // Constructor

14 SearchableVector(int size) : SimpleVector<T>(size)

15 { }

16

17 // Copy constructor

18 SearchableVector(const SearchableVector &);

19

20 // Accessor to find an item

21 int findItem(const T);

22 };

23

24 //***

25 // Copy constructor *

26 //***

27

28 template <class T>

29 SearchableVector<T>::SearchableVector(const SearchableVector &obj) :

30 SimpleVector<T>(obj.size())

31 {

32 for(int count = 0; count < this->size(); count++)

33 this->operator[](count) = obj[count];

34 }

Adding 5 to each element of intTable and doubleTable.

These values are in intTable:

5 7 9 11 13 15 17 19 21 23

These values are in doubleTable:

5 7.14 9.28 11.42 13.56 15.7 17.84 19.98 22.12 24.26

Incrementing each element of intTable and doubleTable.

These values are in intTable:

6 8 10 12 14 16 18 20 22 24

These values are in doubleTable:

6 8.14 10.28 12.42 14.56 16.7 18.84 20.98 23.12 25.26

M16_GADD6253_07_SE_C16 Page 979 Wednesday, January 12, 2011 3:55 PM

980 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

35

36 //***

37 // findItem function *

38 // This function searches for item. If item is found *

39 // the subscript is returned. Otherwise -1 is returned. *

40 //***

41

42 template <class T>

43 int SearchableVector<T>::findItem(const T item)

44 {

45 for (int count = 0; count <= this->size(); count++)

46 {

47 if (getElementAt(count) == item)

48 return count;

49 }

50 return -1;

51 }

52 #endif

This class template de nes a searchable version of the SimpleVector class. The member

function findItem accepts an argument, and performs a simple linear search to determine

whether the argument s value is stored in the array. If the value is found in the array, its

subscript is returned. Otherwise, 1 is returned.

Notice that each time the name SimpleVector is used in the class template, the type

parameter T is used with it. For example, here is the rst line of the class declaration, in

line 6, which names SimpleVector as the base class:

class SearchableVector : public SimpleVector<T>

Also, here are the function headers for the class constructors:

SearchableVector() : SimpleVector<T>()

SearchableVector(int size) : SimpleVector<T>(size)

Because SimpleVector is a class template, the type parameter must be passed to it.

Program 16-12 demonstrates the class by storing values in two SearchableVector

objects and then searching for a speci c value in each.

Program 16-12

 1 // This program demonstrates the SearchableVector template.

 2 #include <iostream>

 3 #include "SearchableVector.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int SIZE = 10; // Number of elements

 9 int count; // Loop counter

 10 int result; // To hold search results

 11

M16_GADD6253_07_SE_C16 Page 980 Wednesday, January 12, 2011 3:55 PM

16.4 Class Templates 981

 12 // Create two SearchableVector objects.

 13 SearchableVector<int> intTable(SIZE);

 14 SearchableVector<double> doubleTable(SIZE);

 15

 16 // Store values in the objects.

 17 for (count = 0; count < SIZE; count++)

 18 {

 19 intTable[count] = (count * 2);

 20 doubleTable[count] = (count * 2.14);

 21 }

 22

 23 // Display the values in the objects.

 24 cout << "These values are in intTable:\n";

 25 for (count = 0; count < SIZE; count++)

 26 cout << intTable[count] << " ";

 27 cout << endl << endl;

 28 cout << "These values are in doubleTable:\n";

 29 for (count = 0; count < SIZE; count++)

 30 cout << doubleTable[count] << " ";

 31 cout << endl;

 32

 33 // Search for the value 6 in intTable.

 34 cout << "\nSearching for 6 in intTable.\n";

 35 result = intTable.findItem(6);

 36 if (result == -1)

 37 cout << "6 was not found in intTable.\n";

 38 else

 39 cout << "6 was found at subscript " << result << endl;

 40

 41 // Search for the value 12.84 in doubleTable.

 42 cout << "\nSearching for 12.84 in doubleTable.\n";

 43 result = doubleTable.findItem(12.84);

 44 if (result == -1)

 45 cout << "12.84 was not found in doubleTable.\n";

 46 else

 47 cout << "12.84 was found at subscript " << result << endl;

 48 return 0;

 49 }

Program Output

These values are in intTable:

0 2 4 6 8 10 12 14 16 18

These values are in doubleTable:

0 2.14 4.28 6.42 8.56 10.7 12.84 14.98 17.12 19.26

Searching for 6 in intTable.

6 was found at subscript 3

Searching for 12.84 in doubleTable.

12.84 was found at subscript 6

M16_GADD6253_07_SE_C16 Page 981 Wednesday, January 12, 2011 3:55 PM

982 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

The SearchableVector class demonstrates that a class template may be derived from

another class template. In addition, class templates may be derived from ordinary classes,

and ordinary classes may be derived from class templates.

Specialized Templates

Suppose you have a template that works for all data types but one. For example, the

SimpleVector and SearchableVector classes work well with numeric, and even charac-

ter, data. But they will not work with C-strings. Situations like this require the use of spe-

cialized templates. A specialized template is one that is designed to work with a speci c

data type. In the declaration, the actual data type is used instead of a type parameter. For

example, the declaration of a specialized version of the SimpleVector class might start

like this:

class SimpleVector<char *>

The compiler would know that this version of the SimpleVector class is intended for the

char * data type. Anytime an object is de ned of the type SimpleVector<char *>, the

compiler will use this template to generate the code.

Checkpoint

 www.myprogramminglab.com

16.10 Suppose your program uses a class template named List, which is de ned as

template<class T>

class List

{

 // Members are declared here

};

Give an example of how you would use int as the data type in the de nition of a

List object. (Assume the class has a default constructor.)

16.11 As the following Rectangle class is written, the width and length members are

doubles. Rewrite the class as a template that will accept any data type for these

members.

class Rectangle

{

 private:

 double width;

 double length;

 public:

 void setData(double w, double l)

 { width = w; length = l;}

 double getWidth()

 { return width; }

 double getLength()

 { return length; }

 double getArea()

 { return width * length; }

};

M16_GADD6253_07_SE_C16 Page 982 Wednesday, January 12, 2011 3:55 PM

16.5 Introduction to the Standard Template Library (STL) 983

16.5 Introduction to the Standard Template Library (STL)

CONCEPT: The Standard Template Library contains many templates for useful

algorithms and data structures.

In addition to its runtime library, which you have used throughout this book, C++ also

provides a library of templates. The Standard Template Library (or STL) contains numer-

ous generic templates for implementing abstract data types (ADTs) and algorithms. In this

section you will be introduced to the general types of ADTs and algorithms that may be

found in the STL.

Abstract Data Types

The most important data structures in the STL are containers and iterators. A container is

a class that stores data and organizes it in some fashion. An iterator is an object that

behaves like a pointer. It is used to access the individual data elements in a container.

There are two types of container classes in the STL: sequence and associative. A sequence

container organizes data in a sequential fashion similar to an array. The three sequence

containers currently provided are listed in Table 16-1.

Performance Differences Between vectors, deques, and lists

There is a difference in performance between vectors, deques, and lists. When choos-

ing one of these templates to use in your program, remember the following points:

A vector is capable of quickly adding values to its end. Insertions at other points

are not as efficient.

A deque is capable of quickly adding values to its front and its end. deques are

not efficient at inserting values at other positions, however.

A list is capable of quickly inserting values anywhere in its sequence. lists do

not, however, provide random access.

NOTE: Section 7.12 of Chapter 7 presents a concise introduction to the Standard

Template Library, and discusses the vector data type. This discussion is continued in

Section 8.5 of Chapter 8. If you have not already studied those sections, do so now.

Table 16-1

Container Name Description

vector An expandable array. Values may be added to or removed from the end or

middle of a vector.

deque Like a vector, but allows values to be added to or removed from the front.

list A doubly linked list of data elements. Values may be inserted to or removed from

any position. (You will learn more about linked lists in Chapter 17.)

M16_GADD6253_07_SE_C16 Page 983 Wednesday, January 12, 2011 3:55 PM

984 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

An associative container uses keys to rapidly access elements. (If you ve ever used a rela-

tional database, you are probably familiar with the concept of keys.) The four associative

containers currently supported are shown in Table 16-2.

Iterators are generalizations of pointers and are used to access data stored in containers.

The types of iterators are shown in Table 16-3.

Iterators are associated with containers. The type of container you have determines the

type of iterator you use. For example, vectors and deques require random-access itera-

tors, while lists, sets, multisets, maps, and multimaps require bidirectional iterators.

Algorithms

The algorithms provided by the STL are implemented as function templates, and perform

various operations on elements of containers. There are many algorithms in the STL, but

Table 16-4 lists a few of them. (The table gives only general descriptions.)

Table 16-2

Container Name Description

set Stores a set of keys. No duplicate values are allowed.

multiset Stores a set of keys. Duplicates are allowed.

map Maps a set of keys to data elements. Only one key per data element is allowed.

Duplicates are not allowed.

multimap Maps a set of keys to data elements. Many keys per data element are allowed.

Duplicates are allowed.

Table 16-3

Iterator Type Description

Forward Can only move forward in a container (uses the ++ operator).

Bidirectional Can move forward or backward in a container (uses the ++ and operators).

Random-access Can move forward and backward, and can jump to a speci c data element in

a container.

Input Can be used with an input stream to read data from an input device or a le.

Output Can be used with an output stream to write data to an output device or a le.

Table 16-4

Algorithm Description

binary_search Performs a binary search for an object and returns true if the object is found.

Example:
binary_search(iter1, iter2, value);

In this statement, iter1 and iter2 point to elements in a container. (iter1

points to the rst element in the range and iter2 points to the last element in the

range.) The statement performs a binary search on the range of elements,

searching for value. The binary_search function returns true if the element

was found, and false if the element was not found.

(table continues)

M16_GADD6253_07_SE_C16 Page 984 Wednesday, January 12, 2011 3:55 PM

16.5 Introduction to the Standard Template Library (STL) 985

count Returns the number of times a value appears in a range.

Example:
iter3 = count(iter1, iter2, value);

In this statement, iter1 and iter2 point to elements in a container. (iter1

points to the rst element in the range and iter2 points to the last element in the

range.) The statement returns the number of times value appears in the range of

elements.

find Finds the rst object in a container that matches a value and returns an iterator

to it.

Example:
iter3 = find(iter1, iter2, value);

In this statement, iter1 and iter2 point to elements in a container. (iter1

points to the rst element in the range and iter2 points to the last element in the

range.) The statement searches the range of elements for value. If value is found,

the function returns an iterator to the element containing it.

for_each Executes a function for each element in a container.

Example:
for_each(iter1, iter2, func);

In this statement, iter1 and iter2 point to elements in a container. (iter1

points to the rst element in the range and iter2 points to the last element in the

range.) The third argument, func, is the name of a function. The statement calls

the function func for each element in the range, passing the element as an

argument.

max_element Returns an iterator to the largest object in a range.

Example:
iter3 = max_element(iter1, iter2);

In this statement, iter1 and iter2 point to elements in a container. (iter1

points to the rst element in the range and iter2 points to the last element in the

range.) The statement returns an iterator to the element containing the largest

value in the range.

min_element Returns an iterator to the smallest object in a range.

Example:
iter3 = min_element(iter1, iter2);

In this statement, iter1 and iter2 point to elements in a container. (iter1

points to the rst element in the range and iter2 points to the last element in the

range.) The statement returns an iterator to the element containing the smallest

value in the range.

Table 16-4 (continued)

Algorithm Description

(table continues)

M16_GADD6253_07_SE_C16 Page 985 Wednesday, January 12, 2011 3:55 PM

986 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Example Programs Using the STL

Now that you have been introduced to the types of data structures and algorithms offered

by the STL, let s look at some simple programs that use them.

Containers

Program 16-13 provides a limited demonstration of the vector class template. The mem-

ber functions of vector used in this program are listed in Table 16-5.

The vector class template has many more member functions, but these are enough to

demonstrate the class.

random_shuffle Randomly shuf es the elements of a container.

Example:
random_shuffle(iter1, iter2);

In this statement, iter1 and iter2 point to elements in a container. (iter1

points to the rst element in the range and iter2 points to the last element in the

range.) The statement randomly reorders the elements in the range.

sort Sorts a range of elements.

Example:
sort(iter1, iter2);

In this statement, iter1 and iter2 point to elements in a container. (iter1

points to the rst element in the range and iter2 points to the last element in the

range.) The statement sorts the elements in the range in ascending order.

Table 16-5

Member Function Description

size() Returns the number of elements in the vector.

push_back() Accepts as an argument a value to be inserted into the vector. The argument is

inserted after the last element. (Pushed onto the back of the vector.)

pop_back() Removes the last element from the vector.

operator[] Allows array-like access of existing vector elements. (The vector must already

contain elements for this operator to work. It cannot be used to insert new

values into the vector.)

Program 16-13

 1 // This program provides a simple demonstration of the

 2 // vector STL template.

 3 #include <iostream>

 4 #include <vector> // Include the vector header

 5 using namespace std;

 6

Table 16-4 (continued)

Algorithm Description

M16_GADD6253_07_SE_C16 Page 986 Wednesday, January 12, 2011 3:55 PM

16.5 Introduction to the Standard Template Library (STL) 987

Notice the inclusion of the vector header le in line 4, which is required for the vector

container. vectors are one of the simplest types of containers in the STL. In following

chapters, you will see examples using other types of containers.

Iterators

In Program 16-13, the vector s elements were accessed by the container s member func-

tions. Iterators may also be used to access and manipulate container elements.

Program 16-14 demonstrates the use of an iterator with a vector object.

 7 int main()

 8 {

 9 int count; // Loop counter

 10

 11 // Define a vector object.

 12 vector<int> vect;

 13

 14 // Use the size member function to get

 15 // the number of elements in the vector.

 16 cout << "vect starts with " << vect.size()

 17 << " elements.\n";

 18

 19 // Use push_back to push values into the vector.

 20 for (count = 0; count < 10; count++)

 21 vect.push_back(count);

 22

 23 // Display the size of the vector now.

 24 cout << "Now vect has " << vect.size()

 25 << " elements. Here they are:\n";

 26

 27 // Use the [] operator to display each element.

 28 for (count = 0; count < vect.size(); count++)

 29 cout << vect[count] << " ";

 30 cout << endl;

 31

 32 // Use the pop_back member function.

 33 cout << "Popping the values out of vect...\n";

 34 for (count = 0; count < 10; count++)

 35 vect.pop_back();

 36

 37 // Display the size of the vector now.

 38 cout << "Now vect has " << vect.size() << " elements.\n";

 39 return 0;

 40 }

Program Output

vect starts with 0 elements.

Now vect has 10 elements. Here they are:

0 1 2 3 4 5 6 7 8 9

Popping the values out of vect...

Now vect has 0 elements.

VideoNote

Storing

Objects in

a vector

M16_GADD6253_07_SE_C16 Page 987 Wednesday, January 12, 2011 3:55 PM

988 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

The de nition of an iterator is closely related to the de nition of the container it is to be

used with. For example, Program 16-14 de nes a vector of ints as:

vector<int> vect;

The iterator that will work with the vector is de ned as:

vector<int>::iterator iter;

This de nition creates an iterator speci cally for a vector of ints. The compiler auto-

matically chooses the right type (in this case, a random-access iterator).

The second for loop in lines 23 through 26 causes the iterator to step through each ele-

ment in the vector:

Program 16-14

 1 // This program provides a simple iterator demonstration.

 2 #include <iostream>

 3 #include <vector> // Include the vector header

 4 using namespace std;

 5

 6 int main()

 7 {

 8 int count; // Loop counter

 9

 10 // Define a vector object.

 11 vector<int> vect;

 12

 13 // Define an iterator object.

 14 vector<int>::iterator iter;

 15

 16 // Use push_back to push values into the vector.

 17 for (count = 0; count < 10; count++)

 18 vect.push_back(count);

 19

 20 // Step the iterator through the vector,

 21 // and use it to display the vector's contents.

 22 cout << "Here are the values in vect: ";

 23 for (iter = vect.begin(); iter < vect.end(); iter++)

 24 {

 25 cout << *iter << " ";

 26 }

 27

 28 // Step the iterator through the vector backwards.

 29 cout << "\nand here they are backwards: ";

 30 for (iter = vect.end() - 1; iter >= vect.begin(); iter--)

 31 {

 32 cout << *iter << " ";

 33 }

 34 return 0;

 35 }

Program Output

Here are the values in vect: 0 1 2 3 4 5 6 7 8 9

and here they are backwards: 9 8 7 6 5 4 3 2 1 0

M16_GADD6253_07_SE_C16 Page 988 Wednesday, January 12, 2011 3:55 PM

16.5 Introduction to the Standard Template Library (STL) 989

for (iter = vect.begin(); iter < vect.end(); iter++)

The loop s initialization expression uses the container s begin() member function, which

returns an iterator pointing to the beginning of the vector. The statement

iter = vect.begin();

causes iter to point to the rst element in the vector. The test expression uses the end()

member function, which returns an iterator pointing to the location just past the end of

the container:

iter < vect.end();

As long as iter points to an element prior to the end of the vector, this statement will be

true.

The loop s update expression uses the ++ operator to increment the iterator. This causes

the iterator to point to the next element in the vector.

The body of the loop uses a cout statement in line 25 to display the element that the iter-

ator points to:

cout << *iter << " ";

Like a pointer, iterators may be dereferenced with the * operator. The statement above

causes the value pointed to by iter to be displayed.

Back to the vector Template

Table 16-6 lists several more member functions of the vector class template. Some of

these accept iterators as arguments and/or return an iterator.

Table 16-6

Member Function Examples and Description

at(element) Returns the value of the element located at element in the vector.

Example:
x = vect.at(5);

This statement assigns the value of element 5 of vect to x.

back() Returns a reference to the last element in the vector.

Example:
cout << vect.back() << endl;

begin() Returns an iterator pointing to the vector s rst element.

Example:
iter = vect.begin();

capacity() Returns the maximum number of elements that may be stored in the

vector without additional memory being allocated. (This is not the same

value as returned by the size member function.)

Example:
x = vect.capacity();

This statement assigns the capacity of vect to x.

(table continues)

M16_GADD6253_07_SE_C16 Page 989 Wednesday, January 12, 2011 3:55 PM

990 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Algorithms

There are many algorithms in the STL, implemented as function templates. Program 16-15

demonstrates random_shuffle, sort, and binary_search.

clear() Clears a vector of all its elements.

Example:
vect.clear();

This statement removes all the elements from vect.

empty() Returns true if the vector is empty. Otherwise, it returns false.

Example:
if (vect.empty())

 cout << "The vector is empty.";

This statement displays the message if vect is empty.

end() Returns an iterator pointing to the vector s last element.

Example:
iter = vect.end();

erase() Causes the vector element pointed to by the iterator iter to be removed.

Example:
vect.erase(iter);

erase(iter1, iter2) Causes all the vector elements from the iterator iter1 to the iterator

iter2 to be removed.

Example:
vect.erase(firstIter, secondIter);

front() Returns a reference to the vector s rst element.

Example:
cout << vector.front() << endl;

insert (iter, value) Inserts a value into a vector.

Example:
vect.insert(iter, 22);

This statement inserts the value 22 into vect. The value is inserted into

the element before the one pointed to by iter.

resize(n, value) Resizes a vector by n new elements. The elements are initialized with

value.

Example:
vect.resize(10, 0);

This statement adds ten new elements to vect and initializes the new

elements with the value 0.

reverse() Reverses the order of the items stored in a vector.

Example:
vect.reverse();

Table 16-6 (continued)

Member Function Examples and Description

M16_GADD6253_07_SE_C16 Page 990 Wednesday, January 12, 2011 3:55 PM

16.5 Introduction to the Standard Template Library (STL) 991

Program 16-15

 1 // A simple demonstration of STL algorithms

 2 #include <iostream>

 3 #include <vector> // Required for the vector type

 4 #include <algorithm> // Required for STL algorithms

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int count; // Loop counter

 10

 11 // Define a vector object.

 12 vector<int> vect;

 13

 14 // Use push_back to push values into the vector.

 15 for (count = 0; count < 10; count++)

 16 vect.push_back(count);

 17

 18 // Display the vector's elements.

 19 cout << "The vector has " << vect.size()

 20 << " elements. Here they are:\n";

 21 for (count = 0; count < vect.size(); count++)

 22 cout << vect[count] << " ";

 23 cout << endl;

 24

 25 // Randomly shuffle the vector's contents.

 26 random_shuffle(vect.begin(), vect.end());

 27

 28 // Display the vector's elements.

 29 cout << "The elements have been shuffled:\n";

 30 for (count = 0; count < vect.size(); count++)

 31 cout << vect[count] << " ";

 32 cout << endl;

 33

 34 // Now sort the vector's elements.

 35 sort(vect.begin(), vect.end());

 36

 37 // Display the vector's elements again.

 38 cout << "The elements have been sorted:\n";

 39 for (count = 0; count < vect.size(); count++)

 40 cout << vect[count] << " ";

 41 cout << endl;

 42

 43 // Now search for an element with the value 7.

 44 if (binary_search(vect.begin(), vect.end(), 7))

 45 cout << "The value 7 was found in the vector.\n";

 46 else

 47 cout << "The value 7 was not found in the vector.\n";

 48 return 0;

 49 }

(program output continues)

M16_GADD6253_07_SE_C16 Page 991 Wednesday, January 12, 2011 3:55 PM

992 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

The random_shuffle function rearranges the elements of a container. In line 26 of

Program 16-15, it is called in the following manner:

random_shuffle(vect.begin(), vect.end());

The function takes two arguments, which together represent a range of elements within a

container. The rst argument is an iterator to the rst element in the range. In this case,

vect.begin() is used. The second argument is an iterator to the last element in the range.

Here we have used vect.end(). These arguments tell random_shuffle to rearrange all

the elements from the beginning to the end of the vect container.

The sort algorithm also takes iterators to a range of elements. Here is the function call

that appears in line 35:

sort(vect.begin(), vect.end());

All the elements within the range are sorted in ascending order.

The binary_search algorithm searches a range of elements for a value. If the value is

found, the function returns true. Otherwise, it returns false. For example, the following

function call, which appears in line 44, searches all the elements in vect for the value 7.

binary_search(vect.begin(), vect.end(), 7)

Program 16-16 demonstrates the count algorithm.

Program Output

The vector has 10 elements. Here they are:

0 1 2 3 4 5 6 7 8 9

The elements have been shuffled:

4 3 0 2 6 7 8 9 5 1

The elements have been sorted:

0 1 2 3 4 5 6 7 8 9

The value 7 was found in the vector.

NOTE: The STL algorithms require the algorithm header le.

Program 16-16

 1 // This program demonstrates the STL count algorithm.

 2 #include <iostream>

 3 #include <vector> // Needed to define the vector

 4 #include <algorithm> // Needed for the count algorithm

 5 using namespace std;

 6

 7 int main()

 8 {

 9 // Define a vector object.

 10 vector<int> values;

 11

Program 16-15 (continued)

M16_GADD6253_07_SE_C16 Page 992 Wednesday, January 12, 2011 3:55 PM

16.5 Introduction to the Standard Template Library (STL) 993

Program 16-17 demonstrates the max_element and min_element algorithms.

 12 // Define an iterator for the vector.

 13 vector<int>::iterator iter;

 14

 15 // Store some values in the vector.

 16 values.push_back(1);

 17 values.push_back(2);

 18 values.push_back(2);

 19 values.push_back(3);

 20 values.push_back(3);

 21 values.push_back(3);

 22

 23 // Display the values in the vector.

 24 cout << "The values in the vector are:\n";

 25 for (iter = values.begin(); iter < values.end(); iter++)

 26 cout << *iter << " ";

 27 cout << endl << endl;

 28

 29 // Display the count of each number.

 30 cout << "The number of 1s in the vector is ";

 31 cout << count(values.begin(), values.end(), 1) << endl;

 32 cout << "The number of 2s in the vector is ";

 33 cout << count(values.begin(), values.end(), 2) << endl;

 34 cout << "The number of 3s in the vector is ";

 35 cout << count(values.begin(), values.end(), 3) << endl;

 36 return 0;

 37 }

Program Output

 The values in the vector are:

 1 2 2 3 3 3

 The number of 1s in the vector is 1

 The number of 2s in the vector is 2

 The number of 3s in the vector is 3

Program 16-17

 1 // A demonstration of the max_element and min_element algorithms

 2 #include <iostream>

 3 #include <vector> // Needed to define the vector

 4 #include <algorithm> // Needed for the algorithms

 5 using namespace std;

 6

 7 int main()

 8 {

 9 // Define a vector object.

 10 vector<int> numbers;

 11

(program continues)

M16_GADD6253_07_SE_C16 Page 993 Wednesday, January 12, 2011 3:55 PM

994 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Program 16-18 demonstrates the find algorithm.

 12 // Define an iterator for the vector.

 13 vector<int>::iterator iter;

 14

 15 // Store some numbers in the vector.

 16 for (int count = 0; count < 10; count++)

 17 numbers.push_back(count);

 18

 19 // Display the numbers in the vector.

 20 cout << "The numbers in the vector are:\n";

 21 for (iter = numbers.begin(); iter != numbers.end(); iter++)

 22 cout << *iter << " ";

 23 cout << endl << endl;

 24

 25 // Find the largest value in the vector.

 26 iter = max_element(numbers.begin(), numbers.end());

 27 cout << "The largest value in the vector is " << *iter << endl;

 28

 29 // Find the smallest value in the vector.

 30 iter = min_element(numbers.begin(), numbers.end());

 31 cout << "The smallest value in the vector is " << *iter << endl;

 32 return 0;

 33 }

Program Output

The numbers in the vector are:

0 1 2 3 4 5 6 7 8 9

The largest value in the vector is 9

The smallest value in the vector is 0

Program 16-18

 1 // A demonstration of the STL find algorithm.

 2 #include <iostream>

 3 #include <vector> // Needed to define the vector

 4 #include <algorithm> // Needed for the find algorithm

 5 using namespace std;

 6

 7 int main()

 8 {

 9 // Define a vector object.

 10 vector<int> numbers;

 11

 12 // Define an iterator for the vector.

 13 vector<int>::iterator iter;

 14

Program 16-17 (continued)

M16_GADD6253_07_SE_C16 Page 994 Wednesday, January 12, 2011 3:55 PM

16.5 Introduction to the Standard Template Library (STL) 995

Program 16-19 demonstrates the for_each algorithm.

 15 // Store some numbers in the vector.

 16 for (int x = 0; x < 10; x++)

 17 numbers.push_back(x);

 18

 19 // Display the numbers in the vector.

 20 cout << "The numbers in the vector are:\n";

 21 for (iter = numbers.begin(); iter != numbers.end(); iter++)

 22 cout << *iter << " ";

 23 cout << endl << endl;

 24

 25 // Find the number 7 in the vector.

 26 iter = find(numbers.begin(), numbers.end(), 7);

 27 cout << *iter << endl;

 28 return 0;

 29 }

Program Output

The numbers in the vector are:

0 1 2 3 4 5 6 7 8 9

7

Program 16-19

 1 // A demonstration of the for_each algorithm.

 2 #include <iostream>

 3 #include <vector> // Needed to define the vector

 4 #include <algorithm> // Needed for the for_each algorithm

 5 using namespace std;

 6

 7 // Function prototype

 8 void doubleValue(int &);

 9

 10 int main()

 11 {

 12 // Define a vector object.

 13 vector<int> numbers;

 14

 15 // Define an iterator for the vector.

 16 vector<int>::iterator iter;

 17

 18 // Store some numbers in the vector.

 19 for (int x = 0; x < 10; x++)

 20 numbers.push_back(x);

 21

(program continues)

M16_GADD6253_07_SE_C16 Page 995 Wednesday, January 12, 2011 3:55 PM

996 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

In line 29, the following statement calls for_each:

for_each(numbers.begin(), numbers.end(), doubleValue);

The rst and second arguments specify a range of elements. In this case, the range is the

entire vector. The third argument is the name of a function. The for_each algorithm calls

the function once for each element in the range, passing the element as an argument to the

function.

The programs in this section give you a brief introduction to using the STL by demonstrat-

ing simple operations on a vector. In the remaining chapters you will be given speci c

examples of how to use other STL containers, iterators, and algorithms.

 22 // Display the numbers in the vector.

 23 cout << "The numbers in the vector are:\n";

 24 for (iter = numbers.begin(); iter != numbers.end(); iter++)

 25 cout << *iter << " ";

 26 cout << endl << endl;

 27

 28 // Double the values in the vector.

 29 for_each(numbers.begin(), numbers.end(), doubleValue);

 30

 31 // Display the numbers in the vector again.

 32 cout << "Now the numbers in the vector are:\n";

 33 for (iter = numbers.begin(); iter != numbers.end(); iter++)

 34 cout << *iter << " ";

 35 cout << endl;

 36 return 0;

 37 }

 38

 39 //**

 40 // Function doubleValue. This function accepts an int *

 41 // reference as its argument. The value of the argument *

 42 // is doubled. *

 43 //**

 44

 45 void doubleValue(int &val)

 46 {

 47 val *= 2;

 48 }

Program Output

The numbers in the vector are:

0 1 2 3 4 5 6 7 8 9

Now the numbers in the vector are:

0 2 4 6 8 10 12 14 16 18

Program 16-19 (continued)

M16_GADD6253_07_SE_C16 Page 996 Wednesday, January 12, 2011 3:55 PM

Review Questions and Exercises 997

Review Questions and Exercises

Short Answer

1. What is a throw point?

2. What is an exception handler?

3. Explain the difference between a try block and a catch block.

4. What happens if an exception is thrown, but not caught?

5. What is unwinding the stack ?

6. What happens if an exception is thrown by a class s member function?

7. How do you prevent a program from halting when the new operator fails to allocate
memory?

8. Why is it more convenient to write a function template than a series of overloaded
functions?

9. Why must you be careful when writing a function template that uses operators such
as [] with its parameters?

10. What is a container? What is an iterator?

11. What two types of containers does the STL provide?

12. What STL algorithm randomly shuffles the elements in a container?

Fill-in-the-Blank

13. The line containing a throw statement is known as the __________.

14. The __________ block contains code that directly or indirectly might cause an excep-
tion to be thrown.

15. The __________ block handles an exception.

16. When writing function or class templates, you use a(n) __________ to specify a
generic data type.

17. The beginning of a template is marked by a(n) __________.

18. When defining objects of class templates, the __________ you wish to pass into the
type parameter must be specified.

19. A(n) __________ template works with a specific data type.

20. A(n) __________ container organizes data in a sequential fashion similar to an array.

21. A(n) __________ container uses keys to rapidly access elements.

22. __________ are pointer-like objects used to access data stored in a container.

23. The __________ exception is thrown when the new operator fails to allocate the
requested amount of memory.

Algorithm Workbench

24. Write a function that searches a numeric array for a specified value. The function
should return the subscript of the element containing the value if it is found in the
array. If the value is not found, the function should throw an exception.

M16_GADD6253_07_SE_C16 Page 997 Wednesday, January 12, 2011 3:55 PM

998 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

25. Write a function that dynamically allocates a block of memory and returns a char
pointer to the block. The function should take an integer argument that is the amount
of memory to be allocated. If the new operator cannot allocate the memory, the func-
tion should return a null pointer (a pointer to address 0).

26. Make the function you wrote in Question 24 a template.

27. Write a template for a function that displays the contents of an array of any type.

28. A program has the following definition statements:

vector<int> numbers;

vector<int>::iterator iter;

Write code that uses the iterator to display all the values stored in the vector.

29. Write a statement that performs the STL binary_search algorithm on the vector
defined in Question 28.

30. A program has the following definition:

vector<double> numbers;

The same program also has the following function:

void display(double n)

{

cout << n << endl;

}

Write code that uses the STL for_each algorithm to display the elements of the

numbers vector using the display function.

True or False

31. T F There can be only one catch block in a program.

32. T F When an exception is thrown, but not caught, the program ignores the error.

33. T F Data may be passed with an exception by storing it in members of an excep-

tion class.

34. T F Once an exception has been thrown, it is not possible for the program to jump

back to the throw point.

35. T F All type parameters de ned in a function template must appear at least once in

the function parameter list.

36. T F The compiler creates an instance of a function template in memory as soon as it

encounters the template.

37. T F A class object passed to a function template must overload any operators used

on the class object by the template.

38. T F Only one generic type may be used with a template.

39. T F In the function template de nition, it is not necessary to use each type parame-

ter declared in the template pre x.

40. T F It is possible to overload two function templates.

41. T F It is possible to overload a function template and an ordinary (nontemplate)

function.

42. T F A class template may not be derived from another class template.

M16_GADD6253_07_SE_C16 Page 998 Wednesday, January 12, 2011 3:55 PM

Review Questions and Exercises 999

43. T F A class template may not be used as a base class.

44. T F Specialized templates work with a speci c data type.

45. T F When de ning an iterator from the STL, the compiler automatically creates the

right kind, depending upon the container it is to be used with.

46. T F STL algorithms are implemented as function templates.

Find the Error

Each of the following declarations or code segments has errors. Locate as many as possible.

47. catch

{

 quotient = divide(num1, num2);

 cout << "The quotient is " << quotient << endl;

}

try (string exceptionString)

{

 cout << exceptionString;

}

48. try

{

 quotient = divide(num1, num2);

}

cout << "The quotient is " << quotient << endl;

catch (string exceptionString)

{

 cout << exceptionString;

}

49. template <class T>

T square(T number)

{

 return T * T;

}

50. template <class T>

int square(int number)

{

 return number * number;

}

51. template <class T1, class T2>

T1 sum(T1 x, T1 y)

{

 return x + y;

}

52. Assume the following definition appears in a program that uses the SimpleVector
class template presented in this chapter.

int <SimpleVector> array(25);

53. Assume the following statement appears in a program that has defined valueSet as
an object of the SimpleVector class presented in this chapter. Assume that valueSet
is a vector of ints, and has 20 elements.

cout << valueSet<int>[2] << endl;

M16_GADD6253_07_SE_C16 Page 999 Wednesday, January 12, 2011 3:55 PM

1000 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. Date Exceptions

Modify the Date class you wrote for Programming Challenge 1 of Chapter 13. The

class should implement the following exception classes:

InvalidDay Throw when an invalid day (< 1 or > 31) is passed to the class.

InvalidMonth Throw when an invalid month (< 1 or > 12) is passed to the class.

Demonstrate the class in a driver program.

2. Time Format Exceptions

Modify the MilTime class you created for Programming Challenge 4 of Chapter 15.

The class should implement the following exceptions:

BadHour Throw when an invalid hour (< 0 or > 2359) is passed to the class.

BadSeconds Throw when an invalid number of seconds (< 0 or > 59) is passed to

the class.

Demonstrate the class in a driver program.

3. Minimum/Maximum Templates

Write templates for the two functions minimum and maximum. The minimum function

should accept two arguments and return the value of the argument that is the lesser of

the two. The maximum function should accept two arguments and return the value of

the argument that is the greater of the two. Design a simple driver program that dem-

onstrates the templates with various data types.

4. Absolute Value Template

Write a function template that accepts an argument and returns its absolute value.

The absolute value of a number is its value with no sign. For example, the absolute

value of 5 is 5, and the absolute value of 2 is 2. Test the template in a simple driver

program.

5. Total Template

Write a template for a function called total. The function should keep a running

total of values entered by the user, then return the total. The argument sent into the

function should be the number of values the function is to read. Test the template in a

simple driver program that sends values of various types as arguments and displays

the results.

6. IntArray Class Exception

Chapter 14 presented an IntArray class that dynamically creates an array of integers

and performs bounds checking on the array. If an invalid subscript is used with the

class, it displays an error message and aborts the program. Modify the class so it

throws an exception instead.

M16_GADD6253_07_SE_C16 Page 1000 Wednesday, January 12, 2011 3:55 PM

Review Questions and Exercises 1001

7. TestScores Class

Write a class named TestScores. The class constructor should accept an array of test

scores as its argument. The class should have a member function that returns the aver-

age of the test scores. If any test score in the array is negative or greater than 100, the

class should throw an exception. Demonstrate the class in a program.

8. SimpleVector Modi cation

Modify the SimpleVector class template presented in this chapter to include the

member functions push_back and pop_back. These functions should emulate the

STL vector class member functions of the same name. (See Table 16-5.) The

push_back function should accept an argument and insert its value at the end of the

array. The pop_back function should accept no argument and remove the last element

from the array. Test the class with a driver program.

9. SearchableVector Modi cation

Modify the SearchableVector class template presented in this chapter so that it per-

forms a binary search instead of a linear search. Test the template in a driver program.

10. SortableVector Class Template

Write a class template named SortableVector. The class should be derived from the

SimpleVector class presented in this chapter. It should have a member function that

sorts the array elements in ascending order. (Use the sorting algorithm of your choice.)

Test the template in a driver program.

11. Inheritance Modi cation

Assuming you have completed Programming Challenges 9 and 10, modify the inherit-

ance hierarchy of the SearchableVector class template so it is derived from the

SortableVector class instead of the SimpleVector class. Implement a member

function named sortAndSearch, both a sort and a binary search.

12. Specialized Templates

In this chapter, the section Specialized Templates within Section 16.4 describes how to

design templates that are specialized for one particular data type. The section intro-

duces a method for specializing a version of the SimpleVector class template so it

will work with strings. Complete the specialization for both the SimpleVector and

SearchableVector templates. Demonstrate them with a simple driver program.

13. Rainfall vector

Modify Programming Challenge 2 in Chapter 7 (Rainfall Statistics) to use an STL vec-

tor instead of an array. Refer to the information in Tables 16-5 and 16-6 if you wish

to use any of the member functions.

14. Test Scores vector

Modify Programming Challenge 2 in Chapter 9 (Test Scores #1) to use an STL vector

instead of a dynamically allocated array. Refer to the information in Tables 16-5 and

16-6 if you wish to use any of the member functions.

15. STL Binary Search

Modify programming Challenge 1 in Chapter 8 (Change Account Validation) so it

uses a vector instead of an array. Also, modify the program so it uses the STL

binary_search algorithm to locate valid account numbers.

Programming Challenges

M16_GADD6253_07_SE_C16 Page 1001 Wednesday, January 12, 2011 3:55 PM

1002 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

16. Exception Project

This assignment assumes you have completed Programming Challenge 1 of Chapter 15

(Employee and ProductionWorker Classes). Modify the Employee and

ProductionWorker classes so they throw exceptions when the following errors occur:

The Employee class should throw an exception named InvalidEmployeeNumber

when it receives an employee number that is less than 0 or greater than 9999.

The ProductionWorker class should throw an exception named InvalidShift

when it receives an invalid shift.

The ProductionWorker class should throw an exception named InvalidPayRate

when it receives a negative number for the hourly pay rate.

Write a driver program that demonstrates how each of these exception conditions

works.

17. Phone Book Vector

This chapter has an accompanying video note that shows how to store an object in a

vector. After you view that video, write a class named PhoneBookEntry that has

members for a person s name and phone number. Then write a program that creates at

least ve PhoneBookEntry objects and stores them in a vector. After the objects are

stored in the vector, use a loop to display the contents of each object in the vector.

VideoNote

Solving the

Exception

Project

Problem

M16_GADD6253_07_SE_C16 Page 1002 Wednesday, January 12, 2011 3:55 PM

1003

C
H

A
P

T
E

R

17

Linked Lists

17.1

Introduction to the Linked List ADT

CONCEPT:

Dynamically allocated data structures may be linked together in memory

to form a chain.

A linked list is a series of connected

nodes

, where each node is a data structure. A linked list

can grow or shrink in size as the program runs. This is possible because the nodes in a linked

list are dynamically allocated. If new data need to be added to a linked list, the program

simply allocates another node and inserts it into the series. If a particular piece of data needs

to be removed from the linked list, the program deletes the node containing that data.

Advantages of Linked Lists over Arrays and

vector

s

Although linked lists are more complex to code and manage than arrays, they have some

distinct advantages. First, a linked list can easily grow or shrink in size. In fact, the pro-

grammer doesn t need to know how many nodes will be in the list. They are simply cre-

ated in memory as they are needed.

One might argue that linked lists are not superior to

vector

s (found in the Standard Template

Library), because

vector

s, too, can expand or shrink. The advantage that linked lists have

TOPICS

17.1 Introduction to the Linked List ADT

17.2 Linked List Operations

17.3 A Linked List Template

17.4 Variations of the Linked List

17.5 The STL

list

 Container

M17_GADD6253_07_SE_C17 Page 1003 Wednesday, January 12, 2011 9:03 PM

1004

Chapter 17 Linked Lists

over

vector

s, however, is the speed at which a node may be inserted into or deleted from

the list. To insert a value into the middle of a

vector

 requires all the elements below the

insertion point to be moved one position toward the

vector

s end, thus making room for

the new value. Likewise, removing a value from a

vector

 requires all the elements below

the removal point to be moved one position toward the

vector

s beginning. When a node

is inserted into or deleted from a linked list, none of the other nodes have to be moved.

The Composition of a Linked List

Each node in a linked list contains one or more members that represent data. (Perhaps the

nodes hold inventory records, or customer names, addresses, and telephone numbers.) In

addition to the data, each node contains a pointer, which can point to another node. The

makeup of a node is illustrated in Figure 17-1.

A linked list is called linked because each node in the series has a pointer that points to

the next node in the list. This creates a chain where the rst node points to the second node,

the second node points to the third node, and so on. This is illustrated in Figure 17-2.

The list depicted in Figure 17-2 has three nodes, plus a pointer known as the

list head

. The

head simply points to the rst node in the list. Each node, in turn, points to the next node

in the list. The rst node points to the second node, which points to the third node. Because

the third node is the last one in the list, it points to the NULL address (address 0). This is

usually how the end of a linked list is signi ed by letting the last node point to NULL.

Declarations

So how is a linked list created in C++? First you must declare a data structure that will be

used for the nodes. For example, the following

struct

 could be used to create a list where

each node holds a

double

:

Figure 17-1

Figure 17-2

NOTE:

Figure 17-2 depicts the nodes in the linked list as being very close to each

other, neatly arranged in a row. In reality, the nodes may be scattered around various

parts of memory.

Data Members
Pointer

NULL

List Head

M17_GADD6253_07_SE_C17 Page 1004 Wednesday, January 12, 2011 9:03 PM

17.2 Linked List Operations

1005

struct ListNode

{

 double value;

 ListNode *next;

};

The rst member of the

ListNode

 structure is a

double

 named

value

. It will be used to

hold the node s data. The second member is a pointer named

next

. The pointer can hold

the address of any object that is a

ListNode

 structure. This allows each

ListNode

 struc-

ture to point to the next

ListNode

 structure in the list.

Because the

ListNode

 structure contains a pointer to an object of the same type as that

being declared, it is known as a

self-referential data structure

. This structure makes it pos-

sible to create nodes that point to other nodes of the same type.

The next step is to de ne a pointer to serve as the list head, as shown here.

ListNode *head;

Before you use the

head

 pointer in any linked list operations, you must be sure it is initial-

ized to NULL, because that marks the end of the list. Once you have declared a node data

structure and have created a NULL

head

 pointer, you have an empty linked list. The next

step is to implement operations with the list.

Checkpoint

www.myprogramminglab.com

17.1 Describe the two parts of a node.

17.2 What is a list head?

17.3 What signi es the end of a linked list?

17.4 What is a self-referential data structure?

17.2

Linked List Operations

CONCEPT:

The basic linked list operations are appending a node, traversing the list,

inserting a node, deleting a node, and destroying the list.

In this section we will develop an abstract data type that performs basic linked list opera-

tions using the

ListNode

 structure and

head

 pointer de ned in the previous section. We

will use the following class declaration, which is stored in

NumberList.h

.

Contents of

NumberList.h

 1 // Specification file for the NumberList class

 2 #ifndef NUMBERLIST_H

 3 #define NUMBERLIST_H

 4

 5 class NumberList

 6 {

M17_GADD6253_07_SE_C17 Page 1005 Wednesday, January 12, 2011 9:03 PM

1006

Chapter 17 Linked Lists

 7 private:

 8 // Declare a structure for the list

 9 struct ListNode

10 {

11 double value; // The value in this node

12 struct ListNode *next; // To point to the next node

13 };

14

15 ListNode *head; // List head pointer

16

17 public:

18 // Constructor

19 NumberList()

20 { head = NULL; }

21

22 // Destructor

23 ~NumberList();

24

25 // Linked list operations

26 void appendNode(double);

27 void insertNode(double);

28 void deleteNode(double);

29 void displayList() const;

30 };

31 #endif

Notice that the constructor initializes the

head

 pointer to NULL. This establishes an

empty linked list. The class has member functions for appending, inserting, and deleting

nodes, as well as a

displayList

 function that displays all the values stored in the list. The

destructor destroys the list by deleting all its nodes. These functions are de ned in

NumberList.cpp

. We will examine the member functions individually.

Appending a Node to the List

To append a node to a linked list means to add the node to the end of the list. The

appendNode

 member function accepts a

double

 argument,

num

. The function will allocate

a new

ListNode

 structure, store the value in

num

 in the node s

value

 member, and append

the node to the end of the list. Here is a pseudocode representation of the general algo-

rithm:

Create a new node.

Store data in the new node.

If there are no nodes in the list

 Make the new node the first node.

Else

 Traverse the list to find the last node.

 Add the new node to the end of the list.

End If.

Here is the actual C++ code for the function:

 11 void NumberList::appendNode(double num)

 12 {

 13 ListNode *newNode; // To point to a new node

 14 ListNode *nodePtr; // To move through the list

 15

VideoNote

Appending a

Node to a

Linked List

M17_GADD6253_07_SE_C17 Page 1006 Wednesday, January 12, 2011 9:03 PM

17.2 Linked List Operations

1007

 16 // Allocate a new node and store num there.

 17 newNode = new ListNode;

 18 newNode->value = num;

 19 newNode->next = NULL;

 20

 21 // If there are no nodes in the list

 22 // make newNode the first node.

 23 if (!head)

 24 head = newNode;

 25 else // Otherwise, insert newNode at end.

 26 {

 27 // Initialize nodePtr to head of list.

 28 nodePtr = head;

 29

 30 // Find the last node in the list.

 31 while (nodePtr->next)

 32 nodePtr = nodePtr->next;

 33

 34 // Insert newNode as the last node.

 35 nodePtr->next = newNode;

 36 }

 37 }

Let s examine the statements in detail. In lines 13 and 14 the function de nes the follow-

ing local variables:

ListNode *newNode; // To point to a new node

ListNode *nodePtr; // To move through the list

The

newNode

 pointer will be used to allocate and point to the new node. The

nodePtr

pointer will be used to travel down the linked list, in search of the last node.

The following statements, in lines 17 through 19, create a new node and store

num

 in its

value

 member:

newNode = new ListNode;

newNode->value = num;

newNode->next = NULL;

The statement in line 19 is important. Because this node will become the last node in the

list, its

next

 pointer must point to NULL.

In line 23, we test the

head

 pointer to determine whether there are any nodes already in

the list. If

head

 points to NULL, we make the new node the rst in the list. Making

head

point to the new node does this. Here is the code:

if (!head)

 head = newNode;

If

head

 does not point to NULL, however, there are nodes in the list. The

else

 part of the

if

 statement must contain code to nd the end of the list and insert the new node. The

code, in lines 25 through 36, is shown here:

else

{

 // Initialize nodePtr to head of list.

 nodePtr = head;

M17_GADD6253_07_SE_C17 Page 1007 Wednesday, January 12, 2011 9:03 PM

1008

Chapter 17 Linked Lists

 // Find the last node in the list.

 while (nodePtr->next)

 nodePtr = nodePtr->next;

 // Insert newNode as the last node.

 nodePtr->next = newNode;

}

The code uses

nodePtr

 to travel down the list. It does this by rst assigning

nodePtr to

head in line 28:

nodePtr = head;

The while loop in lines 31 and 32 is then used to traverse (or travel through) the list search-

ing for the last node. The last node will be the one whose next member points to NULL:

while (nodePtr->next)

 nodePtr = nodePtr->next;

When nodePtr points to the last node in the list, we make its next member point to

newNode in line 35 with the following statement.

nodePtr->next = newNode;

This inserts newNode at the end of the list. (Remember, newNode->next already points to

NULL.)

Program 17-1 demonstrates the function.

Let s step through the program, observing how the appendNode function builds a linked

list to store the three argument values used.

The head pointer is declared as a private member variable of the NumberList class.

head is initialized to 0 (NULL) by the NumberList constructor, which indicates that the

list is empty.

Program 17-1

 1 // This program demonstrates a simple append

 2 // operation on a linked list.

 3 #include <iostream>

 4 #include "NumberList.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 // Define a NumberList object.

 10 NumberList list;

 11

 12 // Append some values to the list.

 13 list.appendNode(2.5);

 14 list.appendNode(7.9);

 15 list.appendNode(12.6);

 16 return 0;

 17 }

(This program displays no output.)

M17_GADD6253_07_SE_C17 Page 1008 Wednesday, January 12, 2011 9:03 PM

17.2 Linked List Operations 1009

The rst call to appendNode in line 13 passes 2.5 as the argument. In the following state-

ments, a new node is allocated in memory, 2.5 is copied into its value member, and

NULL is assigned to the node s next pointer:

newNode = new ListNode;

newNode->value = num;

newNode->next = NULL;

Figure 17-3 illustrates the state of the head pointer and the new node.

The next statement to execute is the following if statement:

if (!head)

 head = newNode;

Because head points to NULL, the condition !head is true. The statement head = newNode; is

executed, making newNode the rst node in the list. This is illustrated in Figure 17-4.

There are no more statements to execute, so control returns to function main. In the sec-

ond call to appendNode, in line 14, 7.9 is passed as the argument. Once again, the rst

three statements in the function create a new node, store the argument in the node s value

member, and assign its next pointer to NULL. Figure 17-5 illustrates the current state of

the list and the new node.

Figure 17-3

Figure 17-4

Figure 17-5

NULL

head

newNode

NULL

2.5

NULL

newNode

2.5
head

NULL 2.5
head

NULL

newNode

7.9

M17_GADD6253_07_SE_C17 Page 1009 Wednesday, January 12, 2011 9:03 PM

1010 Chapter 17 Linked Lists

Because head no longer points to NULL, the else part of the if statement executes:

else // Otherwise, insert newNode at end.

{

 // Initialize nodePtr to head of list.

 nodePtr = head;

 // Find the last node in the list.

 while (nodePtr->next)

 nodePtr = nodePtr->next;

 // Insert newNode as the last node.

 nodePtr->next = newNode;

}

The rst statement in the else block assigns the value in head to nodePtr. This causes

nodePtr to point to the same node that head points to. This is illustrated in Figure 17-6.

Look at the next member of the node that nodePtr points to. Its value is NULL, which

means that nodePtr->next also points to NULL. nodePtr is already at the end of the list,

so the while loop immediately terminates. The last statement, nodePtr->next =

newNode; causes nodePtr->next to point to the new node. This inserts newNode at the

end of the list as shown in Figure 17-7.

The third time appendNode is called, in line 15, 12.6 is passed as the argument. Once

again, the rst three statements create a node with the argument stored in the value mem-

ber. This is shown in Figure 17-8.

Figure 17-6

Figure 17-7

NULL 2.5
head

NULL

newNode

7.9

nodePtr

2.5
head

NULL

newNode

7.9

nodePtr

M17_GADD6253_07_SE_C17 Page 1010 Wednesday, January 12, 2011 9:03 PM

17.2 Linked List Operations 1011

Next, the else part of the if statement executes. As before, nodePtr is made to point to

the same node as head, as shown in Figure 17-9.

Because nodePtr->next is not NULL, the while loop will execute. After its rst itera-

tion, nodePtr will point to the second node in the list. This is shown in Figure 17-10.

The while loop s conditional test will fail after the rst iteration because nodePtr->next

now points to NULL. The last statement, nodePtr->next = newNode; causes nodePtr->next

to point to the new node. This inserts newNode at the end of the list as shown in Fig-

ure 17-11.

Figure 17-8

Figure 17-9

Figure 17-10

2.5
head

NULL 7.9

NULL

newNode

12.6

2.5
head

NULL 7.9

NULL

newNode

12.6

nodePtr

2.5
head

NULL 7.9

NULL

newNode

12.6

nodePtr

M17_GADD6253_07_SE_C17 Page 1011 Wednesday, January 12, 2011 9:03 PM

1012 Chapter 17 Linked Lists

Figure 17-11 depicts the nal state of the linked list.

Traversing a Linked List

The appendNode function demonstrated in the previous section contains a while loop

that traverses, or travels through the linked list. In this section we will demonstrate the

displayList member function that traverses the list, displaying the value member of

each node. The following pseudocode represents the algorithm.

Assign List head to node pointer.

While node pointer is not NULL

 Display the value member of the node pointed to by node pointer.

 Assign node pointer to its own next member.

End While.

The function is shown here:

 45 void NumberList::displayList() const

 46 {

 47 ListNode *nodePtr; // To move through the list

 48

 49 // Position nodePtr at the head of the list.

 50 nodePtr = head;

 51

 52 // While nodePtr points to a node, traverse

 53 // the list.

 54 while (nodePtr)

 55 {

 56 // Display the value in this node.

 57 cout << nodePtr->value << endl;

 58

 59 // Move to the next node.

 60 nodePtr = nodePtr->next;

 61 }

 62 }

Program 17-2, a modi cation of Program 17-1, demonstrates the function.

Figure 17-11

2.5
head

7.9

NULL

newNode

12.6

nodePtr

M17_GADD6253_07_SE_C17 Page 1012 Wednesday, January 12, 2011 9:03 PM

17.2 Linked List Operations 1013

Usually, when an operation is to be performed on some or all the nodes in a linked list, a tra-

versal algorithm is used. You will see variations of this algorithm throughout this chapter.

Inserting a Node

Appending a node is a straightforward procedure. Inserting a node in the middle of a list,

however, is more involved. For example, suppose the values in a list are sorted and you

wish all new values to be inserted in their proper position. This will preserve the order of

the list. Using the ListNode structure again, the following pseudocode shows an algo-

rithm for nding a new node s proper position in the list and inserting it there. The algo-

rithm assumes the nodes in the list are already in order.

Create a new node.

Store data in the new node.

If there are no nodes in the list

 Make the new node the first node.

Else

 Find the first node whose value is greater than or equal to the new

 value, or the end of the list (whichever is first).

 Insert the new node before the found node, or at the end of the list

 if no such node was found.

End If.

Notice that the new algorithm nds the rst node whose value is greater than or equal to

the new value. The new node is then inserted before the found node. This will require the

use of two node pointers during the traversal: one to point to the node being inspected

Program 17-2

 1 // This program demonstrates the displayList member function.

 2 #include <iostream>

 3 #include "NumberList.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 // Define a NumberList object.

 9 NumberList list;

 10

 11 // Append some values to the list.

 12 list.appendNode(2.5);

 13 list.appendNode(7.9);

 14 list.appendNode(12.6);

 15

 16 // Display the values in the list.

 17 list.displayList();

 18 return 0;

 19 }

Program Output

2.5

7.9

12.6

VideoNote

Inserting a

Node in a

Linked List

M17_GADD6253_07_SE_C17 Page 1013 Wednesday, January 12, 2011 9:03 PM

1014 Chapter 17 Linked Lists

and another to point to the previous node. The code for the traversal algorithm is as fol-

lows. (As before, num holds the value being inserted into the list.)

// Position nodePtr at the head of list.

nodePtr = head;

// Initialize previousNode to NULL.

previousNode = NULL;

// Skip all nodes whose value is less than num.

while (nodePtr != NULL && nodePtr->value < num)

{

 previousNode = nodePtr;

 nodePtr = nodePtr->next;

}

This code segment uses the ListNode pointers nodePtr and previousNode. previousNode

always points to the node before the one pointed to by nodePtr. The entire insertNode

function is shown here:

 69 void NumberList::insertNode(double num)

 70 {

 71 ListNode *newNode; // A new node

 72 ListNode *nodePtr; // To traverse the list

 73 ListNode *previousNode = NULL; // The previous node

 74

 75 // Allocate a new node and store num there.

 76 newNode = new ListNode;

 77 newNode->value = num;

 78

 79 // If there are no nodes in the list

 80 // make newNode the first node

 81 if (!head)

 82 {

 83 head = newNode;

 84 newNode->next = NULL;

 85 }

 86 else // Otherwise, insert newNode

 87 {

 88 // Position nodePtr at the head of list.

 89 nodePtr = head;

 90

 91 // Initialize previousNode to NULL.

 92 previousNode = NULL;

 93

 94 // Skip all nodes whose value is less than num.

 95 while (nodePtr != NULL && nodePtr->value < num)

 96 {

 97 previousNode = nodePtr;

 98 nodePtr = nodePtr->next;

 99 }

100

101 // If the new node is to be the 1st in the list,

102 // insert it before all other nodes.

103 if (previousNode == NULL)

104 {

M17_GADD6253_07_SE_C17 Page 1014 Wednesday, January 12, 2011 9:03 PM

17.2 Linked List Operations 1015

105 head = newNode;

106 newNode->next = nodePtr;

107 }

108 else // Otherwise insert after the previous node.

109 {

110 previousNode->next = newNode;

111 newNode->next = nodePtr;

112 }

113 }

114 }

Program 17-3 is a modi cation of the Program 17-2. It uses the insertNode member

function to insert a value in its ordered position in the list.

Like Program 17-2, Program 17-3 calls the appendNode function three times to build the

list with the values 2.5, 7.9, and 12.6. The insertNode function is then called, with the

argument 10.5.

In insertNode, a new node is created and the function argument is copied to its value

member. Because the list already has nodes stored in it, the else part of the if statement

will execute. It begins by assigning nodePtr to head. Figure 17-12 illustrates the state of

the list at this point.

Program 17-3

 1 // This program demonstrates the insertNode member function.

 2 #include <iostream>

 3 #include "NumberList.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 // Define a NumberList object.

 9 NumberList list;

 10

 11 // Build the list with some values.

 12 list.appendNode(2.5);

 13 list.appendNode(7.9);

 14 list.appendNode(12.6);

 15

 16 // Insert a node in the middle of the list.

 17 list.insertNode(10.5);

 18

 19 // Display the list

 20 list.displayList();

 21 return 0;

 22 }

Program Output

2.5

7.9

10.5

12.6

M17_GADD6253_07_SE_C17 Page 1015 Wednesday, January 12, 2011 9:03 PM

1016 Chapter 17 Linked Lists

Because nodePtr is not NULL and nodePtr->value is less than num, the while loop will

iterate. During the iteration, previousNode will be made to point to the node that

nodePtr is pointing to. nodePtr will then be advanced to point to the next node. This is

shown in Figure 17-13.

Once again, the loop performs its test. Because nodePtr is not NULL and nodePtr->value

is less than num, the loop will iterate a second time. During the second iteration, both

previousNode and nodePtr are advanced by one node in the list. This is shown in

Figure 17-14.

Figure 17-12

Figure 17-13

2.5
head

7.9

NULL 12.6

nodePtr

?

newNode

10.5

2.5
head

7.9

NULL 12.6

nodePtr

?

newNode

10.5 previousNode

M17_GADD6253_07_SE_C17 Page 1016 Wednesday, January 12, 2011 9:03 PM

17.2 Linked List Operations 1017

This time, the loop s test will fail because nodePtr->value is not less than num. The state-

ments after the loop will execute, which cause previousNode->next to point to

newNode, and newNode->next to point to nodePtr. This is illustrated in Figure 17-15.

This leaves the list in its nal state. If you follow the links, from the head pointer to the

NULL, you will see that the nodes are stored in the order of their value members.

Checkpoint

 www.myprogramminglab.com

17.5 What is the difference between appending a node to a list and inserting a node

into a list?

17.6 Which is easier to code: appending or inserting?

17.7 Why does the insertNode function shown in this section use a previousNode

pointer?

Figure 17-14

Figure 17-15

2.5
head

7.9

NULL 12.6

nodePtr

?

newNode

10.5 previousNode

2.5
head

7.9

NULL 12.6

nodePtr

newNode

10.5
previousNode

M17_GADD6253_07_SE_C17 Page 1017 Wednesday, January 12, 2011 9:03 PM

1018 Chapter 17 Linked Lists

Deleting a Node

Deleting a node from a linked list requires two steps:

1. Remove the node from the list without breaking the links created by the next pointers.

2. Delete the node from memory.

The deleteNode member function searches for a node containing a particular value and

deletes it from the list. It uses an algorithm similar to the insertNode function. Two node

pointers, nodePtr and previousNode, are used to traverse the list. previousNode always

points to the node whose position is just before the one pointed to by nodePtr. When

nodePtr points to the node that is to be deleted, previousNode->next is made to point

to nodePtr->next. This removes the node pointed to by nodePtr from the list. The nal

step performed by this function is to free the memory used by the node with the delete

operator. The entire function is shown below.

122 void NumberList::deleteNode(double num)

123 {

124 ListNode *nodePtr; // To traverse the list

125 ListNode *previousNode; // To point to the previous node

126

127 // If the list is empty, do nothing.

128 if (!head)

129 return;

130

131 // Determine if the first node is the one.

132 if (head->value == num)

133 {

134 nodePtr = head->next;

135 delete head;

136 head = nodePtr;

137 }

138 else

139 {

140 // Initialize nodePtr to head of list

141 nodePtr = head;

142

143 // Skip all nodes whose value member is

144 // not equal to num.

145 while (nodePtr != NULL && nodePtr->value != num)

146 {

147 previousNode = nodePtr;

148 nodePtr = nodePtr->next;

149 }

150

151 // If nodePtr is not at the end of the list,

152 // link the previous node to the node after

153 // nodePtr, then delete nodePtr.

154 if (nodePtr)

155 {

156 previousNode->next = nodePtr->next;

157 delete nodePtr;

158 }

159 }

160 }

VideoNote

Deleting a

Node from a

Linked List

M17_GADD6253_07_SE_C17 Page 1018 Wednesday, January 12, 2011 9:03 PM

17.2 Linked List Operations 1019

Program 17-4 demonstrates the function by rst building a list of three nodes, and then

deleting them one by one.

Program 17-4

 1 // This program demonstrates the deleteNode member function.

 2 #include <iostream>

 3 #include "NumberList.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 // Define a NumberList object.

 9 NumberList list;

 10

 11 // Build the list with some values.

 12 list.appendNode(2.5);

 13 list.appendNode(7.9);

 14 list.appendNode(12.6);

 15

 16 // Display the list.

 17 cout << "Here are the initial values:\n";

 18 list.displayList();

 19 cout << endl;

 20

 21 // Delete the middle node.

 22 cout << "Now deleting the node in the middle.\n";

 23 list.deleteNode(7.9);

 24

 25 // Display the list.

 26 cout << "Here are the nodes left.\n";

 27 list.displayList();

 28 cout << endl;

 29

 30 // Delete the last node.

 31 cout << "Now deleting the last node.\n";

 32 list.deleteNode(12.6);

 33

 34 // Display the list.

 35 cout << "Here are the nodes left.\n";

 36 list.displayList();

 37 cout << endl;

 38

 39 // Delete the only node left in the list.

 40 cout << "Now deleting the only remaining node.\n";

 41 list.deleteNode(2.5);

 42

 43 // Display the list.

 44 cout << "Here are the nodes left.\n";

 45 list.displayList();

 46 return 0;

 47 }

(program output continues)

M17_GADD6253_07_SE_C17 Page 1019 Wednesday, January 12, 2011 9:03 PM

1020 Chapter 17 Linked Lists

To illustrate how deleteNode works, we will step through the rst call which deletes the

node containing 7.9 as its value. This node is in the middle of the list.

In the deleteNode function, look at the else part of the second if statement. This is

lines 138 through 159. This is where the function will perform its action since the list is

not empty, and the rst node does not contain the value 7.9. Just like insertNode, this

function uses nodePtr and previousNode to traverse the list. The while loop in lines 145

through 149 terminates when the value 7.9 is located. At this point, the list and the other

pointers will be in the state depicted in Figure 17-16.

Next, the following statement in line 156 executes:

previousNode->next = nodePtr->next;

Program Output

Here are the initial values:

2.5

7.9

12.6

Now deleting the node in the middle.

Here are the nodes left.

2.5

12.6

Now deleting the last node.

Here are the nodes left.

2.5

Now deleting the only remaining node.

Here are the nodes left.

Figure 17-16

Program 17-4 (continued)

2.5
head

7.9

NULL 12.6

nodePtr

previousNode

M17_GADD6253_07_SE_C17 Page 1020 Wednesday, January 12, 2011 9:03 PM

17.2 Linked List Operations 1021

This statement causes the links in the list to bypass the node that nodePtr points to.

Although the node still exists in memory, this removes it from the list, as illustrated in

Figure 17-17.

The statement in line 157 uses the delete operator to complete the total deletion of

the node.

Destroying the List

It s important for the class s destructor to release all the memory used by the list. It does so

by stepping through the list, deleting one node at a time. The code is shown here:

167 NumberList::~NumberList()

168 {

169 ListNode *nodePtr; // To traverse the list

170 ListNode *nextNode; // To point to the next node

171

172 // Position nodePtr at the head of the list.

173 nodePtr = head;

174

175 // While nodePtr is not at the end of the list...

176 while (nodePtr != NULL)

177 {

178 // Save a pointer to the next node.

179 nextNode = nodePtr->next;

180

181 // Delete the current node.

182 delete nodePtr;

183

184 // Position nodePtr at the next node.

185 nodePtr = nextNode;

186 }

187 }

Notice the use of nextNode instead of previousNode. The nextNode pointer is used to

hold the position of the next node in the list, so that it will be available after the node

pointed to by nodePtr is deleted.

Figure 17-17

2.5
head

7.9

NULL
12.6

nodePtr

previousNode

M17_GADD6253_07_SE_C17 Page 1021 Wednesday, January 12, 2011 9:03 PM

1022 Chapter 17 Linked Lists

Checkpoint

 www.myprogramminglab.com

17.8 What are the two steps involved in deleting a node from a linked list?

17.9 When deleting a node, why can t you just use the delete operator to remove it

from memory? Why must you take the steps you listed in response to

Question 17.8?

17.10 In a program that uses several linked lists, what might eventually happen if the

class destructor does not destroy its linked list?

17.3 A Linked List Template

CONCEPT: A template can be easily created to store linked lists of any type.

The limitation of the NumberList class is that it can only hold double values. The class

can easily be converted to a template that will accept any data type, as shown in the fol-

lowing code. (This le is stored in the Student Source Code Folder Chapter 17\

LinkedList Template Version 1.)

Contents of LinkedList.h (Version 1)

 1 // A class template for holding a linked list.

 2 #ifndef LINKEDLIST_H

 3 #define LINKEDLIST_H

 4 #include <iostream> // For cout and NULL

 5 using namespace std;

 6

 7 template <class T>

 8 class LinkedList

 9 {

 10 private:

 11 // Declare a structure for the list.

 12 struct ListNode

 13 {

 14 T value; // The value in this node

 15 struct ListNode *next; // To point to the next node

 16 };

 17

 18 ListNode *head; // List head pointer

 19

 20 public:

 21 // Constructor

 22 NumberList()

 23 { head = NULL; }

 24

 25 // Destructor

 26 ~NumberList();

 27

M17_GADD6253_07_SE_C17 Page 1022 Wednesday, January 12, 2011 9:03 PM

17.3 A Linked List Template 1023

 28 // Linked list operations

 29 void appendNode(T);

 30 void insertNode(T);

 31 void deleteNode(T);

 32 void displayList() const;

 33 };

 34

 35

 36 //**

 37 // appendNode appends a node containing the value *

 38 // passed into newValue, to the end of the list. *

 39 //**

 40

 41 template <class T>

 42 void LinkedList<T>::appendNode(T newValue)

 43 {

 44 ListNode *newNode; // To point to a new node

 45 ListNode *nodePtr; // To move through the list

 46

 47 // Allocate a new node and store num there.

 48 newNode = new ListNode;

 49 newNode->value = num;

 50 newNode->next = NULL;

 51

 52 // If there are no nodes in the list

 53 // make newNode the first node.

 54 if (!head)

 55 head = newNode;

 56 else // Otherwise, insert newNode at end.

 57 {

 58 // Initialize nodePtr to head of list.

 59 nodePtr = head;

 60

 61 // Find the last node in the list.

 62 while (nodePtr->next)

 63 nodePtr = nodePtr->next;

 64

 65 // Insert newNode as the last node.

 66 nodePtr->next = newNode;

 67 }

 68 }

 69

 70 //**

 71 // displayList shows the value *

 72 // stored in each node of the linked list *

 73 // pointed to by head. *

 74 //**

 75

 76 template <class T>

 77 void LinkedList<T>::displayList()

 78 {

 79 ListNode *nodePtr; // To move through the list

 80

 81 // Position nodePtr at the head of the list.

 82 nodePtr = head;

M17_GADD6253_07_SE_C17 Page 1023 Wednesday, January 12, 2011 9:03 PM

1024 Chapter 17 Linked Lists

 83

 84 // While nodePtr points to a node, traverse

 85 // the list.

 86 while (nodePtr)

 87 {

 88 // Display the value in this node.

 89 cout << nodePtr->value << endl;

 90

 91 // Move to the next node.

 92 nodePtr = nodePtr->next;

 93 }

 94 }

 95

 96 //**

 97 // The insertNode function inserts a node with *

 98 // newValue copied to its value member. *

 99 //**

100

101 template <class T>

102 void LinkedList<T>::insertNode(T newValue)

103 {

104 ListNode *newNode; // A new node

105 ListNode *nodePtr; // To traverse the list

106 ListNode *previousNode = NULL; // The previous node

107

108 // Allocate a new node and store num there.

109 newNode = new ListNode;

110 newNode->value = num;

111

112 // If there are no nodes in the list

113 // make newNode the first node.

114 if (!head)

115 {

116 head = newNode;

117 newNode->next = NULL;

118 }

119 else // Otherwise, insert newNode.

120 {

121 // Position nodePtr at the head of list.

122 nodePtr = head;

123

124 // Initialize previousNode to NULL.

125 previousNode = NULL;

126

127 // Skip all nodes whose value is less than num.

128 while (nodePtr != NULL && nodePtr->value < num)

129 {

130 previousNode = nodePtr;

131 nodePtr = nodePtr->next;

132 }

133

M17_GADD6253_07_SE_C17 Page 1024 Wednesday, January 12, 2011 9:03 PM

17.3 A Linked List Template 1025

134 // If the new node is to be the 1st in the list,

135 // insert it before all other nodes.

136 if (previousNode == NULL)

137 {

138 head = newNode;

139 newNode->next = nodePtr;

140 }

141 else // Otherwise insert after the previous node.

142 {

143 previousNode->next = newNode;

144 newNode->next = nodePtr;

145 }

146 }

147 }

148

149 //***

150 // The deleteNode function searches for a node *

151 // with searchValue as its value. The node, if found, *

152 // is deleted from the list and from memory. *

153 //***

154

155 template <class T>

156 void LinkedList<T>::deleteNode(T searchValue)

157 {

158 ListNode *nodePtr; // To traverse the list

159 ListNode *previousNode; // To point to the previous node

160

161 // If the list is empty, do nothing.

162 if (!head)

163 return;

164

165 // Determine if the first node is the one.

166 if (head->value == num)

167 {

168 nodePtr = head->next;

169 delete head;

170 head = nodePtr;

171 }

172 else

173 {

174 // Initialize nodePtr to head of list.

175 nodePtr = head;

176

177 // Skip all nodes whose value member is

178 // not equal to num.

179 while (nodePtr != NULL && nodePtr->value != num)

180 {

181 previousNode = nodePtr;

182 nodePtr = nodePtr->next;

183 }

184

185 // If nodePtr is not at the end of the list,

186 // link the previous node to the node after

187 // nodePtr, then delete nodePtr.

M17_GADD6253_07_SE_C17 Page 1025 Wednesday, January 12, 2011 9:03 PM

1026 Chapter 17 Linked Lists

188 if (nodePtr)

189 {

190 previousNode->next = nodePtr->next;

191 delete nodePtr;

192 }

193 }

194 }

195

196 //**

197 // Destructor *

198 // This function deletes every node in the list. *

199 //**

200

201 template <class T>

202 LinkedList<T>::~LinkedList()

203 {

204 ListNode *nodePtr; // To traverse the list

205 ListNode *nextNode; // To point to the next node

206

207 // Position nodePtr at the head of the list.

208 nodePtr = head;

209

210 // While nodePtr is not at the end of the list...

211 while (nodePtr != NULL)

212 {

213 // Save a pointer to the next node.

214 nextNode = nodePtr->next;

215

216 // Delete the current node.

217 delete nodePtr;

218

219 // Position nodePtr at the next node.

220 nodePtr = nextNode;

221 }

222 }

223 #endif

Note that the template uses the ==, !=, and < relational operators to compare node values,

and it uses the << operator with cout to display node values. Any type passed to the tem-

plate must support these operators.

Now let s see how the template can be used to create a list of objects. Recall the FeetInches

class that was introduced in Chapter 14. That class overloaded numerous operators, including

==, <, and <<. In the Chapter 17\LinkedList Template Version 1 folder we have

included a modi ed version of the FeetInches class that also overloads the != operator. Pro-

gram 17-5 is stored in that same folder. This program uses the LinkedList template to create

a linked list of FeetInches objects.

M17_GADD6253_07_SE_C17 Page 1026 Wednesday, January 12, 2011 9:03 PM

17.3 A Linked List Template 1027

Program 17-5

 1 // This program demonstrates the linked list template.

 2 #include <iostream>

 3 #include "LinkedList.h"

 4 #include "FeetInches.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 // Define a LinkedList object.

 10 LinkedList<FeetInches> list;

 11

 12 // Define some FeetInches objects.

 13 FeetInches distance1(5, 4); // 5 feet 4 inches

 14 FeetInches distance2(6, 8); // 6 feet 8 inches

 15 FeetInches distance3(8, 9); // 8 feet 9 inches

 16

 17 // Store the FeetInches objects in the list.

 18 list.appendNode(distance1); // 5 feet 4 inches

 19 list.appendNode(distance2); // 6 feet 8 inches

 20 list.appendNode(distance3); // 8 feet 9 inches

 21

 22 // Display the values in the list.

 23 cout << "Here are the initial values:\n";

 24 list.displayList();

 25 cout << endl;

 26

 27 // Insert another FeetInches object.

 28 cout << "Now inserting the value 7 feet 2 inches.\n";

 29 FeetInches distance4(7, 2);

 30 list.insertNode(distance4);

 31

 32 // Display the values in the list.

 33 cout << "Here are the nodes now.\n";

 34 list.displayList();

 35 cout << endl;

 36

 37 // Delete the last node.

 38 cout << "Now deleting the last node.\n";

 39 FeetInches distance5(8, 9);

 40 list.deleteNode(distance5);

 41

 42 // Display the values in the list.

 43 cout << "Here are the nodes left.\n";

 44 list.displayList();

 45 return 0;

 46 }

(program output continues)

M17_GADD6253_07_SE_C17 Page 1027 Wednesday, January 12, 2011 9:03 PM

1028 Chapter 17 Linked Lists

Using a Class Node Type

In the LinkedList class template, the following structure was used to create a data type

for the linked list node.

struct ListNode

{

 T value;

 struct ListNode *next;

};

Another approach is to use a separate class template to create a data type for the node.

Then, the class constructor can be used to store an item in the value member and set the

next pointer to NULL. Here is an example:

template <class T>

class ListNode

{

public:

 T value; // Node value

 ListNode<T> *next; // Pointer to the next node

 // Constructor

 ListNode (T nodeValue)

 { value = nodeValue;

 next = NULL;}

};

The LinkedList class template can then be written as the following:

template <class T>

class LinkedList

{

private:

 ListNode<T> *head; // List head pointer

Program Output

Here are the initial values:

5 feet, 4 inches

6 feet, 8 inches

8 feet, 9 inches

Now inserting the value 7 feet 2 inches.

Here are the nodes now.

5 feet, 4 inches

6 feet, 8 inches

7 feet, 2 inches

8 feet, 9 inches

Now deleting the last node.

Here are the nodes left.

5 feet, 4 inches

6 feet, 8 inches

7 feet, 2 inches

Program 17-5 (continued)

M17_GADD6253_07_SE_C17 Page 1028 Wednesday, January 12, 2011 9:03 PM

17.3 A Linked List Template 1029

public:

 // Constructor

 LinkedList()

 { head = NULL; }

 // Destructor

 ~LinkedList();

 // Linked list operations

 void appendNode(T);

 void insertNode(T);

 void deleteNode(T);

 void displayList() const;

};

Because the ListNode class constructor assigns a value to the value member and sets the

next pointer to NULL, some of the code in the LinkedList class can be simpli ed. For

example, the following code appears in the previous version of the LinkedList class tem-

plate s appendNode function:

newNode = new ListNode;

newNode->value = newValue;

newNode->next = NULL;

By using the ListNode class template with its constructor, these three lines of code can be

reduced to one:

 newNode = new ListNode<T>(newValue);

(This le is stored in the Student Source Code Folder Chapter 17\LinkedList Template

Version 2.)

Contents of LinkedList.h (Version 2)

 1 // A class template for holding a linked list.

 2 // The node type is also a class template.

 3 #ifndef LINKEDLIST_H

 4 #define LINKEDLIST_H

 5

 6 //***

 7 // The ListNode class creates a type used to *

 8 // store a node of the linked list. *

 9 //***

 10

 11 template <class T>

 12 class ListNode

 13 {

 14 public:

 15 T value; // Node value

 16 ListNode<T> *next; // Pointer to the next node

 17

 18 // Constructor

 19 ListNode (T nodeValue)

 20 { value = nodeValue;

 21 next = NULL;}

 22 };

 23

M17_GADD6253_07_SE_C17 Page 1029 Wednesday, January 12, 2011 9:03 PM

1030 Chapter 17 Linked Lists

 24 //***

 25 // LinkedList class *

 26 //***

 27

 28 template <class T>

 29 class LinkedList

 30 {

 31 private:

 32 ListNode<T> *head; // List head pointer

 33

 34 public:

 35 // Constructor

 36 LinkedList()

 37 { head = NULL; }

 38

 39 // Destructor

 40 ~LinkedList();

 41

 42 // Linked list operations

 43 void appendNode(T);

 44 void insertNode(T);

 45 void deleteNode(T);

 46 void displayList() const;

 47 };

 48

 49

 50 //**

 51 // appendNode appends a node containing the value *

 52 // passed into newValue, to the end of the list. *

 53 //**

 54

 55 template <class T>

 56 void LinkedList<T>::appendNode(T newValue)

 57 {

 58 ListNode<T> *newNode; // To point to a new node

 59 ListNode<T> *nodePtr; // To move through the list

 60

 61 // Allocate a new node and store newValue there.

 62 newNode = new ListNode<T>(newValue);

 63

 64 // If there are no nodes in the list

 65 // make newNode the first node.

 66 if (!head)

 67 head = newNode;

 68 else // Otherwise, insert newNode at end.

 69 {

 70 // Initialize nodePtr to head of list.

 71 nodePtr = head;

 72

 73 // Find the last node in the list.

 74 while (nodePtr->next)

 75 nodePtr = nodePtr->next;

 76

M17_GADD6253_07_SE_C17 Page 1030 Wednesday, January 12, 2011 9:03 PM

17.3 A Linked List Template 1031

 77 // Insert newNode as the last node.

 78 nodePtr->next = newNode;

 79 }

 80 }

 81

 82 //**

 83 // displayList shows the value stored in each node *

 84 // of the linked list pointed to by head. *

 85 //**

 86

 87 template <class T>

 88 void LinkedList<T>::displayList() const

 89 {

 90 ListNode<T> *nodePtr; // To move through the list

 91

 92 // Position nodePtr at the head of the list.

 93 nodePtr = head;

 94

 95 // While nodePtr points to a node, traverse

 96 // the list.

 97 while (nodePtr)

 98 {

 99 // Display the value in this node.

100 cout << nodePtr->value << endl;

101

102 // Move to the next node.

103 nodePtr = nodePtr->next;

104 }

105 }

106

107 //**

108 // The insertNode function inserts a node with *

109 // newValue copied to its value member. *

110 //**

111

112 template <class T>

113 void LinkedList<T>::insertNode(T newValue)

114 {

115 ListNode<T> *newNode; // A new node

116 ListNode<T> *nodePtr; // To traverse the list

117 ListNode<T> *previousNode = NULL; // The previous node

118

119 // Allocate a new node and store newValue there.

120 newNode = new ListNode<T>(newValue);

121

122 // If there are no nodes in the list

123 // make newNode the first node.

124 if (!head)

125 {

126 head = newNode;

127 newNode->next = NULL;

128 }

M17_GADD6253_07_SE_C17 Page 1031 Wednesday, January 12, 2011 9:03 PM

1032 Chapter 17 Linked Lists

129 else // Otherwise, insert newNode.

130 {

131 // Position nodePtr at the head of list.

132 nodePtr = head;

133

134 // Initialize previousNode to NULL.

135 previousNode = NULL;

136

137 // Skip all nodes whose value is less than newValue.

138 while (nodePtr != NULL && nodePtr->value < newValue)

139 {

140 previousNode = nodePtr;

141 nodePtr = nodePtr->next;

142 }

143

144 // If the new node is to be the 1st in the list,

145 // insert it before all other nodes.

146 if (previousNode == NULL)

147 {

148 head = newNode;

149 newNode->next = nodePtr;

150 }

151 else // Otherwise insert after the previous node.

152 {

153 previousNode->next = newNode;

154 newNode->next = nodePtr;

155 }

156 }

157 }

158

159 //***

160 // The deleteNode function searches for a node *

161 // with searchValue as its value. The node, if found, *

162 // is deleted from the list and from memory. *

163 //***

164

165 template <class T>

166 void LinkedList<T>::deleteNode(T searchValue)

167 {

168 ListNode<T> *nodePtr; // To traverse the list

169 ListNode<T> *previousNode; // To point to the previous node

170

171 // If the list is empty, do nothing.

172 if (!head)

173 return;

174

175 // Determine if the first node is the one.

176 if (head->value == searchValue)

177 {

178 nodePtr = head->next;

179 delete head;

180 head = nodePtr;

181 }

M17_GADD6253_07_SE_C17 Page 1032 Wednesday, January 12, 2011 9:03 PM

17.3 A Linked List Template 1033

182 else

183 {

184 // Initialize nodePtr to head of list

185 nodePtr = head;

186

187 // Skip all nodes whose value member is

188 // not equal to num.

189 while (nodePtr != NULL && nodePtr->value != searchValue)

190 {

191 previousNode = nodePtr;

192 nodePtr = nodePtr->next;

193 }

194

195 // If nodePtr is not at the end of the list,

196 // link the previous node to the node after

197 // nodePtr, then delete nodePtr.

198 if (nodePtr)

199 {

200 previousNode->next = nodePtr->next;

201 delete nodePtr;

202 }

203 }

204 }

205

206 //**

207 // Destructor *

208 // This function deletes every node in the list. *

209 //**

210

211 template <class T>

212 LinkedList<T>::~LinkedList()

213 {

214 ListNode<T> *nodePtr; // To traverse the list

215 ListNode<T> *nextNode; // To point to the next node

216

217 // Position nodePtr at the head of the list.

218 nodePtr = head;

219

220 // While nodePtr is not at the end of the list...

221 while (nodePtr != NULL)

222 {

223 // Save a pointer to the next node.

224 nextNode = nodePtr->next;

225

226 // Delete the current node.

227 delete nodePtr;

228

229 // Position nodePtr at the next node.

230 nodePtr = nextNode;

231 }

232 }

233 #endif

M17_GADD6253_07_SE_C17 Page 1033 Wednesday, January 12, 2011 9:03 PM

1034 Chapter 17 Linked Lists

17.4 Variations of the Linked List

CONCEPT: There are many ways to link dynamically allocated data structures

together. Two variations of the linked list are the doubly linked list and

the circular linked list.

The linked list examples that we have discussed are considered singly linked lists: Each

node is linked to a single other node. A variation of this is the doubly linked list. In this

type of list, each node points not only to the next node, but also to the previous one. This

is illustrated in Figure 17-18.

In Figure 17-18, the last node and the rst node in the list have pointers to the NULL

address. When the program traverses the list it knows when it has reached either end.

Another variation is the circularly linked list. The last node in this type of list points to the

rst, as shown in Figure 17-19.

Figure 17-18

Figure 17-19

List Head

Pointer Pointer

Pointer Pointer

Pointer Pointer

NULL

NULL

List Head

M17_GADD6253_07_SE_C17 Page 1034 Wednesday, January 12, 2011 9:03 PM

17.5 The STL list Container 1035

17.5 The STL list Container

CONCEPT: The Standard Template Library provides a linked list container.

The list container, found in the Standard Template Library, is a template version of a

doubly linked list. STL lists can insert elements or add elements to their front quicker

than vectors can, because lists do not have to shift the other elements. lists are also

ef cient at adding elements at their back because they have a built-in pointer to the last

element in the list (no traversal required).

Table 17-1 describes some of the list member functions.

Table 17-1

Member

Function Examples and Description

back cout << list.back() << endl;

The back member function returns a reference to the last element in the list.

empty if (list.empty())

The empty member function returns true if the list is empty. If the list has

elements, it returns false.

end iter = list.end();

end returns a bidirectional iterator to the end of the list.

erase list.erase(iter);

list.erase(firstIter, lastIter)

The rst example causes the list element pointed to by the iterator iter to be

removed. The second example causes all of the list elements from firstIter to

lastIter to be removed.

front cout << list.front() << endl;

front returns a reference to the rst element of the list.

insert list.insert(iter, x)

The insert member function inserts an element into the list. This example inserts

an element with the value x, just before the element pointed to by iter.

merge list1.merge(list2);

merge inserts all the items in list2 into list1. list1 is expanded to

accommodate the new elements plus any elements already stored in list1. merge

expects both lists to be sorted. When list2 is inserted into list1, the elements are

inserted into their correct position, so the resulting list is also sorted.

pop_back list.pop_back();

pop_back removes the last element of the list.

pop_front list.pop_front();

pop_front removes the rst element of the list.

push_back list.push_back(x);

push_back inserts an element with value x at the end of the list.

push_front list.push_front(x);

push_front inserts an element with value x at the beginning of the list.

(table continues)

M17_GADD6253_07_SE_C17 Page 1035 Wednesday, January 12, 2011 9:03 PM

1036 Chapter 17 Linked Lists

Program 17-6 demonstrates some simple operations with the list container.

reverse list.reverse();

reverse reverses the order in which the elements appear in the list.

size Returns the number of elements in the list.

swap list1.swap(list2)

The swap member function swaps the elements stored in two lists. For example,

assuming list1 and list2 are lists, this statement will exchange the values in

the two lists.

unique list.unique();

unique removes any element that has the same value as the element before it.

Program 17-6

 1 // This program demonstrates the STL list container.

 2 #include <iostream>

 3 #include <list> // Include the list header.

 4 using namespace std;

 5

 6 int main()

 7 {

 8 // Define a list object.

 9 list<int> myList;

 10

 11 // Define an iterator for the list.

 12 list<int>::iterator iter;

 13

 14 // Add values to the list.

 15 for (int x = 0; x < 100; x += 10)

 16 myList.push_back(x);

 17

 18 // Display the values.

 19 for (iter = myList.begin(); iter != myList.end(); iter++)

 20 cout << *iter << " ";

 21 cout << endl;

 22

 23 // Now reverse the order of the elements.

 24 myList.reverse();

 25

 26 // Display the values again.

 27 for (iter = myList.begin(); iter != myList.end(); iter++)

 28 cout << *iter << " ";

 29 cout << endl;

 30 return 0;

 31 }

Program Output

0 10 20 30 40 50 60 70 80 90

90 80 70 60 50 40 30 20 10 0

Table 17-1 (continued)

Member

Function Examples and Description

M17_GADD6253_07_SE_C17 Page 1036 Wednesday, January 12, 2011 9:03 PM

Review Questions and Exercises 1037

Review Questions and Exercises

Short Answer

1. What are some of the advantages that linked lists have over arrays?

2. What advantage does a linked list have over the STL vector?

3. What is a list head?

4. What is a self-referential data structure?

5. How is the end of a linked list usually signified?

6. Name five basic linked list operations.

7. What is the difference between appending a node and inserting a node?

8. What does traversing the list mean?

9. What are the two steps required to delete a node from a linked list?

10. What is the advantage of using a template to implement a linked list?

11. What is a singly linked list? What is a doubly linked list? What is a circularly linked
list?

12. What type of linked list is the STL list container?

Fill-in-the-Blank

13. The __________ points to the first node in a linked list.

14. A data structure that points to an object of the same type as itself is known as a(n)
__________ data structure.

15. After creating a linked list s head pointer, you should make sure it points to
__________ before using it in any operations.

16. __________ a node means adding it to the end of a list.

17. __________ a node means adding it to a list, but not necessarily to the end.

18. __________ a list means traveling through the list.

19. In a(n) __________ list, the last node has a pointer to the first node.

20. In a(n) __________ list, each node has a pointer to the one before it and the one after it.

Algorithm Workbench

21. Consider the following code:

struct ListNode

{

 int value;

 struct ListNode *next;

};

ListNode *head; // List head pointer

Assume that a linked list has been created and head points to the rst node. Write

code that traverses the list displaying the contents of each node s value member.

22. Write code that destroys the linked list described in Question 21.

M17_GADD6253_07_SE_C17 Page 1037 Wednesday, January 12, 2011 9:03 PM

1038 Chapter 17 Linked Lists

23. Write code that defines an STL list container for holding float values.

24. Write code that stores the values 12.7, 9.65, 8.72, and 4.69 in the list container you
defined for Question 23.

25. Write code that reverses the order of the items you stored in the list container in
Question 24.

True or False

26. T F The programmer must know in advance how many nodes will be needed in a

linked list.

27. T F It is not necessary for each node in a linked list to have a self-referential pointer.

28. T F In physical memory, the nodes in a linked list may be scattered around.

29. T F When the head pointer points to NULL, it signi es an empty list.

30. T F Linked lists are not superior to STL vectors.

31. T F Deleting a node in a linked list is a simple matter of using the delete operator

to free the node s memory.

32. T F A class that builds a linked list should destroy the list in the class destructor.

Find the Error

Each of the following member functions has errors in the way it performs a linked list oper-

ation. Find as many mistakes as you can.

33. void NumberList::appendNode(double num)

{

 ListNode *newNode, *nodePtr;

 // Allocate a new node & store num

 newNode = new listNode;

 newNode->value = num;

 // If there are no nodes in the list

 // make newNode the first node.

 if (!head)

 head = newNode;

 else // Otherwise, insert newNode.

 {

 // Find the last node in the list.

 while (nodePtr->next)

 nodePtr = nodePtr->next;

 // Insert newNode as the last node.

 nodePtr->next = newNode;

 }

}

34. void NumberList::deleteNode(double num)

{

 ListNode *nodePtr, *previousNode;

 // If the list is empty, do nothing.

 if (!head)

 return;

 // Determine if the first node is the one.

 if (head->value == num)

M17_GADD6253_07_SE_C17 Page 1038 Wednesday, January 12, 2011 9:03 PM

Review Questions and Exercises 1039

 delete head;

 else

 {

 // Initialize nodePtr to head of list.

 nodePtr = head;

 // Skip all nodes whose value member is

 // not equal to num.

 while (nodePtr->value != num)

 {

 previousNode = nodePtr;

 nodePtr = nodePtr->next;

 }

 // Link the previous node to the node after

 // nodePtr, then delete nodePtr.

 previousNode->next = nodePtr->next;

 delete nodePtr;

 }

}

35. NumberList::~NumberList()

{

 ListNode *nodePtr, *nextNode;

 nodePtr = head;

 while (nodePtr != NULL)

 {

 nextNode = nodePtr->next;

 nodePtr->next = NULL;

 nodePtr = nextNode;

 }

}

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. Your Own Linked List

Design your own linked list class to hold a series of integers. The class should have

member functions for appending, inserting, and deleting nodes. Don t forget to add a

destructor that destroys the list. Demonstrate the class with a driver program.

2. List Print

Modify the linked list class you created in Programming Challenge 1 to add a print

member function. The function should display all the values in the linked list. Test the

class by starting with an empty list, adding some elements, and then printing the

resulting list out.

3. List Copy Constructor

Modify your linked list class of Programming Challenges 1 and 2 to add a copy con-

structor. Test your class by making a list, making a copy of the list, and then displaying

the values in the copy.

Programming Challenges

M17_GADD6253_07_SE_C17 Page 1039 Wednesday, January 12, 2011 9:03 PM

1040 Chapter 17 Linked Lists

4. List Reverse

Modify the linked list class you created in the previous programming challenges by

adding a member function named reverse that rearranges the nodes in the list so that

their order is reversed. Demonstrate the function in a simple driver program.

5. List Search

Modify the linked list class you created in the previous programming challenges to

include a member function named search that returns the position of a speci c value

in the linked list. The rst node in the list is at position 0, the second node is at posi-

tion 1, and so on. If x is not found on the list, the search should return *1. Test the

new member function using an appropriate driver program.

6. Member Insertion by Position

Modify the list class you created in the previous programming challenges by adding a

member function for inserting a new item at a speci ed position. A position of 0

means that the value will become the rst item on the list, a position of 1 means that

the value will become the second item on the list, and so on. A position equal to or

greater than the length of the list means that the value is placed at the end of the list.

7. Member Removal by Position

Modify the list class you created in the previous programming challenges by adding a

member function for deleting a node at a speci ed position. A value of 0 for the posi-

tion means that the rst node in the list (the current head) is deleted. The function

does nothing if the speci ed position is greater than or equal to the length of the list.

8. List Template

Create a list class template based on the list class you created in the previous program-

ming challenges.

9. Rainfall Statistics Modi cation

Modify Programming Challenge 2 in Chapter 7 (Rainfall Statistics) to let the user

decide how many months of data will be entered. Use a linked list instead of an array

to hold the monthly data.

10. Payroll Modi cation

Modify Programming Challenge 10 in Chapter 7 (Payroll) to use three linked lists

instead of three arrays to hold the employee IDs, hours worked, and wages. When the

program starts, it should ask the user to enter the employee IDs. There should be no

limit on the number of IDs the user can enter.

11. List Search

Modify the LinkedList template shown in this chapter to include a member function

named search. The function should search the list for a speci ed value. If the value is

found, it should return a number indicating its position in the list. (The rst node is

node 1, the second node is node 2, and so forth.) If the value is not found, the func-

tion should return 0. Demonstrate the function in a driver program.

VideoNote

Solving the

Member

Insertion

by Position

Problem

M17_GADD6253_07_SE_C17 Page 1040 Wednesday, January 12, 2011 9:03 PM

Review Questions and Exercises 1041

12. Double Merge

Modify the NumberList class shown in this chapter to include a member function

named mergeArray. The mergeArray function should take an array of doubles as its

rst argument, and an integer as its second argument. (The second argument will

specify the size of the array being passed into the rst argument.)

The function should merge the values in the array into the linked list. The value in

each element of the array should be inserted (not appended) into the linked list. When

the values are inserted, they should be in numerical order. Demonstrate the function

with a driver program. When you are satis ed with the function, incorporate it into

the LinkedList template.

13. Rainfall Statistics Modi cation #2

Modify the program you wrote for Programming Challenge 9 so that it saves the data

in the linked list to a le. Write a second program that reads the data from the le into

a linked list and displays it on the screen.

14. Overloaded [] Operator

Modify the linked list class that you created in Programming Challenge 1 (or the

LinkedList template presented in this chapter) by adding an overloaded [] operator

function. This will give the linked list the ability to access nodes using a subscript, like

an array. The subscript 0 will reference the rst node in the list, the subscript 1 will

reference the second node in the list, and so forth. The subscript of the last node will

be the number of nodes minus 1. If an invalid subscript is used, the function should

throw an exception.

15. pop and push Member Functions

The STL list container has member functions named pop_back, pop_front,

push_back, and push_front, as described in Table 17-1. Modify the linked list class

that you created in Programming Challenge 1 (or the LinkedList template presented

in this chapter) by adding your own versions of these member functions.

Programming Challenges

M17_GADD6253_07_SE_C17 Page 1041 Wednesday, January 12, 2011 9:03 PM

M17_GADD6253_07_SE_C17 Page 1042 Wednesday, January 12, 2011 9:03 PM

1043

C
H

A
P

T
E

R

18

Stacks and Queues

18.1

Introduction to the Stack ADT

CONCEPT:

A stack is a data structure that stores and retrieves items in a last-in- rst-

out manner.

De nition

Like an array or a linked list, a stack is a data structure that holds a sequence of elements.

Unlike arrays and lists, however, stacks are

last-in, rst-out (LIFO)

 structures. This means

that when a program retrieves elements from a stack, the last element inserted into the stack

is the rst one retrieved (and likewise, the rst element inserted is the last one retrieved).

When visualizing the way a stack works, think of a stack of plates at the beginning of a

cafeteria line. When a cafeteria worker replenishes the supply of plates, the rst one he or

she puts on the stack is the last one taken off. This is illustrated in Figure 18-1.

The LIFO characteristic of a stack of plates in a cafeteria is also the primary characteristic

of a stack data structure. The last data element placed on the stack is the rst data

retrieved from the stack.

TOPICS

18.1 Introduction to the Stack ADT

18.2 Dynamic Stacks

18.3 The STL

stack

 Container

18.4 Introduction to the Queue ADT

18.5 Dynamic Queues

18.6 The STL

deque

 and

queue

Containers

M18_GADD6253_07_SE_C18 Page 1043 Wednesday, January 12, 2011 9:37 PM

1044

Chapter 18 Stacks and Queues

Applications of Stacks

Stacks are useful data structures for algorithms that work rst with the last saved element

of a series. For example, computer systems use stacks while executing programs. When a

function is called, they save the program s return address on a stack. They also create local

variables on a stack. When the function terminates, the local variables are removed from

the stack and the return address is retrieved. Also, some calculators use a stack for per-

forming mathematical operations.

Static and Dynamic Stacks

There are two types of stack data structure: static and dynamic. Static stacks have a xed

size, and are implemented as arrays. Dynamic stacks grow in size as needed, and are

implemented as linked lists. In this section you will see examples of both static and

dynamic stacks.

Stack Operations

A stack has two primary operations:

push

 and

pop

. The push operation causes a value to

be stored, or pushed onto the stack. For example, suppose we have an empty integer stack

that is capable of holding a maximum of three values. With that stack we execute the fol-

lowing push operations.

push(5);

push(10);

push(15);

Figure 18-2 illustrates the state of the stack after each of these push operations.

The pop operation retrieves (and hence, removes) a value from the stack. Suppose we exe-

cute three consecutive pop operations on the stack shown in Figure 18-2. Figure 18-3

depicts the results.

Figure 18-1

Figure 18-2

5

4

3

2

1
First plate in,

last plate out

Last plate in,

first plate out

5

push(5); 5push(10);

10

5

push(15); 10

15

M18_GADD6253_07_SE_C18 Page 1044 Wednesday, January 12, 2011 9:37 PM

18.1 Introduction to the Stack ADT

1045

As you can see from Figure 18-3, the last pop operation leaves the stack empty.

For a static stack (one with a xed size), we will need a Boolean

isFull

operation. The

isFull

 operation returns

true

 if the stack is full, and

false

 otherwise. This operation is

necessary to prevent a stack over ow in the event that a push operation is attempted when

all the stack s elements have values stored in them.

For both static and dynamic stacks we will need a Boolean

isEmpty

 operation. The

isEmpty

 operation returns

true

 when the stack is empty, and

false

 otherwise. This pre-

vents an error from occurring when a pop operation is attempted on an empty stack.

A Static Stack Class

Now we examine a class,

IntStack

, that stores a static stack of integers and performs the

isFull

 and

isEmpty

 operations. The class has the member variables described in Table 18-1.

The class s member functions are listed in Table 18-2.

Figure 18-3

Table 18-1

Member

Variable Description

stackArray

A pointer to

int

. When the constructor is executed, it uses

stackArray

 to

dynamically allocate an array for storage.

stackSize

An integer that holds the size of the stack.

top

An integer that is used to mark the top of the stack.

Table 18-2

Member

Functions Description

Constructor The class constructor accepts an integer argument that speci es the size of the

stack. An integer array of this size is dynamically allocated, and assigned to

stackArray

. Also, the variable

top

 is initialized to 1.

Destructor The destructor frees the memory that was allocated by the constructor.

isFull

Returns

true

 if the stack is full and

false

 otherwise. The stack is full when

top

is equal to

stackSize

 1

.

isEmpty

Returns

true

 if the stack is empty, and

false

 otherwise. The stack is empty

when

top

 is set to 1.

5

5pop(x); pop(x); pop(x);

10

51015

(table continues)

M18_GADD6253_07_SE_C18 Page 1045 Wednesday, January 12, 2011 9:37 PM

1046

Chapter 18 Stacks and Queues

The code for the class follows.

Contents of

 IntStack.h

 1 // Specification file for the IntStack class

 2 #ifndef INTSTACK_H

 3 #define INTSTACK_H

 4

 5 class IntStack

 6 {

 7 private:

 8 int *stackArray; // Pointer to the stack array

 9 int stackSize; // The stack size

10 int top; // Indicates the top of the stack

11

12 public:

13 // Constructor

14 IntStack(int);

15

16 // Copy constructor

17 IntStack(const IntStack &);

18

19 // Destructor

20 ~IntStack();

21

22 // Stack operations

23 void push(int);

24 void pop(int &);

25 bool isFull() const;

26 bool isEmpty() const;

27 };

28 #endif

Contents of

IntStack.cpp

 1 // Implementation file for the IntStack class

 2 #include <iostream>

 3 #include "IntStack.h"

 4 using namespace std;

 5

pop

The

pop

 function uses an integer reference parameter. The value at the top of the

stack is removed and copied into the reference parameter.

push

The

push

 function accepts an integer argument, which is pushed onto the top of

the stack.

NOTE:

Even though the constructor dynamically allocates the stack array, it is still a

static stack. The size of the stack does not change once it is allocated.

Table 18-2

(continued)

Member

Functions Description

M18_GADD6253_07_SE_C18 Page 1046 Wednesday, January 12, 2011 9:37 PM

18.1 Introduction to the Stack ADT

1047

 6 //***

 7 // Constructor *

 8 // This constructor creates an empty stack. The *

 9 // size parameter is the size of the stack. *

 10 //***

 11

 12 IntStack::IntStack(int size)

 13 {

 14 stackArray = new int[size];

 15 stackSize = size;

 16 top = -1;

 17 }

 18

 19 //***

 20 // Copy constructor *

 21 //***

 22

 23 IntStack::IntStack(const IntStack &obj)

 24 {

 25 // Create the stack array.

 26 if (obj.stackSize > 0)

 27 stackArray = new int[obj.stackSize];

 28 else

 29 stackArray = NULL;

 30

 31 // Copy the stackSize attribute.

 32 stackSize = obj.stackSize;

 33

 34 // Copy the stack contents.

 35 for (int count = 0; count < stackSize; count++)

 36 stackArray[count] = obj.stackArray[count];

 37

 38 // Set the top of the stack.

 39 top = obj.top;

 40 }

 41

 42 //***

 43 // Destructor *

 44 //***

 45

 46 IntStack::~IntStack()

 47 {

 48 delete [] stackArray;

 49 }

 50

 51 //***

 52 // Member function push pushes the argument onto *

 53 // the stack. *

 54 //***

 55

 56 void IntStack::push(int num)

 57 {

 58 if (isFull())

 59 {

 60 cout << "The stack is full.\n";

 61 }

M18_GADD6253_07_SE_C18 Page 1047 Wednesday, January 12, 2011 9:37 PM

1048

Chapter 18 Stacks and Queues

 62 else

 63 {

 64 top++;

 65 stackArray[top] = num;

 66 }

 67 }

 68

 69 //**

 70 // Member function pop pops the value at the top *

 71 // of the stack off, and copies it into the variable *

 72 // passed as an argument. *

 73 //**

 74

 75 void IntStack::pop(int &num)

 76 {

 77 if (isEmpty())

 78 {

 79 cout << "The stack is empty.\n";

 80 }

 81 else

 82 {

 83 num = stackArray[top];

 84 top--;

 85 }

 86 }

 87

 88 //***

 89 // Member function isFull returns true if the stack *

 90 // is full, or false otherwise. *

 91 //***

 92

 93 bool IntStack::isFull() const

 94 {

 95 bool status;

 96

 97 if (top == stackSize - 1)

 98 status = true;

 99 else

100 status = false;

101

102 return status;

103 }

104

105 //**

106 // Member function isEmpty returns true if the stack *

107 // is empty, or false otherwise. *

108 //**

109

110 bool IntStack::isEmpty() const

111 {

112 bool status;

113

114 if (top == -1)

115 status = true;

M18_GADD6253_07_SE_C18 Page 1048 Wednesday, January 12, 2011 9:37 PM

18.1 Introduction to the Stack ADT

1049

116 else

117 status = false;

118

119 return status;

120 }

The class has two constructors, one that accepts an argument for the stack size (lines 12

through 17 of

IntStack.cpp

) and a copy constructor (lines 23 through 40). The rst con-

structor dynamically allocates the stack array in line 14, initializes the

stackSize

 member

variable in line 15, and initializes the

top

 member variable in line 16. Remember that items

are stored to and retrieved from the top of the stack. In this class, the top of the stack is actu-

ally the end of the array. The variable

top

 is used to mark the top of the stack by holding the

subscript of the last element. When

top

 holds 1, it indicates that the stack is empty. (See the

isEmpty

 function, which returns

true

 if

top

 is 1, or

false

 otherwise.) The stack is full

when

top

 is at the maximum subscript, which is

stackSize 1

. This is the value that

isFull

 tests for. It returns

true

 if the stack is full, or

false

 otherwise.

Program 18-1 is a simple driver that demonstrates the

IntStack

 class.

Program 18-1

 1 // This program demonstrates the IntStack class.

 2 #include <iostream>

 3 #include "IntStack.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 int catchVar; // To hold values popped off the stack

 9

 10 // Define a stack object to hold 5 values.

 11 IntStack stack(5);

 12

 13 // Push the values 5, 10, 15, 20, and 25 onto the stack.

 14 cout << "Pushing 5\n";

 15 stack.push(5);

 16 cout << "Pushing 10\n";

 17 stack.push(10);

 18 cout << "Pushing 15\n";

 19 stack.push(15);

 20 cout << "Pushing 20\n";

 21 stack.push(20);

 22 cout << "Pushing 25\n";

 23 stack.push(25);

 24

 25 // Pop the values off the stack.

 26 cout << "Popping...\n";

 27 stack.pop(catchVar);

 28 cout << catchVar << endl;

 29 stack.pop(catchVar);

 30 cout << catchVar << endl;

 31 stack.pop(catchVar);

 32 cout << catchVar << endl;

(program continues)

M18_GADD6253_07_SE_C18 Page 1049 Wednesday, January 12, 2011 9:37 PM

1050 Chapter 18 Stacks and Queues

In Program 18-1, the constructor is called with the argument 5. This sets up the member

variables as shown in Figure 18-4. Because top is set to 1, the stack is empty.

Figure 18-5 shows the state of the member variables after the push function is called the

rst time (with 5 as its argument). The top of the stack is now at element 0.

Figure 18-6 shows the state of the member variables after all ve calls to the push func-

tion. Now the top of the stack is at element 4, and the stack is full.

 33 stack.pop(catchVar);

 34 cout << catchVar << endl;

 35 stack.pop(catchVar);

 36 cout << catchVar << endl;

 37 return 0;

 38 }

Program Output

Pushing 5

Pushing 10

Pushing 15

Pushing 20

Pushing 25

Popping...

25

20

15

10

5

Figure 18-4

Figure 18-5

Program 18-1 (continued)

top 1 stackSize 5stackArray [0]

[1]

[2]

[3]

[4]

top 0 stackSize 5stackArray [0]

[1]

[2]

[3]

[4]

5

M18_GADD6253_07_SE_C18 Page 1050 Wednesday, January 12, 2011 9:37 PM

18.1 Introduction to the Stack ADT 1051

Notice that the pop function uses a reference parameter, num. The value that is popped off

the stack is copied into num so it can be used later in the program. Figure 18-7 depicts the

state of the class members, and the num parameter, just after the rst value is popped off

the stack.

The program continues to call the pop function until all the values have been retrieved

from the stack.

Implementing Other Stack Operations

More complex operations may be built on the basic stack class previously shown. In this

section, we will discuss a class, MathStack, that is derived from IntStack. The

MathStack class has two member functions: add() and sub(). The add() function pops

the rst two values off the stack, adds them together, and pushes the sum onto the stack.

The sub() function pops the rst two values off the stack, subtracts the second value from

the rst, and then pushes the difference onto the stack. The class declaration is as follows.

Contents of MathStack.h

 1 // Specification file for the MathStack class

 2 #ifndef MATHSTACK_H

 3 #define MATHSTACK_H

 4 #include "IntStack.h"

 5

 6 class MathStack : public IntStack

 7 {

 8 public:

 9 // Constructor

10 MathStack(int s) : IntStack(s) {}

11

Figure 18-6

Figure 18-7

top 4 stackSize 5stackArray [0]

[1]

[2]

[3]

[4]

5

25

20

15

10

top 3 stackSize 5stackArray [0]

[1]

[2]

[3]

[4]25

20

15

10

5

num 25

M18_GADD6253_07_SE_C18 Page 1051 Wednesday, January 12, 2011 9:37 PM

1052 Chapter 18 Stacks and Queues

12 // MathStack operations

13 void add();

14 void sub();

15 };

16 #endif

The de nitions of the member functions are shown here:

Contents of MathStack.cpp

 1 // Implementation file for the MathStack class

 2 #include "MathStack.h"

 3

 4 //***

 5 // Member function add. add pops *

 6 // the first two values off the stack and *

 7 // adds them. The sum is pushed onto the stack. *

 8 //***

 9

10 void MathStack::add()

11 {

12 int num, sum;

13

14 // Pop the first two values off the stack.

15 pop(sum);

16 pop(num);

17

18 // Add the two values, store in sum.

19 sum += num;

20

21 // Push sum back onto the stack.

22 push(sum);

23 }

24

25 //***

26 // Member function sub. sub pops the *

27 // first two values off the stack. The *

28 // second value is subtracted from the *

29 // first value. The difference is pushed *

30 // onto the stack. *

31 //***

32

33 void MathStack::sub()

34 {

35 int num, diff;

36

37 // Pop the first two values off the stack.

38 pop(diff);

39 pop(num);

40

41 // Subtract num from diff.

42 diff -= num;

43

44 // Push diff back onto the stack.

45 push(diff);

46 }

M18_GADD6253_07_SE_C18 Page 1052 Wednesday, January 12, 2011 9:37 PM

18.1 Introduction to the Stack ADT 1053

The class is demonstrated in Program 18-2, a simple driver.

Program 18-2

 1 // This program demonstrates the MathStack class.

 2 #include <iostream>

 3 #include "MathStack.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 int catchVar; // To hold values popped off the stack

 9

 10 // Create a MathStack object.

 11 MathStack stack(5);

 12

 13 // Push 3 and 6 onto the stack.

 14 cout << "Pushing 3\n";

 15 stack.push(3);

 16 cout << "Pushing 6\n";

 17 stack.push(6);

 18

 19 // Add the two values.

 20 stack.add();

 21

 22 // Pop the sum off the stack and display it.

 23 cout << "The sum is ";

 24 stack.pop(catchVar);

 25 cout << catchVar << endl << endl;

 26

 27 // Push 7 and 10 onto the stack

 28 cout << "Pushing 7\n";

 29 stack.push(7);

 30 cout << "Pushing 10\n";

 31 stack.push(10);

 32

 33 // Subtract 7 from 10.

 34 stack.sub();

 35

 36 // Pop the difference off the stack and display it.

 37 cout << "The difference is ";

 38 stack.pop(catchVar);

 39 cout << catchVar << endl;

 40 return 0;

 41 }

Program Output

Pushing 3

Pushing 6

The sum is 9

Pushing 7

Pushing 10

The difference is 3

M18_GADD6253_07_SE_C18 Page 1053 Wednesday, January 12, 2011 9:37 PM

1054 Chapter 18 Stacks and Queues

It will be left as a Programming Challenge for you to implement the mult(), div(), and

mod() functions that will complete the MathStack class.

A Static Stack Template

The stack classes shown previously in this chapter work only with integers. A stack template

can be easily designed to work with any data type, as shown by the following example:

Contents of Stack.h

 1 #ifndef STACK_H

 2 #define STACK_H

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Stack template

 7 template <class T>

 8 class Stack

 9 {

 10 private:

 11 T *stackArray;

 12 int stackSize;

 13 int top;

 14

 15 public:

 16 // Constructor

 17 Stack(int);

 18

 19 // Copy constructor

 20 Stack(const Stack&);

 21

 22 // Destructor

 23 ~Stack();

 24

 25 // Stack operations

 26 void push(T);

 27 void pop(T &);

 28 bool isFull();

 29 bool isEmpty();

 30 };

 31

 32 //***

 33 // Constructor *

 34 //***

 35

 36 template <class T>

 37 Stack<T>::Stack(int size)

 38 {

 39 stackArray = new T[size];

 40 stackSize = size;

 41 top = -1;

 42 }

 43

M18_GADD6253_07_SE_C18 Page 1054 Wednesday, January 12, 2011 9:37 PM

18.1 Introduction to the Stack ADT 1055

 44 //***

 45 // Copy constructor *

 46 //***

 47

 48 template <class T>

 49 Stack<T>::Stack(const Stack &obj)

 50 {

 51 // Create the stack array.

 52 if (obj.stackSize > 0)

 53 stackArray = new T[obj.stackSize];

 54 else

 55 stackArray = NULL;

 56

 57 // Copy the stackSize attribute.

 58 stackSize = obj.stackSize;

 59

 60 // Copy the stack contents.

 61 for (int count = 0; count < stackSize; count++)

 62 stackArray[count] = obj.stackArray[count];

 63

 64 // Set the top of the stack.

 65 top = obj.top;

 66 }

 67

 68 //***

 69 // Destructor *

 70 //***

 71

 72 template <class T>

 73 Stack<T>::~Stack()

 74 {

 75 if (stackSize > 0)

 76 delete [] stackArray;

 77 }

 78

 79 //***

 80 // Member function push pushes the argument onto *

 81 // the stack. *

 82 //***

 83

 84 template <class T>

 85 void Stack<T>::push(T item)

 86 {

 87 if (isFull())

 88 {

 89 cout << "The stack is full.\n";

 90 }

 91 else

 92 {

 93 top++;

 94 stackArray[top] = item;

 95 }

 96 }

 97

M18_GADD6253_07_SE_C18 Page 1055 Wednesday, January 12, 2011 9:37 PM

1056 Chapter 18 Stacks and Queues

 98 //***

 99 // Member function pop pops the value at the top *

100 // of the stack off, and copies it into the variable *

101 // passed as an argument. *

102 //***

103

104 template <class T>

105 void Stack<T>::pop(T &item)

106 {

107 if (isEmpty())

108 {

109 cout << "The stack is empty.\n";

110 }

111 else

112 {

113 item = stackArray[top];

114 top--;

115 }

116 }

117

118 //***

119 // Member function isFull returns true if the stack *

120 // is full, or false otherwise. *

121 //***

122

123 template <class T>

124 bool Stack<T>::isFull()

125 {

126 bool status;

127

128 if (top == stackSize - 1)

129 status = true;

130 else

131 status = false;

132

133 return status;

134 }

135

136 //***

137 // Member function isEmpty returns true if the stack *

138 // is empty, or false otherwise. *

139 //***

140

141 template <class T>

142 bool Stack<T>::isEmpty()

143 {

144 bool status;

145

146 if (top == -1)

147 status = true;

148 else

149 status = false;

150

151 return status;

152 }

153 #endif

M18_GADD6253_07_SE_C18 Page 1056 Wednesday, January 12, 2011 9:37 PM

18.1 Introduction to the Stack ADT 1057

Program 18-3 demonstrates the Stack template. It creates a stack of strings, and then pre-

sents a menu that allows the user to push an item onto the stack, pop an item from the

stack, or quit the program.

Program 18-3

 1 // This program demonstrates the Stack template.

 2 #include <iostream>

 3 #include <string>

 4 #include "Stack.h"

 5 using namespace std;

 6

 7 // Constants for the menu choices

 8 const int PUSH_CHOICE = 1,

 9 POP_CHOICE = 2,

 10 QUIT_CHOICE = 3;

 11

 12 // Function prototypes

 13 void menu(int &);

 14 void getStackSize(int &);

 15 void pushItem(Stack<string>&);

 16 void popItem(Stack<string>&);

 17

 18 int main()

 19 {

 20 int stackSize; // The stack size

 21 int choice; // To hold a menu choice

 22

 23 // Get the stack size.

 24 getStackSize(stackSize);

 25

 26 // Create the stack.

 27 Stack<string> stack(stackSize);

 28

 29 do

 30 {

 31 // Get the user's menu choice.

 32 menu(choice);

 33

 34 // Perform the user's choice.

 35 if (choice != QUIT_CHOICE)

 36 {

 37 switch (choice)

 38 {

 39 case PUSH_CHOICE:

 40 pushItem(stack);

 41 break;

 42 case POP_CHOICE:

 43 popItem(stack);

 44 }

 45 }

 46 } while (choice != QUIT_CHOICE);

 47

 48 return 0;

 49 }

(program continues)

M18_GADD6253_07_SE_C18 Page 1057 Wednesday, January 12, 2011 9:37 PM

1058 Chapter 18 Stacks and Queues

 50

 51 //**

 52 // The getStackSize function gets the desired *

 53 // stack size, which is assigned to the *

 54 // reference parameter. *

 55 //**

 56 void getStackSize(int &size)

 57 {

 58 // Get the desired stack size.

 59 cout << "How big should I make the stack? ";

 60 cin >> size;

 61

 62 // Validate the size.

 63 while (size < 1)

 64 {

 65 cout << "Enter 1 or greater: ";

 66 cin >> size;

 67 }

 68 }

 69

 70 //**

 71 // The menu function displays the menu and gets *

 72 // the user's choice, which is assigned to the *

 73 // reference parameter. *

 74 //**

 75 void menu(int &choice)

 76 {

 77 // Display the menu and get the user's choice.

 78 cout << "\nWhat do you want to do?\n"

 79 << PUSH_CHOICE

 80 << " - Push an item onto the stack\n"

 81 << POP_CHOICE

 82 << " - Pop an item off the stack\n"

 83 << QUIT_CHOICE

 84 << " - Quit the program\n"

 85 << "Enter your choice: ";

 86 cin >> choice;

 87

 88 // Validate the choice

 89 while (choice < PUSH_CHOICE || choice > QUIT_CHOICE)

 90 {

 91 cout << "Enter a valid choice: ";

 92 cin >> choice;

 93 }

 94 }

 95

 96 //**

 97 // The pushItem function gets an item from the *

 98 // user and pushes it onto the stack. *

 99 //**

 100 void pushItem(Stack<string> &stack)

Program 18-3 (continued)

M18_GADD6253_07_SE_C18 Page 1058 Wednesday, January 12, 2011 9:37 PM

18.1 Introduction to the Stack ADT 1059

 101 {

 102 string item;

 103

 104 // Get an item to push onto the stack.

 105 cin.ignore();

 106 cout << "\nEnter an item: ";

 107 getline(cin, item);

 108 stack.push(item);

 109 }

 110

 111 //***

 112 // The popItem function pops an item from the stack *

 113 //***

 114 void popItem(Stack<string> &stack)

 115 {

 116 string item = "";

 117

 118 // Pop the item.

 119 stack.pop(item);

 120

 121 // Display the item.

 122 if (item != "")

 123 cout << item << " was popped.\n";

 124 }

Program Output with Example Input Shown in Bold

How big should I make the stack? 3 [Enter]

What do you want to do?

1 - Push an item onto the stack

2 - Pop an item off the stack

3 - Quit the program

Enter your choice: 1 [Enter]

Enter an item: The Adventures of Huckleberry Finn [Enter]

What do you want to do?

1 - Push an item onto the stack

2 - Pop an item off the stack

3 - Quit the program

Enter your choice: 1 [Enter]

Enter an item: All Quiet on the Western Front [Enter]

What do you want to do?

1 - Push an item onto the stack

2 - Pop an item off the stack

3 - Quit the program

Enter your choice: 1 [Enter]

Enter an item: Brave New World [Enter]
(program output continues)

Program 18-3 (continued)

M18_GADD6253_07_SE_C18 Page 1059 Wednesday, January 12, 2011 9:37 PM

1060 Chapter 18 Stacks and Queues

18.2 Dynamic Stacks

CONCEPT: A stack may be implemented as a linked list, and expand or shrink with

each push or pop operation.

A dynamic stack is built on a linked list instead of an array. A linked list based stack offers

two advantages over an array-based stack. First, there is no need to specify the starting

size of the stack. A dynamic stack simply starts as an empty linked list, then expands by

one node each time a value is pushed. Second, a dynamic stack will never be full, as long

as the system has enough free memory.

In this section we will look at a dynamic stack class, DynIntStack. This class is a dynamic

version of the IntStack class previously discussed. The class declaration is shown here:

What do you want to do?

1 - Push an item onto the stack

2 - Pop an item off the stack

3 - Quit the program

Enter your choice: 2 [Enter]
Brave New World was popped.

What do you want to do?

1 - Push an item onto the stack

2 - Pop an item off the stack

3 - Quit the program

Enter your choice: 2 [Enter]
All Quiet on the Western Front was popped.

What do you want to do?

1 - Push an item onto the stack

2 - Pop an item off the stack

3 - Quit the program

Enter your choice: 2 [Enter]
The Adventures of Huckleberry Finn was popped.

What do you want to do?

1 - Push an item onto the stack

2 - Pop an item off the stack

3 - Quit the program

Enter your choice: 2 [Enter]
The stack is empty.

What do you want to do?

1 - Push an item onto the stack

2 - Pop an item off the stack

3 - Quit the program

Enter your choice: 3 [Enter]

Program 18-3 (continued)

M18_GADD6253_07_SE_C18 Page 1060 Wednesday, January 12, 2011 9:37 PM

18.2 Dynamic Stacks 1061

Contents of DynIntStack.h

 1 // Specification file for the DynIntStack class

 2 #ifndef DYNINTSTACK_H

 3 #define DYNINTSTACK_H

 4

 5 class DynIntStack

 6 {

 7 private:

 8 // Structure for stack nodes

 9 struct StackNode

10 {

11 int value; // Value in the node

12 StackNode *next; // Pointer to the next node

13 };

14

15 StackNode *top; // Pointer to the stack top

16

17 public:

18 // Constructor

19 DynIntStack()

20 { top = NULL; }

21

22 // Destructor

23 ~DynIntStack();

24

25 // Stack operations

26 void push(int);

27 void pop(int &);

28 bool isEmpty();

29 };

30 #endif

The StackNode structure is the data type of each node in the linked list. It has a value

member and a next pointer. Notice that instead of a head pointer, a top pointer is

de ned. This member will always point to the rst node in the list, which will represent

the top of the stack. It is initialized to NULL by the constructor, to signify that the stack is

empty.

The de nitions of the other member functions are shown here:

Contents of DynIntStack.cpp

 1 #include <iostream>

 2 #include "DynIntStack.h"

 3 using namespace std;

 4

 5 //**

 6 // Destructor *

 7 // This function deletes every node in the list. *

 8 //**

 9

10 DynIntStack::~DynIntStack()

11 {

12 StackNode *nodePtr, *nextNode;

13

M18_GADD6253_07_SE_C18 Page 1061 Wednesday, January 12, 2011 9:37 PM

1062 Chapter 18 Stacks and Queues

14 // Position nodePtr at the top of the stack.

15 nodePtr = top;

16

17 // Traverse the list deleting each node.

18 while (nodePtr != NULL)

19 {

20 nextNode = nodePtr->next;

21 delete nodePtr;

22 nodePtr = nextNode;

23 }

24 }

25

26 //**

27 // Member function push pushes the argument onto *

28 // the stack. *

29 //**

30

31 void DynIntStack::push(int num)

32 {

33 StackNode *newNode; // Pointer to a new node

34

35 // Allocate a new node and store num there.

36 newNode = new StackNode;

37 newNode->value = num;

38

39 // If there are no nodes in the list

40 // make newNode the first node.

41 if (isEmpty())

42 {

43 top = newNode;

44 newNode->next = NULL;

45 }

46 else // Otherwise, insert NewNode before top.

47 {

48 newNode->next = top;

49 top = newNode;

50 }

51 }

52

53 //**

54 // Member function pop pops the value at the top *

55 // of the stack off, and copies it into the variable *

56 // passed as an argument. *

57 //**

58

59 void DynIntStack::pop(int &num)

60 {

61 StackNode *temp; // Temporary pointer

62

63 // First make sure the stack isn't empty.

64 if (isEmpty())

65 {

66 cout << "The stack is empty.\n";

67 }

68 else // pop value off top of stack

M18_GADD6253_07_SE_C18 Page 1062 Wednesday, January 12, 2011 9:37 PM

18.2 Dynamic Stacks 1063

69 {

70 num = top->value;

71 temp = top->next;

72 delete top;

73 top = temp;

74 }

75 }

76

77 //**

78 // Member function isEmpty returns true if the stack *

79 // is empty, or false otherwise. *

80 //**

81

82 bool DynIntStack::isEmpty()

83 {

84 bool status;

85

86 if (!top)

87 status = true;

88 else

89 status = false;

90

91 return status;

92 }

Let s look at the push operation in lines 31 through 51 of DynIntStack.cpp. First, in

lines 36 and 37, a new node is allocated in memory and the function argument is copied

into its value member:

newNode = new StackNode;

newNode->value = num;

Next in line 41, an if statement calls the isEmpty function to determine whether the

stack is empty:

if (isEmpty())

{

 top = newNode;

 newNode->next = NULL;

}

If isEmpty returns true, top is made to point at the new node, and the new node s next

pointer is set to NULL. After these statements execute, there will be one node in the list

(and one value on the stack).

If isEmpty returns false in the if statement, the following statements in lines 46

through 50 are executed.

else // Otherwise, insert newNode before top

{

 newNode->next = top;

 top = newNode;

}

Notice that newNode is being inserted in the list before the node that top points to. The

top pointer is then updated to point to the new node. When this is done, newNode is at the

top of the stack.

M18_GADD6253_07_SE_C18 Page 1063 Wednesday, January 12, 2011 9:37 PM

1064 Chapter 18 Stacks and Queues

Now let s look at the pop function in lines 59 through 75. Just as the push function must

insert nodes at the head of the list, pop must delete nodes at the head of the list. First, the

function calls isEmpty in line 64 to determine whether there are any nodes in the stack. If

there are none, an error message is displayed:

if (isEmpty())

{

 cout << "The stack is empty.\n";

}

If isEmpty returns false, then the following statements in lines 68 through 74 are executed.

else // pop value off top of stack

{

 num = top->value;

 temp = top->next;

 delete top;

 top = temp;

}

First, the value member of the top node is copied into the num reference parameter. This

saves the value for later use in the program. Next, a temporary StackNode pointer, temp,

is made to point to top->next. If there are other nodes in the list, this causes temp to

point to the second node. (If there are no more nodes, this will cause temp to point to

NULL.) Now it is safe to delete the top node. After the top node is deleted, the top

pointer is set equal to temp. This action moves the top pointer down the list by one node.

The node that was previously second in the list becomes rst.

The isEmpty function, in lines 82 through 92, is simple. If top is NULL, then the list (the

stack) is empty.

Program 18-4 is a driver that demonstrates the DynIntStack class.

Program 18-4

 1 // This program demonstrates the dynamic stack.

 2 // class DynIntClass.

 3 #include <iostream>

 4 #include "DynIntStack.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 int catchVar; // To hold values popped off the stack

 10

 11 // Create a DynIntStack object.

 12 DynIntStack stack;

 13

 14 // Push 5, 10, and 15 onto the stack.

 15 cout << "Pushing 5\n";

 16 stack.push(5);

 17 cout << "Pushing 10\n";

 18 stack.push(10);

 19 cout << "Pushing 15\n";

 20 stack.push(15);

M18_GADD6253_07_SE_C18 Page 1064 Wednesday, January 12, 2011 9:37 PM

18.2 Dynamic Stacks 1065

A Dynamic Stack Template

The dynamic stack class shown previously in this chapter works only with integers. A

dynamic stack template can be easily designed to work with any data type, as shown by the

following example:

Contents of DynamicStack.h

 1 #ifndef DYNAMICSTACK_H

 2 #define DYNAMICSTACK_H

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Stack template

 7 template <class T>

 8 class DynamicStack

 9 {

 10 private:

 11 // Structure for the stack nodes

 12 struct StackNode

 13 {

 14 T value; // Value in the node

 15 StackNode *next; // Pointer to the next node

 16 };

 21

 22 // Pop the values off the stack and display them.

 23 cout << "Popping...\n";

 24 stack.pop(catchVar);

 25 cout << catchVar << endl;

 26 stack.pop(catchVar);

 27 cout << catchVar << endl;

 28 stack.pop(catchVar);

 29 cout << catchVar << endl;

 30

 31 // Try to pop another value off the stack.

 32 cout << "\nAttempting to pop again... ";

 33 stack.pop(catchVar);

 34 return 0;

 35 }

Program Output

Pushing 5

Pushing 10

Pushing 15

Popping...

15

10

5

Attempting to pop again... The stack is empty.

M18_GADD6253_07_SE_C18 Page 1065 Wednesday, January 12, 2011 9:37 PM

1066 Chapter 18 Stacks and Queues

 17

 18 StackNode *top; // Pointer to the stack top

 19

 20 public:

 21 //Constructor

 22 DynamicStack()

 23 { top = NULL; }

 24

 25 // Destructor

 26 ~DynamicStack();

 27

 28 // Stack operations

 29 void push(T);

 30 void pop(T &);

 31 bool isEmpty();

 32 };

 33

 34 //***

 35 // Destructor *

 36 //***

 37 template <class T>

 38 DynamicStack<T>::~DynamicStack()

 39 {

 40 StackNode *nodePtr, *nextNode;

 41

 42 // Position nodePtr at the top of the stack.

 43 nodePtr = top;

 44

 45 // Traverse the list deleting each node.

 46 while (nodePtr != NULL)

 47 {

 48 nextNode = nodePtr->next;

 49 delete nodePtr;

 50 nodePtr = nextNode;

 51 }

 52 }

 53

 54 //***

 55 // Member function push pushes the argument onto *

 56 // the stack. *

 57 //***

 58

 59 template <class T>

 60 void DynamicStack<T>::push(T item)

 61 {

 62 StackNode *newNode; // Pointer to a new node

 63

 64 // Allocate a new node and store num there.

 65 newNode = new StackNode;

 66 newNode->value = item;

 67

 68 // If there are no nodes in the list

 69 // make newNode the first node.

 70 if (isEmpty())

M18_GADD6253_07_SE_C18 Page 1066 Wednesday, January 12, 2011 9:37 PM

18.2 Dynamic Stacks 1067

 71 {

 72 top = newNode;

 73 newNode->next = NULL;

 74 }

 75 else // Otherwise, insert NewNode before top.

 76 {

 77 newNode->next = top;

 78 top = newNode;

 79 }

 80 }

 81

 82 //***

 83 // Member function pop pops the value at the top *

 84 // of the stack off, and copies it into the variable *

 85 // passed as an argument. *

 86 //***

 87

 88 template <class T>

 89 void DynamicStack<T>::pop(T &item)

 90 {

 91 StackNode *temp; // Temporary pointer

 92

 93 // First make sure the stack isn't empty.

 94 if (isEmpty())

 95 {

 96 cout << "The stack is empty.\n";

 97 }

 98 else // pop value off top of stack

 99 {

100 item = top->value;

101 temp = top->next;

102 delete top;

103 top = temp;

104 }

105 }

106

107 //***

108 // Member function isEmpty returns true if the stack *

109 // is empty, or false otherwise. *

110 //***

111

112 template <class T>

113 bool DynamicStack<T>::isEmpty()

114 {

115 bool status;

116

117 if (!top)

118 status = true;

119 else

120 status = false;

121

122 return status;

123 }

124 #endif

M18_GADD6253_07_SE_C18 Page 1067 Wednesday, January 12, 2011 9:37 PM

1068 Chapter 18 Stacks and Queues

Program 18-5 demonstrates the DynamicStack template. This program is a modi cation

of Program 18-3. It creates a stack of strings, and then presents a menu that allows the

user to push an item onto the stack, pop an item from the stack, or quit the program.

Program 18-5

 1 #include <iostream>

 2 #include <string>

 3 #include "DynamicStack.h"

 4 using namespace std;

 5

 6 // Constants for the menu choices

 7 const int PUSH_CHOICE = 1,

 8 POP_CHOICE = 2,

 9 QUIT_CHOICE = 3;

 10

 11 // Function prototypes

 12 void menu(int &);

 13 void getStackSize(int &);

 14 void pushItem(DynamicStack<string> &);

 15 void popItem(DynamicStack<string> &);

 16

 17 int main()

 18 {

 19 int choice; // To hold a menu choice

 20

 21 // Create the stack.

 22 DynamicStack<string> stack;

 23

 24 do

 25 {

 26 // Get the user's menu choice.

 27 menu(choice);

 28

 29 // Perform the user's choice.

 30 if (choice != QUIT_CHOICE)

 31 {

 32 switch (choice)

 33 {

 34 case PUSH_CHOICE:

 35 pushItem(stack);

 36 break;

 37 case POP_CHOICE:

 38 popItem(stack);

 39 }

 40 }

 41 } while (choice != QUIT_CHOICE);

 42

 43 return 0;

 44 }

 45

 46 //**

 47 // The menu function displays the menu and gets *

 48 // the user's choice, which is assigned to the *

 49 // reference parameter. *

 50 //**

M18_GADD6253_07_SE_C18 Page 1068 Wednesday, January 12, 2011 9:37 PM

18.2 Dynamic Stacks 1069

 51 void menu(int &choice)

 52 {

 53 // Display the menu and get the user's choice.

 54 cout << "What do you want to do?\n"

 55 << PUSH_CHOICE

 56 << " - Push an item onto the stack\n"

 57 << POP_CHOICE

 58 << " - Pop an item off the stack\n"

 59 << QUIT_CHOICE

 60 << " - Quit the program\n"

 61 << "Enter your choice: ";

 62 cin >> choice;

 63

 64 // Validate the choice

 65 while (choice < PUSH_CHOICE || choice > QUIT_CHOICE)

 66 {

 67 cout << "Enter a valid choice: ";

 68 cin >> choice;

 69 }

 70 }

 71

 72 //**

 73 // The pushItem function gets an item from the *

 74 // user and pushes it onto the stack. *

 75 //**

 76 void pushItem(DynamicStack<string> &stack)

 77 {

 78 string item;

 79

 80 // Get an item to push onto the stack.

 81 cin.ignore();

 82 cout << "\nEnter an item: ";

 83 getline(cin, item);

 84 stack.push(item);

 85 }

 86

 87 //***

 88 // The popItem function pops an item from the stack *

 89 //***

 90 void popItem(DynamicStack<string> &stack)

 91 {

 92 string item = "";

 93

 94 // Pop the item.

 95 stack.pop(item);

 96

 97 // Display the item.

 98 if (item != "")

 99 cout << item << " was popped.\n";

 100 }

(program output continues)

M18_GADD6253_07_SE_C18 Page 1069 Wednesday, January 12, 2011 9:37 PM

1070 Chapter 18 Stacks and Queues

Program 18-5 (continued)

Program Output with Example Input Shown in Bold

What do you want to do?

1 - Push an item onto the stack

2 - Pop an item off the stack

3 - Quit the program

Enter your choice: 1 [Enter]

Enter an item: The Catcher in the Rye [Enter]

What do you want to do?

1 - Push an item onto the stack

2 - Pop an item off the stack

3 - Quit the program

Enter your choice: 1 [Enter]

Enter an item: Crime and Punishment [Enter]
What do you want to do?

1 - Push an item onto the stack

2 - Pop an item off the stack

3 - Quit the program

Enter your choice: 2 [Enter]
Crime and Punishment was popped.

What do you want to do?

1 - Push an item onto the stack

2 - Pop an item off the stack

3 - Quit the program

Enter your choice: 2 [Enter]
The Catcher in the Rye was popped.

What do you want to do?

1 - Push an item onto the stack

2 - Pop an item off the stack

3 - Quit the program

Enter your choice: 2 [Enter]
The stack is empty.

What do you want to do?

1 - Push an item onto the stack

2 - Pop an item off the stack

3 - Quit the program

Enter your choice: 3 [Enter]

M18_GADD6253_07_SE_C18 Page 1070 Wednesday, January 12, 2011 9:37 PM

18.3 The STL stack Container 1071

18.3 The STL stack Container

CONCEPT: The Standard Template Library offers a stack template, which may be

implemented as a vector, a list, or a deque.

So far, the STL containers you have learned about are vectors and lists. The STL stack

container may be implemented as a vector or a list. (It may also be implemented as a

deque, which you will learn about later in this chapter.) Because the stack container is

used to adapt these other containers, it is often referred to as a container adapter.

Here are examples of how to de ne a stack of ints, implemented as a vector, a list,

and a deque.

stack< int, vector<int> > iStack; // Vector stack

stack< int, list<int> > iStack; // List stack

stack< int > iStack; // Default deque stack

Table 18-3 lists and describes some of the stack template s member functions.

Program 18-6 is a driver that demonstrates an STL stack implemented as a vector.

NOTE: Be sure to put spaces between the angled brackets that appear next to each

other. This will prevent the compiler from mistaking > > for the stream extraction

operator, >>.

Table 18-3

Member

Function Examples and Description

empty if (myStack.empty())

The empty member function returns true if the stack is empty. If the stack has

elements, it returns false.

pop myStack.pop();

The pop function removes the element at the top of the stack.

push myStack.push(x);

The push function pushes an element with the value x onto the stack.

size cout << myStack.size() << endl;

The size function returns the number of elements in the list.

top x = myStack.top();

The top function returns a reference to the element at the top of the stack.

NOTE: The pop function in the stack template does not retrieve the value from the top

of the stack, it only removes it. To retrieve the value, you must call the top function rst.

VideoNote

Storing

Objects in an

STL stack

M18_GADD6253_07_SE_C18 Page 1071 Wednesday, January 12, 2011 9:37 PM

1072 Chapter 18 Stacks and Queues

Checkpoint

 www.myprogramminglab.com

18.1 Describe what LIFO means.

18.2 What is the difference between static and dynamic stacks? What advantages do

dynamic stacks have over static stacks?

18.3 What are the two primary stack operations? Describe them both.

18.4 What STL types does the STL stack container adapt?

Program 18-6

 1 // This program demonstrates the STL stack

 2 // container adapter.

 3 #include <iostream>

 4 #include <vector>

 5 #include <stack>

 6 using namespace std;

 7

 8 int main()

 9 {

 10 const int MAX = 8; // Max value to store in the stack

 11 int count; // Loop counter

 12

 13 // Define an STL stack

 14 stack< int, vector<int> > iStack;

 15

 16 // Push values onto the stack.

 17 for (count = 2; count < MAX; count += 2)

 18 {

 19 cout << "Pushing " << count << endl;

 20 iStack.push(count);

 21 }

 22

 23 // Display the size of the stack.

 24 cout << "The size of the stack is ";

 25 cout << iStack.size() << endl;

 26

 27 // Pop the values off the stack.

 28 for (count = 2; count < MAX; count += 2)

 29 {

 30 cout << "Popping " << iStack.top() << endl;

 31 iStack.pop();

 32 }

 33 return 0;

 34 }

Program Output

Pushing 2

Pushing 4

Pushing 6

The size of the stack is 3

Popping 6

Popping 4

Popping 2

M18_GADD6253_07_SE_C18 Page 1072 Wednesday, January 12, 2011 9:37 PM

18.4 Introduction to the Queue ADT 1073

18.4 Introduction to the Queue ADT

CONCEPT: A queue is a data structure that stores and retrieves items in a rst-in-

rst-out manner.

De nition

Like a stack, a queue (pronounced cue) is a data structure that holds a sequence of ele-

ments. A queue, however, provides access to its elements in rst-in, rst-out (FIFO) order.

The elements in a queue are processed like customers standing in a grocery checkout line:

The rst customer in line is the rst one served.

Application of Queues

Queue data structures are commonly used in computer operating systems. They are espe-

cially important in multiuser/multitasking environments where several users or tasks may

be requesting the same resource simultaneously. Printing, for example, is controlled by a

queue because only one document may be printed at a time. A queue is used to hold print

jobs submitted by users of the system, while the printer services those jobs one at a time.

Communications software also uses queues to hold data received over networks and dial-

up connections. Sometimes data is transmitted to a system faster than it can be processed,

so it is placed in a queue when it is received.

Static and Dynamic Queues

Just as stacks are implemented as arrays or linked lists, so are queues. Dynamic queues

offer the same advantages over static queues that dynamic stacks offer over static stacks.

In fact, the primary difference between queues and stacks is the way data elements are

accessed in each structure.

Queue Operations

Just like check-out lines in a grocery store, think of queues as having a front and a rear.

This is illustrated in Figure 18-8.

When an element is added to a queue, it is added to the rear. When an element is removed

from a queue, it is removed from the front. The two primary queue operations are

enqueuing and dequeuing. To enqueue means to insert an element at the rear of a queue,

Figure 18-8

RearFront

M18_GADD6253_07_SE_C18 Page 1073 Wednesday, January 12, 2011 9:37 PM

1074 Chapter 18 Stacks and Queues

and to dequeue means to remove an element from the front of a queue. There are several

different algorithms for implementing these operations. We will begin by looking at the

most simple.

Suppose we have an empty static integer queue that is capable of holding a maximum of

three values. With that queue we execute the following enqueue operations.

enqueue(3);

enqueue(6);

enqueue(9);

Figure 18-9 illustrates the state of the queue after each of these enqueue operations.

Notice in this example that the front index (which is a variable holding a subscript or per-

haps a pointer) always references the same physical element. The rear index moves for-

ward in the array as items are enqueued. Now let s see how dequeue operations are

performed. Figure 18-10 illustrates the state of the queue after each of three consecutive

dequeue operations.

Figure 18-9

Figure 18-10

RearFront

3

RearFront

6

RearFront

enqueue(3);

enqueue(6);

enqueue(9);

3 6 9

3

dequeue();

dequeue();

dequeue();

9

Rear = 1Front = 1

RearFront

6 9

RearFront

M18_GADD6253_07_SE_C18 Page 1074 Wednesday, January 12, 2011 9:37 PM

18.4 Introduction to the Queue ADT 1075

In the dequeuing operation, the element at the front of the queue is removed. This is done

by moving all the elements after it forward by one position. After the rst dequeue opera-

tion, the value 3 is removed from the queue and the value 6 is at the front. After the sec-

ond dequeue operation, the value 6 is removed and the value 9 is at the front. Notice that

when only one value is stored in the queue, that value is at both the front and the rear.

When the last dequeue operation is performed in Figure 18-10, the queue is empty. An

empty queue can be signi ed by setting both front and rear indices to 1.

The problem with this algorithm is its inef ciency. Each time an item is dequeued, the

remaining items in the queue are copied forward to their neighboring element. The more

items there are in the queue, the longer each successive dequeue operation will take.

Here is one way to overcome the problem: Make both the front and rear indices move in

the array. As before, when an item is enqueued, the rear index is moved to make room for

it. But in this design, when an item is dequeued, the front index moves by one element

toward the rear of the queue. This logically removes the front item from the queue and

eliminates the need to copy the remaining items to their neighboring elements.

With this approach, as items are added and removed, the queue gradually crawls

toward the end of the array. This is illustrated in Figure 18-11. The shaded squares repre-

sent the queue elements (between the front and rear).

The problem with this approach is that the rear index cannot move beyond the last ele-

ment in the array. The solution is to think of the array as circular instead of linear. When

an item moves past the end of a circular array, it simply wraps around to the beginning.

For example, consider the queue depicted in Figure 18-12.

The value 3 is at the rear of the queue, and the value 7 is at the front of the queue. Now,

suppose an enqueue operation is performed, inserting the value 4 into the queue. Figure

18-13 shows how the rear of the queue wraps around to the beginning of the array.

Figure 18-11

Figure 18-12

7 9 6 3

 [0] [1] [2] [3] [4] [5] [6] [7] [8]

rear = 8

front = 5

M18_GADD6253_07_SE_C18 Page 1075 Wednesday, January 12, 2011 9:37 PM

1076 Chapter 18 Stacks and Queues

So, what is the code for wrapping the rear marker around to the opposite end of the

array? One straightforward approach is to use an if statement such as

if (rear == queueSize - 1)

 rear = 0;

else

 rear++;

Another approach is with modular arithmetic:

rear = (rear + 1) % queueSize;

This statement uses the % operator to adjust the value in rear to the proper position.

Although this approach appears more elegant, the choice of which code to use is yours.

Detecting Full and Empty Queues with Circular Arrays

One problem with the circular array algorithm is that, because both the front and rear

indices move through the array, detecting whether the queue is full or empty is a chal-

lenge. When the rear index and the front index reference the same element, does it indicate

that only one item is in the queue, or that the queue is full? A number of approaches are

commonly taken, two of which are listed below.

When moving the rear index backward, always leave one element empty between

it and the front index. The queue is full when the rear index is within two posi-

tions of the front index.

Use a counter variable to keep a total of the number of items in the queue.

Because it might be helpful to keep a count of items in the queue anyway, we will use the

second method in our implementation.

A Static Queue Class

The declaration of the IntQueue class is as follows:

Contents of IntQueue.h

 1 // Specification file for the IntQueue class

 2 #ifndef INTQUEUE_H

 3 #define INTQUEUE_H

 4

Figure 18-13

7 9 6 3

 [0] [1] [2] [3] [4] [5] [6] [7] [8]

rear = 0

front = 5

4

M18_GADD6253_07_SE_C18 Page 1076 Wednesday, January 12, 2011 9:37 PM

18.4 Introduction to the Queue ADT 1077

 5 class IntQueue

 6 {

 7 private:

 8 int *queueArray; // Points to the queue array

 9 int queueSize; // The queue size

10 int front; // Subscript of the queue front

11 int rear; // Subscript of the queue rear

12 int numItems; // Number of items in the queue

13 public:

14 // Constructor

15 IntQueue(int);

16

17 // Copy constructor

18 IntQueue(const IntQueue &);

19

20 // Destructor

21 ~IntQueue();

22

23 // Queue operations

24 void enqueue(int);

25 void dequeue(int &);

26 bool isEmpty() const;

27 bool isFull() const;

28 void clear();

29 };

30 #endif

Notice that in addition to the operations discussed in this section, the class also declares a

member function named clear. This function clears the queue by resetting the front and

rear indices, and setting the numItems member to 0. The member function de nitions are

listed below.

Contents of IntQueue.cpp

 1 // Implementation file for the IntQueue class

 2 #include <iostream>

 3 #include "IntQueue.h"

 4 using namespace std;

 5

 6 //***

 7 // This constructor creates an empty queue of a specified size. *

 8 //***

 9

 10 IntQueue::IntQueue(int s)

 11 {

 12 queueArray = new int[s];

 13 queueSize = s;

 14 front = -1;

 15 rear = -1;

 16 numItems = 0;

 17 }

 18

M18_GADD6253_07_SE_C18 Page 1077 Wednesday, January 12, 2011 9:37 PM

1078 Chapter 18 Stacks and Queues

 19 //***

 20 // Copy constructor *

 21 //***

 22

 23 IntQueue::IntQueue(const IntQueue &obj)

 24 {

 25 // Allocate the queue array.

 26 queueArray = new int[obj.queueSize];

 27

 28 // Copy the other object's attributes.

 29 queueSize = obj.queueSize;

 30 front = obj.front;

 31 rear = obj.rear;

 32 numItems = obj.numItems;

 33

 34 // Copy the other object's queue array.

 35 for (int count = 0; count < obj.queueSize; count++)

 36 queueArray[count] = obj.queueArray[count];

 37 }

 38

 39 //***

 40 // Destructor *

 41 //***

 42

 43 IntQueue::~IntQueue()

 44 {

 45 delete [] queueArray;

 46 }

 47

 48 //***

 49 // Function enqueue inserts a value at the rear of the queue. *

 50 //***

 51

 52 void IntQueue::enqueue(int num)

 53 {

 54 if (isFull())

 55 cout << "The queue is full.\n";

 56 else

 57 {

 58 // Calculate the new rear position

 59 rear = (rear + 1) % queueSize;

 60 // Insert new item

 61 queueArray[rear] = num;

 62 // Update item count

 63 numItems++;

 64 }

 65 }

 66

 67 //***

 68 // Function dequeue removes the value at the front of the queue *

 69 // and copies t into num. *

 70 //***

 71

M18_GADD6253_07_SE_C18 Page 1078 Wednesday, January 12, 2011 9:37 PM

18.4 Introduction to the Queue ADT 1079

 72 void IntQueue::dequeue(int &num)

 73 {

 74 if (isEmpty())

 75 cout << "The queue is empty.\n";

 76 else

 77 {

 78 // Move front

 79 front = (front + 1) % queueSize;

 80 // Retrieve the front item

 81 num = queueArray[front];

 82 // Update item count

 83 numItems--;

 84 }

 85 }

 86

 87 //***

 88 // isEmpty returns true if the queue is empty, otherwise false. *

 89 //***

 90

 91 bool IntQueue::isEmpty() const

 92 {

 93 bool status;

 94

 95 if (numItems)

 96 status = false;

 97 else

 98 status = true;

 99

100 return status;

101 }

102

103 //**

104 // isFull returns true if the queue is full, otherwise false. *

105 //**

106

107 bool IntQueue::isFull() const

108 {

109 bool status;

110

111 if (numItems < queueSize)

112 status = false;

113 else

114 status = true;

115

116 return status;

117 }

118

119 //**

120 // clear sets the front and rear indices, and sets numItems to 0. *

121 //**

122

M18_GADD6253_07_SE_C18 Page 1079 Wednesday, January 12, 2011 9:37 PM

1080 Chapter 18 Stacks and Queues

123 void IntQueue::clear()

124 {

125 front = queueSize - 1;

126 rear = queueSize - 1;

127 numItems = 0;

128 }

Program 18-7 is a driver that demonstrates the IntQueue class.

Program 18-7

 1 // This program demonstrates the IntQueue class.

 2 #include <iostream>

 3 #include "IntQueue.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int MAX_VALUES = 5; // Max number of values

 9

 10 // Create an IntQueue to hold the values.

 11 IntQueue iQueue(MAX_VALUES);

 12

 13 // Enqueue a series of items.

 14 cout << "Enqueuing " << MAX_VALUES << " items...\n";

 15 for (int x = 0; x < MAX_VALUES; x++)

 16 iQueue.enqueue(x);

 17

 18 // Attempt to enqueue just one more item.

 19 cout << "Now attempting to enqueue again...\n";

 20 iQueue.enqueue(MAX_VALUES);

 21

 22 // Dequeue and retrieve all items in the queue

 23 cout << "The values in the queue were:\n";

 24 while (!iQueue.isEmpty())

 25 {

 26 int value;

 27 iQueue.dequeue(value);

 28 cout << value << endl;

 29 }

 30 return 0;

 31 }

Program Output

Enqueuing 5 items...

Now attempting to enqueue again...

The queue is full.

The values in the queue were:

0

1

2

3

4

M18_GADD6253_07_SE_C18 Page 1080 Wednesday, January 12, 2011 9:37 PM

18.4 Introduction to the Queue ADT 1081

A Static Queue Template

The queue class shown previously works only with integers. A queue template can be eas-

ily designed to work with any data type, as shown by the following example:

Contents of Queue.h

 1 #ifndef QUEUE_H

 2 #define QUEUE_H

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Stack template

 7 template <class T>

 8 class Queue

 9 {

 10 private:

 11 T *queueArray; // Points to the queue array

 12 int queueSize; // The queue size

 13 int front; // Subscript of the queue front

 14 int rear; // Subscript of the queue rear

 15 int numItems; // Number of items in the queue

 16 public:

 17 // Constructor

 18 Queue(int);

 19

 20 // Copy constructor

 21 Queue(const Queue &);

 22

 23 // Destructor

 24 ~Queue();

 25

 26 // Queue operations

 27 void enqueue(T);

 28 void dequeue(T &);

 29 bool isEmpty() const;

 30 bool isFull() const;

 31 void clear();

 32 };

 33

 34 //***

 35 // This constructor creates an empty queue of a specified size. *

 36 //***

 37 template <class T>

 38 Queue<T>::Queue(int s)

 39 {

 40 queueArray = new T[s];

 41 queueSize = s;

 42 front = -1;

 43 rear = -1;

 44 numItems = 0;

 45 }

 46

M18_GADD6253_07_SE_C18 Page 1081 Wednesday, January 12, 2011 9:37 PM

1082 Chapter 18 Stacks and Queues

 47 //***

 48 // Copy constructor *

 49 //***

 50 template <class T>

 51 Queue<T>::Queue(const Queue &obj)

 52 {

 53 // Allocate the queue array.

 54 queueArray = new T[obj.queueSize];

 55

 56 // Copy the other object's attributes.

 57 queueSize = obj.queueSize;

 58 front = obj.front;

 59 rear = obj.rear;

 60 numItems = obj.numItems;

 61

 62 // Copy the other object's queue array.

 63 for (int count = 0; count < obj.queueSize; count++)

 64 queueArray[count] = obj.queueArray[count];

 65 }

 66

 67 //***

 68 // Destructor *

 69 //***

 70 template <class T>

 71 Queue<T>::~Queue()

 72 {

 73 delete [] queueArray;

 74 }

 75

 76 //***

 77 // Function enqueue inserts a value at the rear of the queue. *

 78 //***

 79 template <class T>

 80 void Queue<T>::enqueue(T item)

 81 {

 82 if (isFull())

 83 cout << "The queue is full.\n";

 84 else

 85 {

 86 // Calculate the new rear position

 87 rear = (rear + 1) % queueSize;

 88 // Insert new item

 89 queueArray[rear] = item;

 90 // Update item count

 91 numItems++;

 92 }

 93 }

 94

 95 //***

 96 // Function dequeue removes the value at the front of the queue *

 97 // and copies t into num. *

 98 //***

 99 template <class T>

100 void Queue<T>::dequeue(T &item)

M18_GADD6253_07_SE_C18 Page 1082 Wednesday, January 12, 2011 9:37 PM

18.4 Introduction to the Queue ADT 1083

101 {

102 if (isEmpty())

103 cout << "The queue is empty.\n";

104 else

105 {

106 // Move front

107 front = (front + 1) % queueSize;

108 // Retrieve the front item

109 item = queueArray[front];

110 // Update item count

111 numItems--;

112 }

113 }

114

115 //***

116 // isEmpty returns true if the queue is empty, otherwise false. *

117 //***

118 template <class T>

119 bool Queue<T>::isEmpty() const

120 {

121 bool status;

122

123 if (numItems)

124 status = false;

125 else

126 status = true;

127

128 return status;

129 }

130

131 //***

132 // isFull returns true if the queue is full, otherwise false. *

133 //***

134 template <class T>

135 bool Queue<T>::isFull() const

136 {

137 bool status;

138

139 if (numItems < queueSize)

140 status = false;

141 else

142 status = true;

143

144 return status;

145 }

146

147 //***

148 // clear sets the front and rear indices, and sets numItems to 0. *

149 //***

150 template <class T>

151 void Queue<T>::clear()

152 {

153 front = queueSize - 1;

154 rear = queueSize - 1;

155 numItems = 0;

156 }

157 #endif

M18_GADD6253_07_SE_C18 Page 1083 Wednesday, January 12, 2011 9:37 PM

1084 Chapter 18 Stacks and Queues

Program 18-8 demonstrates the Queue template. It creates a queue that can hold strings,

and then prompts the user to enter a series of names that are enqueued. The program then

dequeues all of the names and displays them.

Program 18-8

 1 // This program demonstrates the Queue template.

 2 #include <iostream>

 3 #include <string>

 4 #include "Queue.h"

 5 using namespace std;

 6

 7 const int QUEUE_SIZE = 5;

 8

 9 int main()

 10 {

 11 string name;

 12

 13 // Create a Queue.

 14 Queue<string> queue(QUEUE_SIZE);

 15

 16 // Enqueue some names.

 17 for (int count = 0; count < QUEUE_SIZE; count++)

 18 {

 19 cout << "Enter a name: ";

 20 getline(cin, name);

 21 queue.enqueue(name);

 22 }

 23

 24 // Dequeue the names and display them.

 25 cout << "\nHere are the names you entered:\n";

 26 for (int count = 0; count < QUEUE_SIZE; count++)

 27 {

 28 queue.dequeue(name);

 29 cout << name << endl;

 30 }

 31 return 0;

 32 }

Program Output with Example Input Shown in Bold

Enter a name: Chris [Enter]
Enter a name: Kathryn [Enter]
Enter a name: Alfredo [Enter]
Enter a name: Lori [Enter]
Enter a name: Kelly [Enter]

Here are the names you entered:

Chris

Kathryn

Alfredo

Lori

Kelly

M18_GADD6253_07_SE_C18 Page 1084 Wednesday, January 12, 2011 9:37 PM

18.5 Dynamic Queues 1085

18.5 Dynamic Queues

CONCEPT: A queue may be implemented as a linked list, and expand or shrink with

each enqueue or dequeue operation.

Dynamic queues, which are built around linked lists, are much more intuitive to under-

stand than static queues. A dynamic queue starts as an empty linked list. With the rst

enqueue operation, a node is added, which is pointed to by the front and rear pointers.

As each new item is added to the queue, a new node is added to the rear of the list, and the

rear pointer is updated to point to the new node. As each item is dequeued, the node

pointed to by the front pointer is deleted, and front is made to point to the next node in

the list. Figure 18-14 shows the structure of a dynamic queue.

A dynamic integer queue class is listed here.

 Contents of DynIntQueue.h

 1 #ifndef DYNINTQUEUE_H

 2 #define DYNINTQUEUE_H

 3

 4 class DynIntQueue

 5 {

 6 private:

 7 // Structure for the queue nodes

 8 struct QueueNode

 9 {

10 int value; // Value in a node

11 QueueNode *next; // Pointer to the next node

12 };

13

14 QueueNode *front; // The front of the queue

15 QueueNode *rear; // The rear of the queue

16 int numItems; // Number of items in the queue

17 public:

18 // Constructor

19 DynIntQueue();

20

Figure 18-14

NULL

front rear

M18_GADD6253_07_SE_C18 Page 1085 Wednesday, January 12, 2011 9:37 PM

1086 Chapter 18 Stacks and Queues

21 // Destructor

22 ~DynIntQueue();

23

24 // Queue operations

25 void enqueue(int);

26 void dequeue(int &);

27 bool isEmpty() const;

28 bool isFull() const;

29 void clear();

30 };

31 #endif

Contents of DynIntQueue.cpp

 1 #include <iostream>

 2 #include "DynIntQueue.h"

 3 using namespace std;

 4

 5 //**

 6 // The constructor creates an empty queue. *

 7 //**

 8

 9 DynIntQueue::DynIntQueue()

 10 {

 11 front = NULL;

 12 rear = NULL;

 13 numItems = 0;

 14 }

 15

 16 //**

 17 // Destructor *

 18 //**

 19

 20 DynIntQueue::~DynIntQueue()

 21 {

 22 clear();

 23 }

 24

 25 //**

 26 // Function enqueue inserts the value in num *

 27 // at the rear of the queue. *

 28 //**

 29

 30 void DynIntQueue::enqueue(int num)

 31 {

 32 QueueNode *newNode;

 33

 34 // Create a new node and store num there.

 35 newNode = new QueueNode;

 36 newNode->value = num;

 37 newNode->next = NULL;

 38

 39 // Adjust front and rear as necessary.

 40 if (isEmpty())

 41 {

 42 front = newNode;

 43 rear = newNode;

M18_GADD6253_07_SE_C18 Page 1086 Wednesday, January 12, 2011 9:37 PM

18.5 Dynamic Queues 1087

 44 }

 45 else

 46 {

 47 rear->next = newNode;

 48 rear = newNode;

 49 }

 50

 51 // Update numItems.

 52 numItems++;

 53 }

 54

 55 //**

 56 // Function dequeue removes the value at the *

 57 // front of the queue, and copies it into num. *

 58 //**

 59

 60 void DynIntQueue::dequeue(int &num)

 61 {

 62 QueueNode *temp;

 63

 64 if (isEmpty())

 65 {

 66 cout << "The queue is empty.\n";

 67 }

 68 else

 69 {

 70 // Save the front node value in num.

 71 num = front->value;

 72

 73 // Remove the front node and delete it.

 74 temp = front;

 75 front = front->next;

 76 delete temp;

 77

 78 // Update numItems.

 79 numItems--;

 80 }

 81 }

 82

 83 //***

 84 // Function isEmpty returns true if the queue *

 85 // is empty, and false otherwise. *

 86 //***

 87

 88 bool DynIntQueue::isEmpty() const

 89 {

 90 bool status;

 91

 92 if (numItems > 0)

 93 status = false;

 94 else

 95 status = true;

 96 return status;

 97 }

 98

M18_GADD6253_07_SE_C18 Page 1087 Wednesday, January 12, 2011 9:37 PM

1088 Chapter 18 Stacks and Queues

 99 //**

100 // Function clear dequeues all the elements *

101 // in the queue. *

102 //**

103

104 void DynIntQueue::clear()

105 {

106 int value; // Dummy variable for dequeue

107

108 while(!isEmpty())

109 dequeue(value);

110 }

Program 18-9 is a driver that demonstrates the DynIntQueue class.

Program 18-9

 1 // This program demonstrates the DynIntQueue class.

 2 #include <iostream>

 3 #include "DynIntQueue.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int MAX_VALUES = 5;

 9

 10 // Create a DynIntQueue object.

 11 DynIntQueue iQueue;

 12

 13 // Enqueue a series of numbers.

 14 cout << "Enqueuing " << MAX_VALUES << " items...\n";

 15 for (int x = 0; x < 5; x++)

 16 iQueue.enqueue(x);

 17

 18 // Dequeue and retrieve all numbers in the queue

 19 cout << "The values in the queue were:\n";

 20 while (!iQueue.isEmpty())

 21 {

 22 int value;

 23 iQueue.dequeue(value);

 24 cout << value << endl;

 25 }

 26 return 0;

 27 }

Program Output

Enqueuing 5 items...

The values in the queue were:

0

1

2

3

4

M18_GADD6253_07_SE_C18 Page 1088 Wednesday, January 12, 2011 9:37 PM

18.5 Dynamic Queues 1089

A Dynamic Queue Template

The dynamic queue class shown previously in this chapter works only with integers. A

dynamic queue template can be easily designed to work with any data type, as shown by

the following example:

Contents of DynamicQueue.h

 1 #ifndef DYNAMICQUEUE_H

 2 #define DYNAMICQUEUE_H

 3 #include <iostream>

 4 using namespace std;

 5

 6 // DynamicQueue template

 7 template <class T>

 8 class DynamicQueue

 9 {

 10 private:

 11 // Structure for the queue nodes

 12 struct QueueNode

 13 {

 14 T value; // Value in a node

 15 QueueNode *next; // Pointer to the next node

 16 };

 17

 18 QueueNode *front; // The front of the queue

 19 QueueNode *rear; // The rear of the queue

 20 int numItems; // Number of items in the queue

 21 public:

 22 // Constructor

 23 DynamicQueue();

 24

 25 // Destructor

 26 ~DynamicQueue();

 27

 28 // Queue operations

 29 void enqueue(T);

 30 void dequeue(T &);

 31 bool isEmpty() const;

 32 bool isFull() const;

 33 void clear();

 34 };

 35

 36 //**

 37 // The constructor creates an empty queue. *

 38 //**

 39 template <class T>

 40 DynamicQueue<T>::DynamicQueue()

 41 {

 42 front = NULL;

 43 rear = NULL;

 44 numItems = 0;

 45 }

 46

M18_GADD6253_07_SE_C18 Page 1089 Wednesday, January 12, 2011 9:37 PM

1090 Chapter 18 Stacks and Queues

 47 //**

 48 // Destructor *

 49 //**

 50 template <class T>

 51 DynamicQueue<T>::~DynamicQueue()

 52 {

 53 clear();

 54 }

 55

 56 //**

 57 // Function enqueue inserts the value in num *

 58 // at the rear of the queue. *

 59 //**

 60 template <class T>

 61 void DynamicQueue<T>::enqueue(T item)

 62 {

 63 QueueNode *newNode;

 64

 65 // Create a new node and store num there.

 66 newNode = new QueueNode;

 67 newNode->value = item;

 68 newNode->next = NULL;

 69

 70 // Adjust front and rear as necessary.

 71 if (isEmpty())

 72 {

 73 front = newNode;

 74 rear = newNode;

 75 }

 76 else

 77 {

 78 rear->next = newNode;

 79 rear = newNode;

 80 }

 81

 82 // Update numItems.

 83 numItems++;

 84 }

 85

 86 //**

 87 // Function dequeue removes the value at the *

 88 // front of the queue, and copies it into num. *

 89 //**

 90 template <class T>

 91 void DynamicQueue<T>::dequeue(T &item)

 92 {

 93 QueueNode *temp;

 94

 95 if (isEmpty())

 96 {

 97 cout << "The queue is empty.\n";

 98 }

 99 else

100 {

101 // Save the front node value in num.

102 item = front->value;

M18_GADD6253_07_SE_C18 Page 1090 Wednesday, January 12, 2011 9:37 PM

18.5 Dynamic Queues 1091

103

104 // Remove the front node and delete it.

105 temp = front;

106 front = front->next;

107 delete temp;

108

109 // Update numItems.

110 numItems--;

111 }

112 }

113

114 //***

115 // Function isEmpty returns true if the queue *

116 // is empty, and false otherwise. *

117 //***

118 template <class T>

119 bool DynamicQueue<T>::isEmpty() const

120 {

121 bool status;

122

123 if (numItems > 0)

124 status = false;

125 else

126 status = true;

127 return status;

128 }

129

130 //**

131 // Function clear dequeues all the elements *

132 // in the queue. *

133 //**

134 template <class T>

135 void DynamicQueue<T>::clear()

136 {

137 T value; // Dummy variable for dequeue

138

139 while(!isEmpty())

140 dequeue(value);

141 }

142 #endif

Program 18-10 demonstrates the DynamicQueue template. This program is a modi ca-
tion of Program 18-8. It creates a queue that can hold strings, and then prompts the user
to enter a series of names that are enqueued. The program then dequeues all of the
names and displays them. (The program s output is the same as that of Program 18-8.)

Program 18-10

 1 // This program demonstrates the DynamicQueue template.

 2 #include <iostream>

 3 #include <string>

 4 #include "DynamicQueue.h"

 5 using namespace std;

 6

(program continues)

M18_GADD6253_07_SE_C18 Page 1091 Wednesday, January 12, 2011 9:37 PM

1092 Chapter 18 Stacks and Queues

18.6 The STL deque and queue Containers

CONCEPT: The Standard Template Library provides two containers, deque and

queue, for implementing queue-like data structures.

In this section we will examine two ADTs offered by the Standard Template Library:

deque and queue. A deque (pronounced deck or deek) is a double-ended queue. It is

similar to a vector, but allows ef cient access to values at both the front and the rear. The

queue ADT is like the stack ADT: It is actually a container adapter.

The deque Container

Think of the deque container as a vector that provides quick access to the element at its

front as well as at the back. (Like vector, deque also provides access to its elements with

the [] operator.)

 7 const int QUEUE_SIZE = 5;

 8

 9 int main()

 10 {

 11 string name;

 12

 13 // Create a Queue.

 14 DynamicQueue<string> queue;

 15

 16 // Enqueue some names.

 17 for (int count = 0; count < QUEUE_SIZE; count++)

 18 {

 19 cout << "Enter a name: ";

 20 getline(cin, name);

 21 queue.enqueue(name);

 22 }

 23

 24 // Dequeue the names and display them.

 25 cout << "\nHere are the names you entered:\n";

 26 for (int count = 0; count < QUEUE_SIZE; count++)

 27 {

 28 queue.dequeue(name);

 29 cout << name << endl;

 30 }

 31 return 0;

 32 }

Program Output

(Same as Program 18-8 s output.)

Program 18-10 (continued)

M18_GADD6253_07_SE_C18 Page 1092 Wednesday, January 12, 2011 9:37 PM

18.6 The STL deque and queue Containers 1093

Programs that use the deque ADT must include the deque header. Because we are concen-

trating on its queue-like characteristics, we will focus our attention on the push_back,

pop_front, and front member functions. Table 18-4 describes them.

Program 18-11 demonstrates the deque container.

Table 18-4

Member

Function Examples and Description

push_back iDeque.push_back();

Accepts as an argument a value to be inserted into the deque. The argument is

inserted after the last element. (Pushed onto the back of the deque.)

pop_front iDeque.pop_front();

Removes the rst element of the deque.

front cout << iDeque.front() << endl;

front returns a reference to the rst element of the deque.

Program 18-11

 1 // This program demonstrates the STL deque container.

 2 #include <iostream>

 3 #include <deque>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int MAX = 8; // Max value

 9 int count; // Loop counter

 10

 11 // Create a deque object.

 12 deque<int> iDeque;

 13

 14 // Enqueue a series of numbers.

 15 cout << "I will now enqueue items...\n";

 16 for (count = 2; count < MAX; count += 2)

 17 {

 18 cout << "Pushing " << count << endl;

 19 iDeque.push_back(count);

 20 }

 21

 22 // Dequeue and display the numbers.

 23 cout << "I will now dequeue items...\n";

 24 for (count = 2; count < MAX; count += 2)

 25 {

 26 cout << "Popping "<< iDeque.front() << endl;

 27 iDeque.pop_front();

 28 }

 29 return 0;

 30 }

(program output continues)

M18_GADD6253_07_SE_C18 Page 1093 Wednesday, January 12, 2011 9:37 PM

1094 Chapter 18 Stacks and Queues

The queue Container Adapter

The queue container adapter can be built upon vectors, lists, or deques. By default, it

uses deque as its base.

The insertion and removal operations supported by queue are the same as those sup-

ported by the stack ADT: push, pop, and top. There are differences in their behavior,

however. The queue version of push always inserts an element at the rear of the queue.

The queue version of pop always removes an element from the structure s front. The top

function returns the value of the element at the front of the queue.

Program 18-12 demonstrates a queue. Because the de nition of the queue does not spec-

ify which type of container is being adapted, the queue will be built on a deque.

Program Output

I will now enqueue items...

Pushing 2

Pushing 4

Pushing 6

I will now dequeue items...

Popping 2

Popping 4

Popping 6

Program 18-12

 1 // This program demonstrates the STL queue container adapter.

 2 #include <iostream>

 3 #include <queue>

 4 using namespace std;

 5

 6 int main()

 7 {

 8 const int MAX = 8; // Max value

 9 int count; // Loop counter

 10

 11 // Define a queue object.

 12 queue<int> iQueue;

 13

 14 // Enqueue a series of numbers.

 15 cout << "I will now enqueue items...\n";

 16 for (count = 2; count < MAX; count += 2)

 17 {

 18 cout << "Pushing "<< count << endl;

 19 iQueue.push(count);

 20 }

 21

 22 // Dequeue and display the numbers.

 23 cout << "I will now dequeue items...\n";

 24 for (count = 2; count < MAX; count += 2)

Program 18-11 (continued)

VideoNote

Storing

Objects in an

STL queue

M18_GADD6253_07_SE_C18 Page 1094 Wednesday, January 12, 2011 9:37 PM

18.6 The STL deque and queue Containers 1095

Review Questions and Exercises

Short Answer

1. What does LIFO mean?

2. What element is always retrieved from a stack?

3. What is the difference between a static stack and a dynamic stack?

4. Describe two operations that all stacks perform.

5. Describe two operations that static stacks must perform.

6. The STL stack is considered a container adapter. What does that mean?

7. What types may the STL stack be based on? By default, what type is an STL stack
based on?

8. What does FIFO mean?

9. When an element is added to a queue, where is it added?

10. When an element is removed from a queue, where is it removed from?

11. Describe two operations that all queues perform.

12. What two queue-like containers does the STL offer?

Fill-in-the-Blank

13. The __________ element saved onto a stack is the first one retrieved.

14. The two primary stack operations are __________ and __________.

15. __________ stacks and queues are implemented as arrays.

16. __________ stacks and queues are implemented as linked lists.

17. The STL stack container is an adapter for the __________, __________, and
__________ STL containers.

18. The __________ element saved in a queue is the first one retrieved.

 25 {

 26 cout << "Popping "<< iQueue.front() << endl;

 27 iQueue.pop();

 28 }

 29 return 0;

 30 }

Program Output

I will now enqueue items...

Pushing 2

Pushing 4

Pushing 6

I will now dequeue items...

Popping 2

Popping 4

Popping 6

Review Questions and Exercises

M18_GADD6253_07_SE_C18 Page 1095 Wednesday, January 12, 2011 9:37 PM

1096 Chapter 18 Stacks and Queues

19. The two primary queue operations are __________ and __________.

20. The two ADTs in the Standard Template Library that exhibit queue-like behavior are
__________ and __________.

21. The queue ADT, by default, adapts the __________ container.

Algorithm Workbench

22. Suppose the following operations are performed on an empty stack:

push(0);

push(9);

push(12);

push(1);

Insert numbers in the following diagram to show what will be stored in the static

stack after the operations above have executed.

23. Suppose the following operations are performed on an empty stack:

push(8);

push(7);

pop();

push(19);

push(21);

pop();

Insert numbers in the following diagram to show what will be stored in the static

stack after the operations above have executed.

24. Suppose the following operations are performed on an empty queue:

enqueue(5);

enqueue(7);

enqueue(9);

enqueue(12);

Insert numbers in the following diagram to show what will be stored in the static

stack after the operations above have executed.

Top of Stack

Bottom of Stack

Top of Stack

Bottom of Stack

M18_GADD6253_07_SE_C18 Page 1096 Wednesday, January 12, 2011 9:37 PM

Review Questions and Exercises 1097

25. Suppose the following operations are performed on an empty queue:

enqueue(5);

enqueue(7);

dequeue();

enqueue(9);

enqueue(12);

dequeue();

enqueue(10);

Insert numbers in the following diagram to show what will be stored in the static

stack after the operations above have executed.

26. What problem is overcome by using a circular array for a static queue?

27. Write two different code segments that may be used to wrap an index back around to
the beginning of an array when it moves past the end of the array. Use an if/else
statement in one segment and modular arithmetic in the other.

True or False

28. T F A static stack or queue is built around an array.

29. T F The size of a dynamic stack or queue must be known in advance.

30. T F The push operation inserts an element at the end of a stack.

31. T F The pop operation retrieves an element from the top of a stack.

32. T F The STL stack container s pop operation does not retrieve the top element of

the stack, it just removes it.

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. Static Stack Template

Write your own version of a class template that will create a static stack of any data

type. Demonstrate the class with a driver program.

2. Dynamic Stack Template

Write your own version of a class template that will create a dynamic stack of any

data type. Demonstrate the class with a driver program.

front rear

front rear

Programming Challenges

M18_GADD6253_07_SE_C18 Page 1097 Wednesday, January 12, 2011 9:37 PM

1098 Chapter 18 Stacks and Queues

3. Static Queue Template

Write your own version of a class template that will create a static queue of any data

type. Demonstrate the class with a driver program.

4. Dynamic Queue Template

Write your own version of a class template that will create a dynamic queue of any

data type. Demonstrate the class with a driver program.

5. Error Testing

The DynIntStack and DynIntQueue classes shown in this chapter are abstract data

types using a dynamic stack and dynamic queue, respectively. The classes do not cur-

rently test for memory allocation errors. Modify the classes so they determine whether

new nodes cannot be created by handling the bad_alloc exception.

6. Dynamic String Stack

Design a class that stores strings on a dynamic stack. The strings should not be xed

in length. Demonstrate the class with a driver program.

7. Dynamic MathStack

The MathStack class shown in this chapter only has two member functions: add and

sub. Write the following additional member functions:

Demonstrate the class with a driver program.

8. Dynamic MathStack Template

Currently the MathStack class is derived from the IntStack class. Modify it so it is a

template, derived from the template you created in Programming Challenge 2.

9. File Reverser

Write a program that opens a text le and reads its contents into a stack of characters.

The program should then pop the characters from the stack and save them in a second

text le. The order of the characters saved in the second le should be the reverse of

their order in the rst le.

NOTE: If you have already done Programming Challenges 2 and 4, modify the

templates you created.

Function Description

mult Pops the top two values off the stack, multiplies them, and pushes

their product onto the stack.

div Pops the top two values off the stack, divides the second value by

the rst, and pushes the quotient onto the stack.

addAll Pops all values off the stack, adds them, and pushes their sum onto

the stack.

multAll Pops all values off the stack, multiplies them, and pushes their

product onto the stack.

M18_GADD6253_07_SE_C18 Page 1098 Wednesday, January 12, 2011 9:37 PM

Review Questions and Exercises 1099

10. File Filter

Write a program that opens a text le and reads its contents into a queue of charac-

ters. The program should then dequeue each character, convert it to uppercase, and

store it in a second le.

11. File Compare

Write a program that opens two text les and reads their contents into two separate

queues. The program should then determine whether the les are identical by compar-

ing the characters in the queues. When two nonidentical characters are encountered,

the program should display a message indicating that the les are not the same. If

both queues contain the same set of characters, a message should be displayed indicat-

ing that the les are identical.

12. Inventory Bin Stack

Design an inventory class that stores the following members:

serialNum: An integer that holds a part s serial number.

manufactDate: A member that holds the date the part was manufactured.

lotNum: An integer that holds the part s lot number.

The class should have appropriate member functions for storing data into, and

retrieving data from, these members.

Next, design a stack class that can hold objects of the class described above. If you

wish, you may use the template you designed in Programming Challenge 1 or 2.

Last, design a program that uses the stack class described above. The program should

have a loop that asks the user if he or she wishes to add a part to inventory, or take a

part from inventory. The loop should repeat until the user is nished.

If the user wishes to add a part to inventory, the program should ask for the serial

number, date of manufacture, and lot number. The data should be stored in an inven-

tory object, and pushed onto the stack.

If the user wishes to take a part from inventory, the program should pop the top-most

part from the stack and display the contents of its member variables.

When the user nishes the program, it should display the contents of the member val-

ues of all the objects that remain on the stack.

13. Inventory Bin Queue

Modify the program you wrote for Programming Challenge 12 so it uses a queue

instead of a stack. Compare the order in which the parts are removed from the bin for

each program.

14. Balanced Parentheses

A string of characters has balanced parentheses if each right parenthesis occurring in

the string is matched with a preceding left parenthesis, in the same way that each right

brace in a C++ program is matched with a preceding left brace. Write a program that

uses a stack to determine whether a string entered at the keyboard has balanced

parentheses.

VideoNote

Solving the

File Compare

Problem

Programming Challenges

M18_GADD6253_07_SE_C18 Page 1099 Wednesday, January 12, 2011 9:37 PM

1100 Chapter 18 Stacks and Queues

15. Balanced Multiple Delimiters

A string may use more than one type of delimiter to bracket information into

blocks. For example, A string may use braces { }, parentheses (), and brackets [] as

delimiters. A string is properly delimited if each right delimiter is matched with a pre-

ceding left delimiter of the same type in such a way that either the resulting blocks of

information are disjoint, or one of them is completely nested within the other. Write a

program that uses a single stack to check whether a string containing braces, paren-

theses, and brackets is properly delimited.

M18_GADD6253_07_SE_C18 Page 1100 Wednesday, January 12, 2011 9:37 PM

1101

C
H

A
P

T
E

R

19

Recursion

19.1

Introduction to Recursion

CONCEPT:

A recursive function is one that calls itself.

You have seen instances of functions calling other functions. Function A can call function

B, which can then call function C. It s also possible for a function to call itself. A function

that calls itself is a

recursive function

. Look at this

message

 function:

void message()

{

 cout << "This is a recursive function.\n";

 message();

}

This function displays the string This is a recursive function.\n , and then calls itself.

Each time it calls itself, the cycle is repeated. Can you see a problem with the function?

TOPICS

19.1 Introduction to Recursion

19.2 Solving Problems with Recursion

19.3 Focus on Problem Solving

and Program Design: The Recursive

gcd

 Function

19.4 Focus on Problem Solving

and Program Design: Solving

Recursively De ned Problems

19.5 Focus on Problem Solving

and Program Design: Recursive

Linked List Operations

19.6 Focus on Problem Solving

and Program Design: A Recursive

Binary Search Function

19.7 The Towers of Hanoi

19.8 Focus on Problem Solving

and Program Design: The

QuickSort Algorithm

19.9 Exhaustive Algorithms

19.10 Focus on Software Engineering:

Recursion vs. Iteration

M19_GADD6253_07_SE_C19 Page 1101 Wednesday, January 12, 2011 11:39 AM

1102

Chapter 19 Recursion

There s no way to stop the recursive calls. This function is like an in nite loop because

there is no code to stop it from repeating.

Like a loop, a recursive function must have some method to control the number of times it

repeats. The following is a modi cation of the

message

 function. It passes an integer

argument, that holds the number of times the function is to call itself.

void message(int times)

{

 if (times > 0)

 {

 cout << "This is a recursive function.\n";

 message(times - 1);

 }

}

This function contains an

if

 statement that controls the repetition. As long as the

times

argument is greater than zero, it will display the message and call itself again. Each time it

calls itself, it passes

times - 1

 as the argument. For example, let s say a program calls the

function with the following statement:

message(5);

The argument, 5, will cause the function to call itself ve times. The rst time the function

is called, the

if

 statement will display the message and then call itself with 4 as the argu-

ment. Figure 19-1 illustrates this:

The diagram in Figure 19-1 illustrates two separate calls of the

message

 function. Each

time the function is called, a new instance of the

times

 parameter is created in memory.

The rst time the function is called, the

times

 parameter is set to 5. When the function

calls itself, a new instance of

times

 is created, and the value 4 is passed into it. This cycle

repeats until, nally, zero is passed to the function. This is illustrated in Figure 19-2.

NOTE:

The function example

message

 will eventually cause the program to crash. Do

you remember learning in Chapter 18 that the system stores temporary data on a stack

each time a function is called? Eventually, these recursive function calls will use up all

available stack memory, and cause it to over ow.

Figure 19-1

1st call of the function

Value of times: 5

2nd call of the function

Value of times: 4

M19_GADD6253_07_SE_C19 Page 1102 Wednesday, January 12, 2011 11:39 AM

19.1 Introduction to Recursion

1103

As you can see from Figure 19-2 the function is called a total of six times. The rst time it

is called from

main

, and the other ve times it calls itself, so the

depth of recursion

 is ve.

When the function reaches its sixth call, the

times

 parameter will be set to 0. At that

point, the

if

 statement s conditional expression will be false, so the function will return.

Control of the program will return from the sixth instance of the function to the point in

the fth instance directly after the recursive function call:

Because there are no more statements to be executed after the function call, the fth

instance of the function returns control of the program back to the fourth instance. This

repeats until all instances of the function return. Program 19-1 demonstrates the recursive

message

 function.

Figure 19-2

1st call of the function

Value of times: 5

2nd call of the function

Value of times: 4

3rd call of the function

Value of times: 3

4th call of the function

Value of times: 2

5th call of the function

Value of times: 1

6th call of the function

Value of times: 0

void message (int times)

{

 if (times > 0

 {

 cout << "This is a recursive function.\n"

 message (times - 1);

 }

}

Recursive call

Control returns here from the recursive call,

causing the function to return.

M19_GADD6253_07_SE_C19 Page 1103 Wednesday, January 12, 2011 11:39 AM

1104

Chapter 19 Recursion

To further illustrate the inner workings of this recursive function, let s look at another ver-

sion of the program. In Program 19-2, a message is displayed each time the function is

entered, and another message is displayed just before the function returns.

Program 19-1

 1 // This program demonstrates a simple recursive function.

 2 #include <iostream>

 3 using namespace std;

 4

 5 // Function prototype

 6 void message(int);

 7

 8 int main()

 9 {

 10 message(5);

 11 return 0;

 12 }

 13

 14 //***

 15 // Definition of function Message. If the value in times is *

 16 // greater than 0, the message is displayed and the *

 17 // function is recursively called with the argument *

 18 // times - 1. *

 19 //***

 20

 21 void message(int times)

 22 {

 23 if (times > 0)

 24 {

 25 cout << "This is a recursive function.\n";

 26 message(times - 1);

 27 }

 28 }

Program Output

This is a recursive function.

This is a recursive function.

This is a recursive function.

This is a recursive function.

This is a recursive function.

Program 19-2

 1 // This program demonstrates a simple recursive function.

 2 #include <iostream>

 3 using namespace std;

 4

 5 // Function prototype

 6 void message(int);

 7

M19_GADD6253_07_SE_C19 Page 1104 Wednesday, January 12, 2011 11:39 AM

19.1 Introduction to Recursion

1105

 8 int main()

 9 {

 10 message(5);

 11 return 0;

 12 }

 13

 14 //**

 15 // Definition of function message. If the value in times is *

 16 // greater than 0, the message is displayed and the function *

 17 // is recursively called with the argument times - 1. *

 18 //**

 19

 20 void message(int times)

 21 {

 22 cout << "message called with " << times << " in times.\n";

 23

 24 if (times > 0)

 25 {

 26 cout << "This is a recursive function.\n";

 27 message(times - 1);

 28 }

 29

 30 cout << "message returning with " << times;

 31 cout << " in times.\n";

 32 }

Program Output

message called with 5 in times.

This is a recursive function.

message called with 4 in times.

This is a recursive function.

message called with 3 in times.

This is a recursive function.

message called with 2 in times.

This is a recursive function.

message called with 1 in times.

This is a recursive function.

message called with 0 in times.

message returning with 0 in times.

message returning with 1 in times.

message returning with 2 in times.

message returning with 3 in times.

message returning with 4 in times.

message returning with 5 in times.

M19_GADD6253_07_SE_C19 Page 1105 Wednesday, January 12, 2011 11:39 AM

1106

Chapter 19 Recursion

19.2

Solving Problems with Recursion

CONCEPT:

A problem can be solved with recursion if it can be broken down into

successive smaller problems that are identical to the overall problem.

Programs 19-1 and 19-2 in the previous section show simple demonstrations of

how

 a

recursive function works. But these examples don t show us

why

 we would want to write

a recursive function. Recursion can be a powerful tool for solving repetitive problems and

is an important topic in upper-level computer science courses. What might not be clear to

you yet is how to use recursion to solve a problem.

First, it should be noted that recursion is never absolutely required to solve a problem.

Any problem that can be solved recursively can also be solved iteratively, with a loop. In

fact, recursive algorithms are usually less ef cient than iterative algorithms. This is

because a function call requires several actions to be performed by the C++ runtime sys-

tem. These actions include allocating memory for parameters and local variables, and

storing the address of the program location where control returns after the function termi-

nates. These actions, which are sometimes referred to as

overhead

, take place with each

function call. Such overhead is not necessary with a loop.

Some repetitive problems, however, are more easily solved with recursion than with itera-

tion. Where an iterative algorithm might result in faster execution time, the programmer

might be able to design a recursive algorithm faster.

In general, a recursive function works like this:

If the problem can be solved now, without recursion, then the function solves it

and returns.

If the problem cannot be solved now, then the function reduces it to a smaller but

similar problem and calls itself to solve the smaller problem.

In order to apply this approach, we rst identify at least one case in which the problem

can be solved without recursion. This is known as the

base case

. Second, we determine a

way to solve the problem in all other circumstances using recursion. This is called the

recursive case

. In the recursive case, we must always reduce the problem to a smaller ver-

sion of the original problem. By reducing the problem with each recursive call, the base

case will eventually be reached and the recursion will stop.

Example: Using Recursion to Calculate the Factorial
of a Number

Let s take an example from mathematics to examine an application of recursion. In math-

ematics, the notation

n

! represents the factorial of the number

n

. The factorial of a non-

negative number can be de ned by the following rules:

If

n

 = 0 then

n

! = 1

If

n

 > 0 then

n

! = 1

×

 2

×

 3

×

 ...

×

n

VideoNote

Reducing a

Problem with

Recursion

M19_GADD6253_07_SE_C19 Page 1106 Wednesday, January 12, 2011 11:39 AM

19.2 Solving Problems with Recursion

1107

Let s replace the notation

n

! with factorial(

n

), which looks a bit more like computer code,

and rewrite these rules as

If

n

 = 0 then factorial(

n

) = 1

If

n

 > 0 then factorial(

n

) = 1

×

 2

×

 3

×

 ...

×

n

These rules state that when

n

 is 0, its factorial is 1. When

n

 is greater than 0, its factorial is

the product of all the positive integers from 1 up to

n

. For instance, factorial(6) is calcu-

lated as 1

×

 2

×

 3

×

 4

×

 5

×

 6.

When designing a recursive algorithm to calculate the factorial of any number, we rst

identify the base case, which is the part of the calculation that we can solve without recur-

sion. That is the case where

n

 is equal to 0:

If

n

 = 0 then factorial(

n

) = 1

This tells how to solve the problem when

n

 is equal to 0, but what do we do when

n

 is

greater than 0? That is the recursive case, or the part of the problem that we use recursion

to solve. This is how we express it:

If

n

 > 0 then factorial(

n

) =

n

×

 factorial(

n

 1)

This states that if

n

 is greater than 0, the factorial of

n

 is

n

 times the factorial of

n

 1.

Notice how the recursive call works on a reduced version of the problem,

n

 1. So, our

recursive rule for calculating the factorial of a number might look like this:

If

n

 = 0 then factorial(

n) = 1

If n > 0 then factorial(n) = n × factorial(n 1)

The following pseudocode shows how we might implement the factorial algorithm as a

recursive function:

factorial(n)

 If n is 0 then

 return 1.

 else

 return n times the factorial of n - 1.

end factorial.

Here is the C++ code for such a function:

int factorial(int n)

{

 if (n == 0)

 return 1; // Base case

 else

 return n * factorial(n - 1); // Recursive case

}

Program 19-3 demonstrates the recursive factorial function.

M19_GADD6253_07_SE_C19 Page 1107 Wednesday, January 12, 2011 11:39 AM

1108 Chapter 19 Recursion

In the example run of the program, the factorial function is called with the argument 4

passed into n. Because n is not equal to 0, the if statement s else clause executes the fol-

lowing statement, in line 34:

return n * factorial(n - 1);

Although this is a return statement, it does not immediately return. Before the return

value can be determined, the value of factorial(num - 1) must be determined. The

factorial function is called recursively until the fth call, in which the n parameter will

be set to zero. The diagram in Figure 19-3 illustrates the value of n and the return value

during each call of the function.

Program 19-3

 1 // This program demonstrates a recursive function to

 2 // calculate the factorial of a number.

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Function prototype

 7 int factorial(int);

 8

 9 int main()

 10 {

 11 int number;

 12

 13 // Get a number from the user.

 14 cout << "Enter an integer value and I will display\n";

 15 cout << "its factorial: ";

 16 cin >> number;

 17

 18 // Display the factorial of the number.

 19 cout << "The factorial of " << number << " is ";

 20 cout << factorial(number) << endl;

 21 return 0;

 22 }

 23

 24 //***

 25 // Definition of factorial. A recursive function to calculate *

 26 // the factorial of the parameter n. *

 27 //***

 28

 29 int factorial(int n)

 30 {

 31 if (n == 0)

 32 return 1; // Base case

 33 else

 34 return n * factorial(n - 1); // Recursive case

 35 }

Program Output with Example Input Shown in Bold

Enter an integer value and I will display

its factorial: 4 [Enter]
The factorial of 4 is 24

M19_GADD6253_07_SE_C19 Page 1108 Wednesday, January 12, 2011 11:39 AM

19.2 Solving Problems with Recursion 1109

This diagram illustrates why a recursive algorithm must reduce the problem with each

recursive call. Eventually the recursion has to stop in order for a solution to be reached. If

each recursive call works on a smaller version of the problem, then the recursive calls

work toward the base case. The base case does not require recursion, so it stops the chain

of recursive calls.

Usually, a problem is reduced by making the value of one or more parameters smaller with

each recursive call. In our factorial function, the value of the parameter n gets closer to

0 with each recursive call. When the parameter reaches 0, the function returns a value

without making another recursive call.

Figure 19-3

First call of the function

Value of n: 4

The function is first called

from the main function.

The second through fifth

calls are recursive.

Return value: 24

Second call of the function

Value of n: 3

Return value: 6

Third call of the function

Value of n: 2

Return value: 2

Fourth call of the function

Value of n: 1

Return value: 1

Fifth call of the function

Value of n: 0

Return value: 1

M19_GADD6253_07_SE_C19 Page 1109 Wednesday, January 12, 2011 11:39 AM

1110 Chapter 19 Recursion

Example: Using Recursion to Count Characters

Let s look at another simple example of recursion. The following function counts the

number of times a speci c character appears in a string. The line numbers are from Pro-

gram 19-4, which we will examine momentarily.

29 int numChars(char search, string str, int subscript)

30 {

31 if (subscript >= str.length())

32 {

33 // Base case: The end of the string is reached.

34 return 0;

35 }

36 else if (str[subscript] == search)

37 {

38 // Recursive case: A matching character was found.

39 // Return 1 plus the number of times the search

40 // character appears in the rest of the string.

41 return 1 + numChars(search, str, subscript+1);

42 }

43 else

44 {

45 // Recursive case: A character that does not match the

46 // search character was found. Return the number of times

47 // the search character appears in the rest of the string.

48 return numChars(search, str, subscript+1);

49 }

50 }

The function s parameters are

search: The character to be searched for and counted

str: a string object containing the string to be searched

subscript: The starting subscript for the search

When this function examines a character in the string, three possibilities exist:

The end of the string has been reached. This is the base case because there are no

more characters to search.

A character that matches the search character is found. This is a recursive case

because we still have to search the rest of the string.

A character that does not match the search character is found. This is also a

recursive case because we still have to search the rest of the string.

Let s take a closer look at the code. The rst if statement, in line 31, determines whether

the end of the string has been reached:

if (subscript >= str.length())

Reaching the end of the string is the base case of the problem. If the end of the string has

been reached, the function returns 0, indicating that 0 matching characters were found.

Otherwise, the following else if clause, in lines 36 through 42, is executed:

M19_GADD6253_07_SE_C19 Page 1110 Wednesday, January 12, 2011 11:39 AM

19.2 Solving Problems with Recursion 1111

else if (str[subscript] == search)

{

 // Recursive case: A matching character was found.

 // Return 1 plus the number of times the search

 // character appears in the rest of the string.

 return 1 + numChars(search, str, subscript+1);

}

If str[subscript] contains the search character, then we have found one matching char-

acter. But because we have not reached the end of the string, we must continue to search

the rest of the string for more matching characters. So, at this point the function performs

a recursive call. The return statement returns 1 plus the number of times the search char-

acter appears in the string, starting at subscript+1. In essence, this statement returns 1

plus the number of times the search character appears in the rest of the string.

Finally, if str[subscript] does not contain the search character, the following else

clause in lines 43 through 49 is executed:

else

{

 // Recursive case: A character that does not match the

 // search character was found. Return the number of times

 // the search character appears in the rest of the string.

 return numChars(search, str, subscript+1);

}

The return statement in line 48 makes a recursive call to search the remainder of the

string. In essence, this code returns the number of times the search character appears in

the rest of the string. Program 19-4 demonstrates the function.

Program 19-4

 1 // This program demonstrates a recursive function for counting

 2 // the number of times a character appears in a string.

 3 #include <iostream>

 4 #include <string>

 5 using namespace std;

 6

 7 // Function prototype

 8 int numChars(char, string, int);

 9

 10 int main()

 11 {

 12 string str = "abcddddef";

 13

 14 // Display the number of times the letter

 15 // 'd' appears in the string.

 16 cout << "The letter d appears "

 17 << numChars('d', str, 0) << " times.\n";

 18

 19 return 0;

 20 }

 21

(program continues)

M19_GADD6253_07_SE_C19 Page 1111 Wednesday, January 12, 2011 11:39 AM

1112 Chapter 19 Recursion

Direct and Indirect Recursion

The examples we have discussed so far show recursive functions that directly call them-

selves. This is known as direct recursion. There is also the possibility of creating indirect

recursion in a program. This occurs when function A calls function B, which in turn calls

function A. There can even be several functions involved in the recursion. For example,

function A could call function B, which could call function C, which calls function A.

Checkpoint

 www.myprogramminglab.com

19.1 What happens if a recursive function never returns?

19.2 What is a recursive function s base case?

19.3 What will the following program display?

#include <iostream>

using namespace std;

 22 //**

 23 // Function numChars. This recursive function *

 24 // counts the number of times the character *

 25 // search appears in the string str. The search *

 26 // begins at the subscript stored in subscript. *

 27 //**

 28

 29 int numChars(char search, string str, int subscript)

 30 {

 31 if (subscript >= str.length())

 32 {

 33 // Base case: The end of the string is reached.

 34 return 0;

 35 }

 36 else if (str[subscript] == search)

 37 {

 38 // Recursive case: A matching character was found.

 39 // Return 1 plus the number of times the search

 40 // character appears in the rest of the string.

 41 return 1 + numChars(search, str, subscript+1);

 42 }

 43 else

 44 {

 45 // Recursive case: A character that does not match the

 46 // search character was found. Return the number of times

 47 // the search character appears in the rest of the string.

 48 return numChars(search, str, subscript+1);

 49 }

 50 }

Program Output

The letter d appears 4 times.

Program 19-4 (continued)

M19_GADD6253_07_SE_C19 Page 1112 Wednesday, January 12, 2011 11:39 AM

19.3 Focus on Problem Solving and Program Design: The Recursive gcd Function 1113

// Function prototype

void showMe(int arg);

int main()

{

 int num = 0;

 showMe(num);

 return 0;

}

void showMe(int arg)

{

 if (arg < 10)

 showMe(++arg);

 else

 cout << arg << endl;

}

19.4 What is the difference between direct and indirect recursion?

19.3
Focus on Problem Solving and Program Design:
The Recursive gcd Function

CONCEPT: The gcd function uses recursion to nd the greatest common divisor

(GCD) of two numbers.

Our next example of recursion is the calculation of the greatest common divisor, or GCD,

of two numbers. Using Euclid s algorithm, the GCD of two positive integers, x and y, is:

gcd(x, y) = y; if y divides x evenly

gcd(y, remainder of x/y); otherwise

The de nition above states that the GCD of x and y is y if x/y has no remainder. Other-

wise, the answer is the GCD of y and the remainder of x/y. Program 19-5 shows the recur-

sive C++ implementation:

Program 19-5

 1 // This program demonstrates a recursive function to calculate

 2 // the greatest common divisor (gcd) of two numbers.

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Function prototype

 7 int gcd(int, int);

 8

(program continues)

M19_GADD6253_07_SE_C19 Page 1113 Wednesday, January 12, 2011 11:39 AM

1114 Chapter 19 Recursion

19.4
Focus on Problem Solving and Program Design:
Solving Recursively De ned Problems

CONCEPT: Some mathematical problems are designed for a recursive solution.

Some mathematical problems are designed to be solved recursively. One well-known

example is the calculation of Fibonacci numbers. The Fibonacci numbers, named after the

Italian mathematician Leonardo Fibonacci (born circa 1170), are the following sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,

Notice that after the second number, each number in the series is the sum of the two previ-

ous numbers. The Fibonacci series can be de ned as

 9 int main()

 10 {

 11 int num1, num2;

 12

 13 // Get two numbers.

 14 cout << "Enter two integers: ";

 15 cin >> num1 >> num2;

 16

 17 // Display the GCD of the numbers.

 18 cout << "The greatest common divisor of " << num1;

 19 cout << " and " << num2 << " is ";

 20 cout << gcd(num1, num2) << endl;

 21 return 0;

 22 }

 23

 24 //***

 25 // Definition of gcd. This function uses recursion to *

 26 // calculate the greatest common divisor of two integers, *

 27 // passed into the parameters x and y. *

 28 //***

 29

 30 int gcd(int x, int y)

 31 {

 32 if (x % y == 0)

 33 return y; // Base case

 34 else

 35 return gcd(y, x % y); // Recursive case

 36 }

Program Output with Example Input Shown in Bold

Enter two integers: 49 28 [Enter]
The greatest common divisor of 49 and 28 is 7

Program 19-5 (continued)

M19_GADD6253_07_SE_C19 Page 1114 Wednesday, January 12, 2011 11:39 AM

19.4 Focus on Problem Solving and Program Design: Solving Recursively Defined Problems 1115

F0 = 0

F1 = 1

FN = FN 1 + FN 2 for N * 2.

A recursive C++ function to calculate the nth number in the Fibonacci series is shown here:

int fib(int n)

{

 if (n <= 0)

 return 0;

 else if (n == 1)

 return 1;

 else

 return fib(n - 1) + fib(n - 2);

}

The function is demonstrated in Program 19-6, which displays the rst 10 numbers in the

Fibonacci series.

Program 19-6

 1 // This program demonstrates a recursive function

 2 // that calculates Fibonacci numbers.

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Function prototype

 7 int fib(int);

 8

 9 int main()

 10 {

 11 cout << "The first 10 Fibonacci numbers are:\n";

 12 for (int x = 0; x < 10; x++)

 13 cout << fib(x) << " ";

 14 cout << endl;

 15 return 0;

 16 }

 17

 18 //***

 19 // Function fib. Accepts an int argument *

 20 // in n. This function returns the nth *

 21 // Fibonacci number. *

 22 //***

 23

 24 int fib(int n)

 25 {

 26 if (n <= 0)

 27 return 0; // Base case

 28 else if (n == 1)

 29 return 1; // Base case

 30 else

 31 return fib(n - 1) + fib(n - 2); // Recursive case

 32 }

(program output continues)

M19_GADD6253_07_SE_C19 Page 1115 Wednesday, January 12, 2011 11:39 AM

1116 Chapter 19 Recursion

Another such example is Ackermann s function. A Programming Challenge at the end of

this chapter asks you to write a recursive function that calculates Ackermann s function.

19.5
Focus on Problem Solving and Program Design:
Recursive Linked List Operations

CONCEPT: Recursion can be used to traverse the nodes in a linked list.

Recall that in Chapter 17 we discussed a class named NumberList that holds a linked list

of double values. In this section we will modify the class by adding recursive member

functions. The functions will use recursion to traverse the linked list and perform the fol-

lowing operations:

Count the number of nodes in the list.

To count the number of nodes in the list by recursion, we introduce two new member

functions: numNodes and countNodes. countNodes is a private member function that

uses recursion, and numNodes is the public interface that calls it.

Display the value of the list nodes in reverse order.

To display the nodes in the list in reverse order, we introduce two new member func-

tions: displayBackwards and showReverse. showReverse is a private member func-

tion that uses recursion, and displayBackwards is the public interface that calls it.

The class declaration, which is saved in NumberList.h, is shown here:

 1 // Specification file for the NumberList class

 2 #ifndef NUMBERLIST_H

 3 #define NUMBERLIST_H

 4

 5 class NumberList

 6 {

 7 private:

 8 // Declare a structure for the list

 9 struct ListNode

10 {

11 double value;

12 struct ListNode *next;

13 };

14

15 ListNode *head; // List head pointer

16

17 // Private member functions

18 int countNodes(ListNode *) const;

19 void showReverse(ListNode *) const;

20

Program Output

The first 10 Fibonacci numbers are:

0 1 1 2 3 5 8 13 21 34

Program 19-6 (continued)

M19_GADD6253_07_SE_C19 Page 1116 Wednesday, January 12, 2011 11:39 AM

19.5 Focus on Problem Solving and Program Design: Recursive Linked List Operations 1117

21 public:

22 // Constructor

23 NumberList()

24 { head = NULL; }

25

26 // Destructor

27 ~NumberList();

28

29 // Linked List Operations

30 void appendNode(double);

31 void insertNode(double);

32 void deleteNode(double);

33 void displayList() const;

34 int numNodes() const

35 { return countNodes(head); }

36 void displayBackwards() const

37 { showReverse(head); }

38 };

39 #endif

Counting the Nodes in the List

The numNodes function is declared inline. It simply calls the countNodes function and

passes the head pointer as an argument. (Because the head pointer, which is private, must

be passed to countNodes, the numNodes function is needed as an interface.)

The function de nition for countNodes is shown here:

173 int NumberList::countNodes(ListNode *nodePtr) const

174 {

175 if (nodePtr != NULL)

176 return 1 + countNodes(nodePtr->next);

177 else

178 return 0;

179 }

The function s recursive logic can be expressed as:

If the current node has a value

 Return 1 + the number of the remaining nodes.

Else

 Return 0.

End If.

Program 19-7 demonstrates the function.

Program 19-7

 1 // This program counts the nodes in a list.

 2 #include <iostream>

 3 #include "NumberList.h"

 4 using namespace std;

 5

(program continues)

M19_GADD6253_07_SE_C19 Page 1117 Wednesday, January 12, 2011 11:39 AM

1118 Chapter 19 Recursion

Displaying List Nodes in Reverse Order

The technique for displaying the list nodes in reverse order is designed like the node count-

ing procedure: A public member function, which serves as an interface, passes the head

pointer to a private member function. The public displayBackwards function, declared

inline, is the interface. It calls the showReverse function and passes the head pointer as an

argument. The function de nition for showReverse is shown here:

187 void NumberList::showReverse(ListNode *nodePtr) const

188 {

189 if (nodePtr != NULL)

190 {

191 showReverse(nodePtr->next);

192 cout << nodePtr->value << " ";

193 }

194 }

The base case for the function is nodePtr being equal to NULL. When this is true, the

function has reached the last node in the list, so it returns. It is not until this happens that

any instances of the cout statement execute. The instance of the function whose nodePtr

variable points to the last node in the list will be the rst to execute the cout statement. It

will then return, and the previous instance of the function will execute its cout statement.

This repeats until all the instances of the function have returned.

The modi ed class declaration is stored in NumberList.h, and its member function imple-

mentation is in NumberList.cpp. The remainder of the class implementation is unchanged

from Chapter 17, so it is not shown here. Program 19-8 demonstrates the function.

 6 int main()

 7 {

 8 const int MAX = 10; // Maximum number of values

 9

 10 // Define a NumberList object.

 11 NumberList list;

 12

 13 // Build the list with a series of numbers.

 14 for (int x = 0; x < MAX; x++)

 15 list.insertNode(x);

 16

 17 // Display the number of nodes in the list.

 18 cout << "The number of nodes is "

 19 << list.numNodes() << endl;

 20 return 0;

 21 }

Program Output

The number of nodes is 10

Program 19-7 (continued)

M19_GADD6253_07_SE_C19 Page 1118 Wednesday, January 12, 2011 11:39 AM

19.6 Focus on Problem Solving and Program Design: A Recursive Binary Search Function 1119

19.6
Focus on Problem Solving and Program Design:
A Recursive Binary Search Function

CONCEPT: The binary search algorithm can be de ned as a recursive function.

In Chapter 8 you learned about the binary search algorithm and saw an iterative example

written in C++. The binary search algorithm can also be implemented recursively. For

example, the procedure can be expressed as

If array[middle] equals the search value, then the value is found.

Program 19-8

 1 // This program demonstrates the recursive function

 2 // for displaying the list's nodes in reverse.

 3 #include <iostream>

 4 #include "NumberList.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 const double MAX = 10.0; // Upper limit of values

 10

 11 // Create a NumberList object.

 12 NumberList list;

 13

 14 // Add a series of numbers to the list.

 15 for (double x = 1.5; x < MAX; x += 1.1)

 16 list.appendNode(x);

 17

 18 // Display the values in the list.

 19 cout << "Here are the values in the list:\n";

 20 list.displayList();

 21

 22 // Display the values in reverse order.

 23 cout << "Here are the values in reverse order:\n";

 24 list.displayBackwards();

 25 return 0;

 26 }

Program Output

Here are the values in the list:

1.5

2.6

3.7

4.8

5.9

7

8.1

9.2

Here are the values in reverse order:

9.2 8.1 7 5.9 4.8 3.7 2.6 1.5

M19_GADD6253_07_SE_C19 Page 1119 Wednesday, January 12, 2011 11:39 AM

1120 Chapter 19 Recursion

Else, if array[middle] is less than the search value, perform a binary

search on the upper half of the array.

Else, if array[middle] is greater than the search value, perform a

binary search on the lower half of the array.

The recursive binary search algorithm is an example of breaking a problem down into

smaller pieces until it is solved. A recursive binary search function is shown here:

 int binarySearch(int array[], int first, int last, int value)

{

 int middle; // Midpoint of search

 if (first > last)

 return -1;

 middle = (first + last) / 2;

 if (array[middle] == value)

 return middle;

 if (array[middle] < value)

 return binarySearch(array, middle+1,last,value);

 else

 return binarySearch(array, first,middle-1,value);

}

The rst parameter, array, is the array to be searched. The next parameter, first, holds

the subscript of the rst element in the search range (the portion of the array to be

searched). The next parameter, last, holds the subscript of the last element in the search

range. The last parameter, value, holds the value to be searched for. Like the iterative ver-

sion, this function returns the subscript of the value if it is found, or -1 if the value is not

found. Program 19-9 demonstrates the function.

Program 19-9

 1 // This program demonstrates the recursive binarySearch function.

 2 #include <iostream>

 3 using namespace std;

 4

 5 // Function prototype

 6 int binarySearch(int [], int, int, int);

 7

 8 const int SIZE = 20; // Array size

 9

 10 int main()

 11 {

 12 // Define an array of employee ID numbers

 13 int tests[SIZE] = {101, 142, 147, 189, 199, 207, 222,

 14 234, 289, 296, 310, 319, 388, 394,

 15 417, 429, 447, 521, 536, 600};

 16 int empID; // To hold an ID number

 17 int results; // To hold the search results

 18

M19_GADD6253_07_SE_C19 Page 1120 Wednesday, January 12, 2011 11:39 AM

19.6 Focus on Problem Solving and Program Design: A Recursive Binary Search Function 1121

 19 // Get an employee ID number to search for.

 20 cout << "Enter the Employee ID you wish to search for: ";

 21 cin >> empID;

 22

 23 // Search for the ID number in the array.

 24 results = binarySearch(tests, 0, SIZE - 1, empID);

 25

 26 // Display the results of the search.

 27 if (results == -1)

 28 cout << "That number does not exist in the array.\n";

 29 else

 30 {

 31 cout << "That ID is found at element " << results;

 32 cout << " in the array\n";

 33 }

 34 return 0;

 35 }

 36

 37 //***

 38 // The binarySearch function performs a recursive binary search *

 39 // on a range of elements of an integer array passed into the *

 40 // parameter array. The parameter first holds the subscript of *

 41 // the range's starting element, and last holds the subscript *

 42 // of the range's last element. The parameter value holds the *

 43 // search value. If the search value is found, its array *

 44 // subscript is returned. Otherwise, -1 is returned indicating *

 45 // the value was not in the array. *

 46 //***

 47

 48 int binarySearch(int array[], int first, int last, int value)

 49 {

 50 int middle; // Midpoint of search

 51

 52 if (first > last)

 53 return -1;

 54 middle = (first + last)/2;

 55 if (array[middle]==value)

 56 return middle;

 57 if (array[middle]<value)

 58 return binarySearch(array, middle+1,last,value);

 59 else

 60 return binarySearch(array, first,middle-1,value);

 61 }

Program Output with Example Input Shown in Bold

Enter the Employee ID you wish to search for: 521 [Enter]
That ID is found at element 17 in the array

M19_GADD6253_07_SE_C19 Page 1121 Wednesday, January 12, 2011 11:39 AM

1122 Chapter 19 Recursion

19.7 The Towers of Hanoi

CONCEPT: The repetitive steps involved in solving the Towers of Hanoi game can be

easily implemented in a recursive algorithm.

The Towers of Hanoi is a mathematical game that is often used in computer science text-

books to illustrate the power of recursion. The game uses three pegs and a set of discs with

holes through their centers. The discs are stacked on one of the pegs as shown in

Figure 19-4.

Notice that the discs are stacked on the leftmost peg, in order of size with the largest disc

at the bottom. The game is based on a legend in which a group of monks in a temple in

Hanoi have a similar set of pegs with 64 discs. The job of the monks is to move the discs

from the rst peg to the third peg. The middle peg can be used as a temporary holder. Fur-

thermore, the monks must follow these rules while moving the discs:

Only one disc may be moved at a time.

A disc cannot be placed on top of a smaller disc.

All discs must be stored on a peg except while being moved.

According to the legend, when the monks have moved all of the discs from the rst peg to

the last peg, the world will come to an end.

To play the game, you must move all of the discs from the rst peg to the third peg, fol-

lowing the same rules as the monks. Let s look at some example solutions to this game, for

different numbers of discs. If you only have one disc, the solution to the game is simple:

move the disc from peg 1 to peg 3. If you have two discs, the solution requires three

moves:

Move disc 1 to peg 2.

Move disc 2 to peg 3.

Move disc 1 to peg 3.

Notice that this approach uses peg 2 as a temporary location. The complexity of the

moves continues to increase as the number of discs increases. To move three discs requires

the seven moves shown in Figure 19-5.

Figure 19-4 The pegs and discs in the Towers of Hanoi game

M19_GADD6253_07_SE_C19 Page 1122 Wednesday, January 12, 2011 11:39 AM

19.7 The Towers of Hanoi 1123

The following statement describes the overall solution to the problem:

Move n discs from peg 1 to peg 3 using peg 2 as a temporary peg.

The following algorithm can be used as the basis of a recursive function that simulates the

solution to the game. Notice that in this algorithm we use the variables A, B, and C to

hold peg numbers.

To move n discs from peg A to peg C, using peg B as a temporary peg:

If n > 0 Then

 Move n 1 discs from peg A to peg B, using peg C as a temporary peg.

 Move the remaining disc from the peg A to peg C.

 Move n 1 discs from peg B to peg C, using peg A as a temporary peg.

End If

The base case for the algorithm is reached when there are no more discs to move. The

following code is for a function that implements this algorithm. Note that the function

does not actually move anything, but displays instructions indicating all of the disc

moves to make.

Figure 19-5

First move: Move disc 1 to peg 3.Original setup.

Second move: Move disc 2 to peg 2. Third move: Move disc 1 to peg 2.

Fourth move: Move disc 3 to peg 3. Fifth move: Move disc 1 to peg 1.

Sixth move: Move disc 2 to peg 3. Seventh move: Move disc 1 to peg 3.

0 1

2 3

4 5

6

M19_GADD6253_07_SE_C19 Page 1123 Wednesday, January 12, 2011 11:39 AM

1124 Chapter 19 Recursion

void moveDiscs(int num, int fromPeg, int toPeg, int tempPeg)

{

 if (num > 0)

 {

 moveDiscs(num - 1, fromPeg, tempPeg, toPeg);

 cout << "Move a disc from peg " << fromPeg

 << " to peg " << toPeg << endl;

 moveDiscs(num - 1, tempPeg, toPeg, fromPeg);

 }

}

This function accepts arguments into the following three parameters:

num The number of discs to move.

fromPeg The peg to move the discs from.

toPeg The peg to move the discs to.

tempPeg The peg to use as a temporary peg.

If num is greater than 0, then there are discs to move. The rst recursive call is

moveDiscs(num - 1, fromPeg, tempPeg, toPeg);

This statement is an instruction to move all but one disc from fromPeg to tempPeg, using

toPeg as a temporary peg. The next statement is

cout << "Move a disc from peg " << fromPeg

 << " to peg " << toPeg << endl;

This simply displays a message indicating that a disc should be moved from fromPeg to

toPeg. Next, another recursive call is executed:

moveDiscs(num - 1, tempPeg, toPeg, fromPeg);

This statement is an instruction to move all but one disc from tempPeg to toPeg, using

fromPeg as a temporary peg. Program 19-10 demonstrates this function.

Program 19-10

 1 // This program displays a solution to the Towers of

 2 // Hanoi game.

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Function prototype

 7 void moveDiscs(int, int, int, int);

 8

 9 int main()

 10 {

 11 const int NUM_DISCS = 3; // Number of discs to move

 12 const int FROM_PEG = 1; // Initial "from" peg

 13 const int TO_PEG = 3; // Initial "to" peg

 14 const int TEMP_PEG = 2; // Initial "temp" peg

 15

M19_GADD6253_07_SE_C19 Page 1124 Wednesday, January 12, 2011 11:39 AM

19.8 Focus on Problem Solving and Program Design: The QuickSort Algorithm 1125

19.8
Focus on Problem Solving and Program Design:
The QuickSort Algorithm

CONCEPT: The QuickSort algorithm uses recursion to ef ciently sort a list.

The QuickSort algorithm is a popular general-purpose sorting routine developed in 1960

by C.A.R. Hoare. It can be used to sort lists stored in arrays or linear linked lists. It sorts a

list by dividing it into two sublists. Between the sublists is a selected value known as the

pivot. This is illustrated in Figure 19-6.

 16 // Play the game.

 17 moveDiscs(NUM_DISCS, FROM_PEG, TO_PEG, TEMP_PEG);

 18 cout << "All the pegs are moved!\n";

 19 return 0;

 20 }

 21

 22 //***

 23 // The moveDiscs function displays a disc move in *

 24 // the Towers of Hanoi game. *

 25 // The parameters are: *

 26 // num: The number of discs to move. *

 27 // fromPeg: The peg to move from. *

 28 // toPeg: The peg to move to. *

 29 // tempPeg: The temporary peg. *

 30 //***

 31

 32 void moveDiscs(int num, int fromPeg, int toPeg, int tempPeg)

 33 {

 34 if (num > 0)

 35 {

 36 moveDiscs(num - 1, fromPeg, tempPeg, toPeg);

 37 cout << "Move a disc from peg " << fromPeg

 38 << " to peg " << toPeg << endl;

 39 moveDiscs(num - 1, tempPeg, toPeg, fromPeg);

 40 }

 41 }

Program Output

Move a disc from peg 1 to peg 3

Move a disc from peg 1 to peg 2

Move a disc from peg 3 to peg 2

Move a disc from peg 1 to peg 3

Move a disc from peg 2 to peg 1

Move a disc from peg 2 to peg 3

Move a disc from peg 1 to peg 3

All the pegs are moved!

M19_GADD6253_07_SE_C19 Page 1125 Wednesday, January 12, 2011 11:39 AM

1126 Chapter 19 Recursion

Notice in the gure that sublist 1 is positioned to the left of (before) the pivot, and sublist

2 is positioned to the right of (after) the pivot. Once a pivot value has been selected, the

algorithm exchanges the other values in the list until all the elements in sublist 1 are less

than the pivot, and all the elements in sublist 2 are greater than the pivot.

Once this is done, the algorithm repeats the procedure on sublist 1, and then on sublist 2.

The recursion stops when there is only one element in a sublist. At that point the original

list is completely sorted.

The algorithm is coded primarily in two functions: quickSort and partition.

quickSort is a recursive function. Its pseudocode is shown here:

quickSort:

If Starting Index < Ending Index

 Partition the List around a Pivot.

 quickSort Sublist 1.

 quickSort Sublist 2.

End If.

Here is the C++ code for the quickSort function:

void quickSort(int set[], int start, int end)

{

 int pivotPoint;

 if (start < end)

 {

 // Get the pivot point.

 pivotPoint = partition(set, start, end);

 // Sort the first sublist.

 quickSort(set, start, pivotPoint - 1);

 // Sort the second sublist.

 quickSort(set, pivotPoint + 1, end);

 }

}

This version of quickSort works with an array of integers. Its rst argument is the array

holding the list that is to be sorted. The second and third arguments are the starting and

ending subscripts of the list.

The subscript of the pivot element is returned by the partition function. partition not

only determines which element will be the pivot, but also controls the rearranging of the

Figure 19-6

Pivot

Sublist 1 Sublist 2

M19_GADD6253_07_SE_C19 Page 1126 Wednesday, January 12, 2011 11:39 AM

19.8 Focus on Problem Solving and Program Design: The QuickSort Algorithm 1127

other values in the list. Our version of this function selects the element in the middle of the

list as the pivot, then scans the remainder of the list searching for values less than the pivot.

The code for the partition function is shown here:

int partition(int set[], int start, int end)

{

 int pivotValue, pivotIndex, mid;

 mid = (start + end) / 2;

 swap(set[start], set[mid]);

 pivotIndex = start;

 pivotValue = set[start];

 for (int scan = start + 1; scan <= end; scan++)

 {

 if (set[scan] < pivotValue)

 {

 pivotIndex++;

 swap(set[pivotIndex], set[scan]);

 }

 }

 swap(set[start], set[pivotIndex]);

 return pivotIndex;

}

There are many different ways of partitioning the list. As previously stated, the method

shown in the function above selects the middle value as the pivot. That value is then

moved to the beginning of the list (by exchanging it with the value stored there). This sim-

pli es the next step, which is to scan the list.

A for loop scans the remainder of the list, and when an element is found whose value is

less than the pivot, that value is moved to a location left of the pivot point.

A third function, swap, is used to swap the values found in any two elements of the list.

The function is shown below.

void swap(int &value1, int &value2)

{

 int temp = value1;

 value1 = value2;

 value2 = temp;

}

Program 19-11 demonstrates the QuickSort algorithm shown here.

NOTE: The partition function does not initially sort the values into their nal order.

Its job is only to move the values that are less than the pivot to the pivot s left, and move

the values that are greater than the pivot to the pivot s right. As long as that condition is

met, they may appear in any order. The ultimate sorting order of the entire list is achieved

cumulatively, though the recursive calls to quickSort.

M19_GADD6253_07_SE_C19 Page 1127 Wednesday, January 12, 2011 11:39 AM

1128 Chapter 19 Recursion

Program 19-11

 1 // This program demonstrates the QuickSort Algorithm.

 2 #include <iostream>

 3 using namespace std;

 4

 5 // Function prototypes

 6 void quickSort(int [], int, int);

 7 int partition(int [], int, int);

 8 void swap(int &, int &);

 9

 10 int main()

 11 {

 12 const int SIZE = 10; // Array size

 13 int count; // Loop counter

 14 int array[SIZE] = {7, 3, 9, 2, 0, 1, 8, 4, 6, 5};

 15

 16 // Display the array contents.

 17 for (count = 0; count < SIZE; count++)

 18 cout << array[count] << " ";

 19 cout << endl;

 20

 21 // Sort the array.

 22 quickSort(array, 0, SIZE - 1);

 23

 24 // Display the array contents.

 25 for (count = 0; count < SIZE; count++)

 26 cout << array[count] << " ";

 27 cout << endl;

 28 return 0;

 29 }

 30

 31 //**

 32 // quickSort uses the quicksort algorithm to *

 33 // sort set, from set[start] through set[end]. *

 34 //**

 35

 36 void quickSort(int set[], int start, int end)

 37 {

 38 int pivotPoint;

 39

 40 if (start < end)

 41 {

 42 // Get the pivot point.

 43 pivotPoint = partition(set, start, end);

 44 // Sort the first sublist.

 45 quickSort(set, start, pivotPoint - 1);

M19_GADD6253_07_SE_C19 Page 1128 Wednesday, January 12, 2011 11:39 AM

19.8 Focus on Problem Solving and Program Design: The QuickSort Algorithm 1129

 46 // Sort the second sublist.

 47 quickSort(set, pivotPoint + 1, end);

 48 }

 49 }

 50

 51 //**

 52 // partition selects the value in the middle of the *

 53 // array set as the pivot. The list is rearranged so *

 54 // all the values less than the pivot are on its left *

 55 // and all the values greater than pivot are on its right. *

 56 //**

 57

 58 int partition(int set[], int start, int end)

 59 {

 60 int pivotValue, pivotIndex, mid;

 61

 62 mid = (start + end) / 2;

 63 swap(set[start], set[mid]);

 64 pivotIndex = start;

 65 pivotValue = set[start];

 66 for (int scan = start + 1; scan <= end; scan++)

 67 {

 68 if (set[scan] < pivotValue)

 69 {

 70 pivotIndex++;

 71 swap(set[pivotIndex], set[scan]);

 72 }

 73 }

 74 swap(set[start], set[pivotIndex]);

 75 return pivotIndex;

 76 }

 77

 78 //**

 79 // swap simply exchanges the contents of *

 80 // value1 and value2. *

 81 //**

 82

 83 void swap(int &value1, int &value2)

 84 {

 85 int temp = value1;

 86

 87 value1 = value2;

 88 value2 = temp;

 89 }

Program Output

7 3 9 2 0 1 8 4 6 5

0 1 2 3 4 5 6 7 8 9

M19_GADD6253_07_SE_C19 Page 1129 Wednesday, January 12, 2011 11:39 AM

1130 Chapter 19 Recursion

19.9 Exhaustive Algorithms

CONCEPT: An exhaustive algorithm is one that nds a best combination of items by

looking at all the possible combinations.

Recursion is helpful if you need to examine many possible combinations and identify the
best combination. For example, consider all the different ways you can make change for
$1.00 using our system of coins:

1 dollar piece, or
2 fty-cent pieces, or
4 quarters, or
1 fty-cent piece and 2 quarters, or
3 quarters, 2 dimes, and 1 nickel, or

 there are many more possibilities.

Although there are many ways to make change for $1.00, some ways are better than others.
For example, you would probably rather give a single dollar piece instead of 100 pennies.

An algorithm that looks at all the possible combinations of items in order to nd the best
combination of items is called an exhaustive algorithm. Program 19-12 presents a recur-
sive function that exhaustively tries all the possible combinations of coins. The program
then displays the total number of combinations that can be used to make the speci ed
change, and the best combination of coins.

Program 19-12

 1 // This program demonstrates a recursive function that exhaustively

 2 // searches through all possible combinations of coin values to find

 3 // the best way to make change for a specified amount.

 4 #include <iostream>

 5 using namespace std;

 6

 7 // Constants

 8 const int MAX_COINS_CHANGE = 100; // Max number of coins to give in change

 9 const int MAX_COIN_VALUES = 6; // Max number of coin values

 10 const int NO_SOLUTION = INT_MAX; // Indicates no solution

 11

 12 // Function prototype

 13 void makeChange(int, int, int[], int);

 14

 15 // coinValues - global array of coin values to choose from

 16 int coinValues[MAX_COIN_VALUES] = {100, 50, 25, 10, 5, 1 };

 17

 18 // bestCoins - global array of best coins to make change with

 19 int bestCoins[MAX_COINS_CHANGE];

 20

M19_GADD6253_07_SE_C19 Page 1130 Wednesday, January 12, 2011 11:39 AM

19.9 Exhaustive Algorithms 1131

 21 // Global variables

 22 int numBestCoins = NO_SOLUTION, // Number of coins in bestCoins

 23 numSolutions = 0, // Number of ways to make change

 24 numCoins; // Number of allowable coins

 25

 26

 27 int main()

 28 {

 29 int coinsUsed[MAX_COINS_CHANGE], // List of coins used

 30 numCoinsUsed = 0, // The number of coins used

 31 amount; // The amount to make change for

 32

 33 // Display the possible coin values.

 34 cout << "Here are the valid coin values, in cents: ";

 35 for (int index = 0; index < 5; index++)

 36 cout << coinValues[index] << " ";

 37 cout << endl;

 38

 39 // Get input from the user.

 40 cout << "Enter the amount of cents (as an integer) "

 41 << "to make change for: ";

 42 cin >> amount;

 43 cout << "What is the maximum number of coins to give as change? ";

 44 cin >> numCoins;

 45

 46 // Call the recursive function.

 47 makeChange(numCoins, amount, coinsUsed, numCoinsUsed);

 48

 49 // Display the results.

 50 cout << "Number of possible combinations: " << numSolutions << endl;

 51 cout << "Best combination of coins:\n";

 52 if (numBestCoins == NO_SOLUTION)

 53 cout << "\tNo solution\n";

 54 else

 55 {

 56 for (int count = 0; count < numBestCoins; count++)

 57 cout << bestCoins[count] << " ";

 58 }

 59 cout << endl;

 60 return 0;

 61 }

 62

 63 //**

 64 // Function makeChange. This function uses the following parameters: *

 65 // coinsLeft - The number of coins left to choose from. *

 66 // amount - The amount to make change for. *

 67 // coinsUsed - An array that contains the coin values used so far. *

 68 // numCoinsUsed - The number of values in the coinsUsed array. *

 69 // *

 70 // This recursive function finds all the possible ways to make change *

 71 // for the value in amount. The best combination of coins is stored in *

 72 // the array bestCoins. *

 73 //**

(program continues)

M19_GADD6253_07_SE_C19 Page 1131 Wednesday, January 12, 2011 11:39 AM

1132 Chapter 19 Recursion

19.10
Focus on Software Engineering:
Recursion vs. Iteration

CONCEPT: Recursive algorithms can also be coded with iterative control structures.

There are advantages and disadvantages to each approach.

Program 19-12 (continued)

 74

 75 void makeChange(int coinsLeft, int amount, int coinsUsed[],

 76 int numCoinsUsed)

 77 {

 78 int coinPos, // To calculate array position of coin being used

 79 count; // Loop counter

 80

 81 if (coinsLeft == 0) // If no more coins are left

 82 return;

 83 else if (amount < 0) // If amount to make change for is negative

 84 return;

 85 else if (amount == 0) // If solution is found

 86 {

 87 // Store as bestCoins if best

 88 if (numCoinsUsed < numBestCoins)

 89 {

 90 for (count = 0; count < numCoinsUsed; count++)

 91 bestCoins[count] = coinsUsed[count];

 92 numBestCoins = numCoinsUsed;

 93 }

 94 numSolutions++;

 95 return;

 96 }

 97

 98 // Find the other combinations using the coin

 99 coinPos = numCoins - coinsLeft;

 100 coinsUsed[numCoinsUsed] = coinValues[coinPos];

 101 numCoinsUsed++;

 102 makeChange(coinsLeft, amount - coinValues[coinPos],

 103 coinsUsed, numCoinsUsed);

 104

 105 // Find the other combinations not using the coin.

 106 numCoinsUsed--;

 107 makeChange(coinsLeft - 1, amount, coinsUsed, numCoinsUsed);

 108 }

Program Output with Example Input Shown in Bold

Here are the valid coin values, in cents: 100 50 25 10 5 1

Enter the amount of cents (as an integer) to make change for: 62 [Enter]
What is the maximum number of coins to give as change? 6 [Enter]
Number of possible combinations: 77

Best combination of coins:

50 10 1 1

M19_GADD6253_07_SE_C19 Page 1132 Wednesday, January 12, 2011 11:39 AM

Review Questions and Exercises 1133

Any algorithm that can be coded with recursion can also be coded with an iterative con-

trol structure, such as a while loop. Both approaches achieve repetition, but which is best

to use?

There are several reasons not to use recursion. Recursive algorithms are certainly less ef -

cient than iterative algorithms. Each time a function is called, the system incurs overhead

that is not necessary with a loop. Also, in many cases an iterative solution may be more

evident than a recursive one. In fact, the majority of repetitive programming tasks are best

done with loops.

Some problems, however, are more easily solved with recursion than with iteration. For

example, the mathematical de nition of the GCD formula is well-suited for a recursive

approach. The QuickSort algorithm is also an example of a function that is easier to code

with recursion than iteration.

The speed and amount of memory available to modern computers diminishes the perfor-

mance impact of recursion so much that inef ciency is no longer a strong argument

against it. Today, the choice of recursion or iteration is primarily a design decision. If a

problem is more easily solved with a loop, that should be the approach you take. If recur-

sion results in a better design, that is the choice you should make.

Review Questions and Exercises

Short Answer

1. What is the base case of each of the recursive functions listed in questions 12, 13, and 14?

2. What type of recursive function do you think would be more difficult to debug, one
that uses direct recursion, or one that uses indirect recursion? Why?

3. Which repetition approach is less efficient, a loop or a recursive function? Why?

4. When should you choose a recursive algorithm over an iterative algorithm?

5. Explain what is likely to happen when a recursive function that has no way of stop-
ping executes.

Fill-in-the-Blank

6. The __________ of recursion is the number of times a function calls itself.

7. A recursive function s solvable problem is known as its __________. This causes the
recursion to stop.

8. __________ recursion is when a function explicitly calls itself.

9. __________ recursion is when function A calls function B, which in turns calls
function A.

Algorithm Workbench

10. Write a recursive function to return the number of times a specified number occurs in
an array.

11. Write a recursive function to return the largest value in an array.

M19_GADD6253_07_SE_C19 Page 1133 Wednesday, January 12, 2011 11:39 AM

1134 Chapter 19 Recursion

Predict the Output

What is the output of the following programs?

12. #include <iostream>

using namespace std;

int function(int);

int main()

{

 int x = 10;

 cout << function(x) << endl;

 return 0;

}

int function(int num)

{

 if (num <= 0)

 return 0;

 else

 return function(num - 1) + num;

}

13. #include <iostream>

using namespace std;

void function(int);

int main()

{

 int x = 10;

 function(x);

 return 0;

}

void function(int num)

{

 if (num > 0)

 {

 for (int x = 0; x < num; x++)

 cout << '*';

 cout << endl;

 function(num - 1);

 }

}

14. #include <iostream>

#include <string>

using namespace std;

void function(string, int, int);

M19_GADD6253_07_SE_C19 Page 1134 Wednesday, January 12, 2011 11:39 AM

Review Questions and Exercises 1135

int main()

{

 string mystr = "Hello";

 cout << mystr << endl;

 function(mystr, 0, mystr.size());

 return 0;

}

void function(string str, int pos, int size)

{

 if (pos < size)

 {

 function(str, pos + 1, size);

 cout << str[pos];

 }

}

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. Iterative Factorial

Write an iterative version (using a loop instead of recursion) of the factorial function

shown in this chapter. Test it with a driver program.

2. Recursive Conversion

Convert the following function to one that uses recursion.

void sign(int n)

{

 while (n > 0)

 cout << "No Parking\n";

 n--;

}

Demonstrate the function with a driver program.

3. QuickSort Template

Create a template version of the QuickSort algorithm that will work with any data

type. Demonstrate the template with a driver function.

4. Recursive Array Sum

Write a function that accepts an array of integers and a number indicating the number

of elements as arguments. The function should recursively calculate the sum of all the

numbers in the array. Demonstrate the function in a driver program.

5. Recursive Multiplication

Write a recursive function that accepts two arguments into the parameters x and y.

The function should return the value of x times y. Remember, multiplication can be

performed as repeated addition:

7 * 4 = 4 + 4 + 4 + 4 + 4 + 4 + 4

VideoNote

Solving the

Recursive

Multiplication

Problem

Programming Challenges

M19_GADD6253_07_SE_C19 Page 1135 Wednesday, January 12, 2011 11:39 AM

1136 Chapter 19 Recursion

6. Recursive Power Function

Write a function that uses recursion to raise a number to a power. The function

should accept two arguments: the number to be raised and the exponent. Assume that

the exponent is a nonnegative integer. Demonstrate the function in a program.

7. Sum of Numbers

Write a function that accepts an integer argument and returns the sum of all the inte-

gers from 1 up to the number passed as an argument. For example, if 50 is passed as

an argument, the function will return the sum of 1, 2, 3, 4, ... 50. Use recursion to cal-

culate the sum. Demonstrate the function in a program.

8. isMember Function

Write a recursive Boolean function named isMember. The function should accept two

arguments: an array and a value. The function should return true if the value is found

in the array, or false if the value is not found in the array. Demonstrate the function in

a driver program.

9. String Reverser

Write a recursive function that accepts a string object as its argument and prints the

string in reverse order. Demonstrate the function in a driver program.

10. maxNode Function

Add a member function named maxNode to the NumberList class discussed in this

chapter. The function should return the largest value stored in the list. Use recursion

in the function to traverse the list. Demonstrate the function in a driver program.

11. Palindrome Detector

A palindrome is any word, phrase, or sentence that reads the same forward and back-

ward. Here are some well-known palindromes:

Able was I, ere I saw Elba

A man, a plan, a canal, Panama

Desserts, I stressed

Kayak

Write a bool function that uses recursion to determine if a string argument is a palin-

drome. The function should return true if the argument reads the same forward and

backward. Demonstrate the function in a program.

12. Ackermann s Function

Ackermann s Function is a recursive mathematical algorithm that can be used to test

how well a computer performs recursion. Write a function A(m, n) that solves Ack-

ermann s Function. Use the following logic in your function:

If m = 0 then return n + 1

If n = 0 then return A(m-1, 1)

Otherwise, return A(m-1, A(m, n-1))

Test your function in a driver program that displays the following values:

A(0, 0) A(0, 1) A(1, 1) A(1, 2) A(1, 3) A(2, 2) A(3, 2)

M19_GADD6253_07_SE_C19 Page 1136 Wednesday, January 12, 2011 11:39 AM

1137

C
H

A
P

T
E

R

20

Binary Trees

20.1

De nition and Applications of Binary Trees

CONCEPT:

A binary tree is a nonlinear linked structure in which each node

may point to two other nodes, and every node but the root node

has a single predecessor. Binary trees expedite the process of

searching large sets of data.

A standard linked list is a linear data structure in which one node is linked to the next. A

binary tree

is a nonlinear linked structure. It is nonlinear because each node can point to

two other nodes. Figure 20-1 illustrates the organization of a binary tree.

The data structure is called a tree because it resembles an upside-down tree. It is anchored

at the top by a

tree pointer

, which is like the head pointer in a standard linked list. The

rst node in the list is called the

root node

. The root node has pointers to two other nodes,

which are called

children

, or

child nodes

. Each of the children has its own set of two

pointers, and can have its own children. Notice that not all nodes have two children. Some

point to only one node, and some point to no other nodes. A node that has no children is

called a

leaf node

. All pointers that do not point to a node are set to NULL.

TOPICS

20.1 De nition and Applications

of Binary Trees

20.2 Binary Search Tree Operations

20.3 Template Considerations

for Binary Search Trees

M20_GADD6253_07_SE_C20 Page 1137 Wednesday, January 12, 2011 10:00 PM

1138

Chapter 20 Binary Trees

Binary trees can be divided into

subtrees

. A subtree is an entire branch of the tree, from

one particular node down. For example, Figure 20-2 shows the left subtree from the root

node of the tree shown in Figure 20-1.

Figure 20-1

Figure 20-2

NULL

PointerPointer

PointerPointer PointerPointer

PointerPointer PointerPointer

NULL NULL NULL NULL

NULL

Tree

Pointer

NULL

PointerPointer

PointerPointer PointerPointer

PointerPointer PointerPointer

NULL NULL NULL NULL

NULL

Tree

Pointer

Left Subtree

M20_GADD6253_07_SE_C20 Page 1138 Wednesday, January 12, 2011 10:00 PM

20.1 Definition and Applications of Binary Trees

1139

Applications of Binary Trees

Searching any linear data structure, such as an array or a standard linked list, is slow

when the structure holds a large amount of data. This is because of the sequential nature

of linear data structures. Binary trees are excellent data structures for searching large

amounts of data. They are commonly used in database applications to organize key values

that index database records. When used to facilitate searches, a binary tree is called a

binary search tree

. Binary search trees are the primary focus of this chapter.

Data are stored in binary search trees in a way that makes a binary search simple. For

example, look at Figure 20-3.

The gure depicts a binary search tree where each node stores a letter of the alphabet.

Notice that the root node holds the letter M. The left child of the root node holds the let-

ter F, and the right child holds R. Values are stored in a binary search tree so that a node s

left child holds data whose value is less than the node s data, and the node s right child

holds data whose value is greater than the node s data. This is true for all nodes in the tree

that have children.

It is also true that

all

 the nodes to the left of a node hold values less than the node s value.

Likewise, all the nodes to the right of a node hold values that are greater than the node s

data. When an application is searching a binary tree, it starts at the root node. If the root

node does not hold the search value, the application branches either to the left or right

child, depending on whether the search value is less than or greater than the value at the

root node. This process continues until the value is found. Figure 20-4 illustrates the

search pattern for nding the letter P in the binary tree shown.

Figure 20-3

NULL

PointerPointer

PointerPointer PointerPointer

PointerPointer PointerPointer

NULL NULL NULL NULL

NULL

Tree

Pointer

M

RF

B P

M20_GADD6253_07_SE_C20 Page 1139 Wednesday, January 12, 2011 10:00 PM

1140

Chapter 20 Binary Trees

Checkpoint

www.myprogramminglab.com

20.1 Describe the difference between a binary tree and a standard linked list.

20.2 What is a root node?

20.3 What is a child node?

20.4 What is a leaf node?

20.5 What is a subtree?

20.6 Why are binary trees suitable for algorithms that must search large amounts

of data?

20.2

Binary Search Tree Operations

CONCEPT:

There are many operations that may be performed on a binary search

tree. In this section we will discuss creating a binary search tree and

inserting, nding, and deleting nodes.

In this section you will learn some basic operations that may be performed on a binary

search tree. We will study a simple class that implements a binary tree for storing integer

values.

Figure 20-4

NULL

PointerPointer

PointerPointer PointerPointer

PointerPointer PointerPointer

NULL NULL NULL NULL

NULL

Tree

Pointer

M

RF

B P

1

2

3

M20_GADD6253_07_SE_C20 Page 1140 Wednesday, January 12, 2011 10:00 PM

20.2 Binary Search Tree Operations

1141

Creating a Binary Tree

We will demonstrate the fundamental binary tree operations using a simple ADT: the

IntBinaryTree

 class. The basis of our binary tree node is the following

struct

 declaration:

struct TreeNode

{

 int value;

 TreeNode *left;

 TreeNode *right;

};

Each node has a

value

 member for storing its integer data, as well as

left

 and

right

pointers. The

struct

 is implemented in the class declaration shown here:

Contents of

IntBinaryTree.h

 1 // Specification file for the IntBinaryTree class

 2 #ifndef INTBINARYTREE_H

 3 #define INTBINARYTREE_H

 4

 5 class IntBinaryTree

 6 {

 7 private:

 8 struct TreeNode

 9 {

10 int value; // The value in the node

11 TreeNode *left; // Pointer to left child node

12 TreeNode *right; // Pointer to right child node

13 };

14

15 TreeNode *root; // Pointer to the root node

16

17 // Private member functions

18 void insert(TreeNode *&, TreeNode *&);

19 void destroySubTree(TreeNode *);

20 void deleteNode(int, TreeNode *&);

21 void makeDeletion(TreeNode *&);

22 void displayInOrder(TreeNode *) const;

23 void displayPreOrder(TreeNode *) const;

24 void displayPostOrder(TreeNode *) const;

25

26 public:

27 // Constructor

28 IntBinaryTree()

29 { root = NULL; }

30

31 // Destructor

32 ~IntBinaryTree()

33 { destroySubTree(root); }

34

35 // Binary tree operations

36 void insertNode(int);

37 bool searchNode(int);

38 void remove(int);

39

M20_GADD6253_07_SE_C20 Page 1141 Wednesday, January 12, 2011 10:00 PM

1142

Chapter 20 Binary Trees

40 void displayInOrder() const

41 { displayInOrder(root); }

42

43 void displayPreOrder() const

44 { displayPreOrder(root); }

45

46 void displayPostOrder() const

47 { displayPostOrder(root); }

48 };

49 #endif

The

root

 pointer will be used as the tree pointer. Similar to the head pointer in a linked

list, root will point to the rst node in the tree, or to NULL if the tree is empty. It is initial-

ized in the constructor, which is declared inline. The destructor calls

destroySubTree

, a

private member function that recursively deletes all the nodes in the tree.

Inserting a Node

The code to insert a node into the tree is fairly straightforward. The public member func-

tion

insertNode

 is called with the number to be inserted passed as an argument. The

code for the function, which is in

IntBinaryTree.cpp

, is shown here:

 27 void IntBinaryTree::insertNode(int num)

 28 {

 29 TreeNode *newNode; // Pointer to a new node.

 30

 31 // Create a new node and store num in it.

 32 newNode = new TreeNode;

 33 newNode->value = num;

 34 newNode->left = newNode->right = NULL;

 35

 36 // Insert the node.

 37 insert(root, newNode);

 38 }

First, a new node is allocated in line 32 and its address stored in the local pointer variable

newNode

. The value passed as an argument is stored in the node s

value

 member in line

33. The node s

left

 and

right

 child pointers are set to NULL in line 34 because all nodes

must be inserted as leaf nodes. Next, the private member function

insert

 is called in line

37. Notice that the

root

 pointer and the

newNode

 pointer are passed as arguments. The

code for the

insert

 function is shown here:

 12 void IntBinaryTree::insert(TreeNode *&nodePtr, TreeNode *&newNode)

 13 {

 14 if (nodePtr == NULL)

 15 nodePtr = newNode; // Insert the node.

 16 else if (newNode->value < nodePtr->value)

 17 insert(nodePtr->left, newNode); // Search the left branch.

 18 else

 19 insert(nodePtr->right, newNode); // Search the right branch.

 20 }

In general, this function takes a pointer to a subtree and a pointer to a new node as argu-

ments. It searches for the appropriate location in the subtree to insert the node, and then

makes the insertion. Notice the declaration of the rst parameter,

nodePtr

:

VideoNote

Inserting a

Node in a

Binary Tree

M20_GADD6253_07_SE_C20 Page 1142 Wednesday, January 12, 2011 10:00 PM

20.2 Binary Search Tree Operations

1143

TreeNode *&nodePtr

The

nodePtr

 parameter is not simply a pointer to a

TreeNode

 structure, but a

reference

 to

a pointer to a

TreeNode

 structure. This means that any action performed on

nodePtr

 is

actually performed on the argument that was passed into

nodePtr

. The reason for this

will be explained momentarily.

The

if

 statement in line 14 determines whether

nodePtr

 points to NULL:

if (nodePtr == NULL)

 nodePtr = newNode; // Insert the node.

If

nodePtr

 points to NULL, it is at the end of a branch and the insertion point has been

found.

nodePtr

 is then made to point to

newNode

, which inserts

newNode

 into the tree.

This is why the

nodePtr

 parameter is a reference. If it weren t a reference, this function

would be making a copy of a node point to the new node, not the actual node in the tree.

If

nodePtr

 doesn t point to NULL, the following

else if

 statement in line 16 executes:

else if (newNode->value < nodePtr->value)

 insert(nodePtr->left, newNode); // Search the left branch.

If the new node s value is less than the value pointed to by

nodePtr

, the insertion point is

somewhere in the left subtree. If this is the case, the

insert

 function is recursively called

in line 17 with

nodePtr

-

>left

 passed as the subtree argument.

If the new node s value is not less than the value pointed to by

nodePtr

, the

else

 state-

ment in line 18 executes:

else

 insert(nodePtr->right, newNode); // Search the right branch.

The

else

 statement recursively calls the

insert

 function called with

nodePtr->right

passed as the subtree argument.

Program 20-1 demonstrates these functions.

Program 20-1

 1 // This program builds a binary tree with 5 nodes.

 2 #include <iostream>

 3 #include "IntBinaryTree.h"

 4 using namespace std;

 5

 6 int main()

 7 {

 8 IntBinaryTree tree;

 9

 10 cout << "Inserting nodes. ";

 11 tree.insertNode(5);

 12 tree.insertNode(8);

 13 tree.insertNode(3);

 14 tree.insertNode(12);

 15 tree.insertNode(9);

 16 cout << "Done.\n";

 17

 18 return 0;

 19 }

M20_GADD6253_07_SE_C20 Page 1143 Wednesday, January 12, 2011 10:00 PM

1144 Chapter 20 Binary Trees

Figure 20-5 shows the structure of the binary tree built by Program 20-1.

Traversing the Tree

There are three common methods for traversing a binary tree and processing the value of

each node: inorder, preorder, and postorder. Each of these methods is best implemented as

a recursive function. The algorithms are described as follows:

Figure 20-5

NOTE: The shape of the tree is determined by the order in which the values are inserted.

The root node in the diagram above holds the value 5 because that was the rst value

inserted. By stepping through the function, you can see how the other nodes came to

appear in their depicted positions.

NOTE: If the new value being inserted into the tree is equal to an existing value, the

insertion algorithm inserts it to the right of the existing value.

NULL

PointerPointer

PointerPointer PointerPointer

PointerPointer

PointerPointer

NULL

NULL

NULL

NULLNULL

Tree

Pointer

5

83

12

9

M20_GADD6253_07_SE_C20 Page 1144 Wednesday, January 12, 2011 10:00 PM

20.2 Binary Search Tree Operations 1145

* Inorder traversal

1. The current node s left subtree is traversed.

2. The current node s data is processed.

3. The current node s right subtree is traversed.

* Preorder traversal

1. The current node s data is processed

2. The current node s left subtree is traversed.

3. The current node s right subtree is traversed.

* Postorder traversal

1. The current node s left subtree is traversed.

2. The current node s right subtree is traversed.

3. The current node s data is processed.

The IntBinaryTree class can display all the values in the tree using all three of these

algorithms. The algorithms are initiated by the following inline public member functions:

void displayInOrder() const

 { displayInOrder(root); }

void displayPreOrder() const

 { displayPreOrder(root); }

void displayPostOrder() const

 { displayPostOrder(root); }

Each of the public member functions calls an overloaded recursive private member func-

tion, and passes the root pointer as an argument. The recursive functions, which are very

simple and straightforward, are shown here:

149 //**

150 // The displayInOrder member function displays the values *

151 // in the subtree pointed to by nodePtr, via inorder traversal. *

152 //**

153

154 void IntBinaryTree::displayInOrder(TreeNode *nodePtr) const

155 {

156 if (nodePtr)

157 {

158 displayInOrder(nodePtr->left);

159 cout << nodePtr->value << endl;

160 displayInOrder(nodePtr->right);

161 }

162 }

163

164 //**

165 // The displayPreOrder member function displays the values *

166 // in the subtree pointed to by nodePtr, via preorder traversal. *

167 //**

168

169 void IntBinaryTree::displayPreOrder(TreeNode *nodePtr) const

170 {

171 if (nodePtr)

172 {

173 cout << nodePtr->value << endl;

174 displayPreOrder(nodePtr->left);

M20_GADD6253_07_SE_C20 Page 1145 Wednesday, January 12, 2011 10:00 PM

1146 Chapter 20 Binary Trees

175 displayPreOrder(nodePtr->right);

176 }

177 }

178

179 //**

180 // The displayPostOrder member function displays the values *

181 // in the subtree pointed to by nodePtr, via postorder traversal.*

182 //**

183

184 void IntBinaryTree::displayPostOrder(TreeNode *nodePtr) const

185 {

186 if (nodePtr)

187 {

188 displayPostOrder(nodePtr->left);

189 displayPostOrder(nodePtr->right);

190 cout << nodePtr->value << endl;

191 }

192 }

Program 20-2, which is a modi cation of Program 20-1, demonstrates each of the tra-

versal methods.

Program 20-2

 1 // This program builds a binary tree with 5 nodes.

 2 // The nodes are displayed with inorder, preorder,

 3 // and postorder algorithms.

 4 #include <iostream>

 5 #include "IntBinaryTree.h"

 6 using namespace std;

 7

 8 int main()

 9 {

 10 IntBinaryTree tree;

 11

 12 // Insert some nodes.

 13 cout << "Inserting nodes.\n";

 14 tree.insertNode(5);

 15 tree.insertNode(8);

 16 tree.insertNode(3);

 17 tree.insertNode(12);

 18 tree.insertNode(9);

 19

 20 // Display inorder.

 21 cout << "Inorder traversal:\n";

 22 tree.displayInOrder();

 23

 24 // Display preorder.

 25 cout << "\nPreorder traversal:\n";

 26 tree.displayPreOrder();

 27

 28 // Display postorder.

 29 cout << "\nPostorder traversal:\n";

 30 tree.displayPostOrder();

 31 return 0;

 32 }

M20_GADD6253_07_SE_C20 Page 1146 Wednesday, January 12, 2011 10:00 PM

20.2 Binary Search Tree Operations 1147

Searching the Tree

The IntBinaryTree class has a public member function, searchNode, that returns true

if a value is found in the tree, or false otherwise. The function simply starts at the root

node and traverses the tree until it nds the search value, or runs out of nodes. The code is

shown here.

 63 bool IntBinaryTree::searchNode(int num)

 64 {

 65 TreeNode *nodePtr = root;

 66

 67 while (nodePtr)

 68 {

 69 if (nodePtr->value == num)

 70 return true;

 71 else if (num < nodePtr->value)

 72 nodePtr = nodePtr->left;

 73 else

 74 nodePtr = nodePtr->right;

 75 }

 76 return false;

 77 }

Program 20-3 demonstrates this function.

Program Output

Inserting nodes.

Inorder traversal:

3

5

8

9

12

Preorder traversal:

5

3

8

12

9

Postorder traversal:

3

9

12

8

5

M20_GADD6253_07_SE_C20 Page 1147 Wednesday, January 12, 2011 10:00 PM

1148 Chapter 20 Binary Trees

Deleting a Node

Deleting a leaf node is not dif cult. We simply nd its parent and set the child pointer that

links to it to NULL, then free the node s memory. But what if we want to delete a node

that has child nodes? We must delete the node while at the same time preserving the sub-

trees that the node links to.

There are two possible situations to face when deleting a nonleaf node: the node has one

child, or the node has two children. Figure 20-6 illustrates a tree in which we are about to

delete a node with one subtree.

Program 20-3

 1 // This program builds a binary tree with 5 nodes.

 2 // The SearchNode function is demonstrated.

 3 #include <iostream>

 4 #include "IntBinaryTree.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 IntBinaryTree tree;

 10

 11 // Insert some nodes in the tree.

 12 cout << "Inserting nodes.\n";

 13 tree.insertNode(5);

 14 tree.insertNode(8);

 15 tree.insertNode(3);

 16 tree.insertNode(12);

 17 tree.insertNode(9);

 18

 19 // Search for the value 3.

 20 if (tree.searchNode(3))

 21 cout << "3 is found in the tree.\n";

 22 else

 23 cout << "3 was not found in the tree.\n";

 24

 25 // Search for the value 100.

 26 if (tree.searchNode(100))

 27 cout << "100 is found in the tree.\n";

 28 else

 29 cout << "100 was not found in the tree.\n";

 30 return 0;

 31 }

Program Output

Inserting nodes.

3 is found in the tree.

100 was not found in the tree.

VideoNote

Deleting a

Node from a

Binary Tree

M20_GADD6253_07_SE_C20 Page 1148 Wednesday, January 12, 2011 10:00 PM

20.2 Binary Search Tree Operations 1149

Figure 20-7 shows how we will link the node s subtree with its parent:

The problem is not as easily solved, however, when the node we are about to delete has

two subtrees. For example, look at Figure 20-8:

Figure 20-6

Figure 20-7

NULL

PointerPointer

PointerPointer PointerPointer

PointerPointerPointerPointer

NULL NULL

NULL

NULL NULL

Tree

Pointer

This node will

be deleted

NULL

PointerPointer

PointerPointer PointerPointer

PointerPointerPointerPointer

NULL
NULL

NULL

NULL

NULL

Tree

Pointer

M20_GADD6253_07_SE_C20 Page 1149 Wednesday, January 12, 2011 10:00 PM

1150 Chapter 20 Binary Trees

Obviously, we cannot attach both of the node s subtrees to its parent, so there must be an

alternative solution. One way of addressing this problem is to attach the node s right sub-

tree to the parent, then nd a position in the right subtree to attach the left subtree. The

result is shown in Figure 20-9.

Figure 20-8

Figure 20-9

PointerPointer

PointerPointer PointerPointer

PointerPointer
PointerPointer

NULL
NULL

NULL

NULL

NULL

Tree

Pointer

This node will

be deleted

PointerPointer

NULL NULL

PointerPointer

PointerPointer PointerPointer

PointerPointer
PointerPointer

NULL
NULL

NULL

NULL

NULL

Tree

Pointer

This node will

be deleted

PointerPointer

NULL

M20_GADD6253_07_SE_C20 Page 1150 Wednesday, January 12, 2011 10:00 PM

20.2 Binary Search Tree Operations 1151

Now we will see how this action is implemented in code. To delete a node from the

IntBinaryTree, call the public member remove. The argument passed to the function is

the value of the node you wish to delete. The remove member function is shown here:

 84 void IntBinaryTree::remove(int num)

 85 {

 86 deleteNode(num, root);

 87 }

The remove member function calls the deleteNode member function. It passes the value of

the node to delete and the root pointer. The deleteNode member function is shown here:

 95 void IntBinaryTree::deleteNode(int num, TreeNode *&nodePtr)

 96 {

 97 if (num < nodePtr->value)

 98 deleteNode(num, nodePtr->left);

 99 else if (num > nodePtr->value)

100 deleteNode(num, nodePtr->right);

101 else

102 makeDeletion(nodePtr);

103 }

Notice that this function s arguments are references to pointers. Like the insert function,

the deleteNode function must have access to an actual pointer in the tree. You will see

why momentarily.

The deleteNode function uses an if/else if statement. The rst part of the statement is

in lines 97 and 98:

 if (num < nodePtr->value)

 deleteNode(num, nodePtr->left);

This code compares the parameter num with the value member of the node that nodePtr

points to. If num is less, then the value being searched for will appear somewhere in nodePtr s

left subtree (if it appears in the tree at all). In this case, the deleteNode function is recursively

called with num as the rst argument and nodePtr->left as the second argument.

If num is not less than nodePtr->value, the else if in lines 99 and 100 statement is

executed:

else if (num > nodePtr->value)

 deleteNode(num, nodePtr->right);

If num is greater than nodePtr->value, then the value being searched for will appear

somewhere in nodePtr s right subtree (if it appears in the tree at all). So, the deleteNode

function is recursively called with num as the rst argument, and nodePtr->right as the

second argument.

M20_GADD6253_07_SE_C20 Page 1151 Wednesday, January 12, 2011 10:00 PM

1152 Chapter 20 Binary Trees

If num is equal to nodePtr->value, then neither of the if statements will nd a true con-

dition. In this case, nodePtr points to the node that is to be deleted, and the trailing else

in lines 101 and 102 will execute:

else

 makeDeletion(nodePtr);

The trailing else statement calls the makeDeletion function, and passes nodePtr as its

argument. The makeDeletion function actually deletes the node from the tree, and must

reattach the deleted node s subtrees as shown in Figure 20-9. Therefore, it must have

access to the actual pointer, in the binary tree, to the node that is being deleted (not just a

copy of the pointer). This is why the nodePtr parameter in the deleteNode function is a

reference. It must pass to makeDeletion the actual pointer, in the binary tree, to the node

that is to be deleted. The makeDeletion function s code is as follows:

112 void IntBinaryTree::makeDeletion(TreeNode *&nodePtr)

113 {

114 // Define a temporary pointer to use in reattaching

115 // the left subtree.

116 TreeNode *tempNodePtr;

117

118 if (nodePtr == NULL)

119 cout << "Cannot delete empty node.\n";

120 else if (nodePtr->right == NULL)

121 {

122 tempNodePtr = nodePtr;

123 nodePtr = nodePtr->left; // Reattach the left child.

124 delete tempNodePtr;

125 }

126 else if (nodePtr->left == NULL)

127 {

128 tempNodePtr = nodePtr;

129 nodePtr = nodePtr->right; // Reattach the right child.

130 delete tempNodePtr;

131 }

132 // If the node has two children.

133 else

134 {

135 // Move one node to the right.

136 tempNodePtr = nodePtr->right;

137 // Go to the end left node.

138 while (tempNodePtr->left)

139 tempNodePtr = tempNodePtr->left;

140 // Reattach the left subtree.

141 tempNodePtr->left = nodePtr->left;

142 tempNodePtr = nodePtr;

143 // Reattach the right subtree.

144 nodePtr = nodePtr->right;

145 delete tempNodePtr;

146 }

147 }

Program 20-4 demonstrates these functions.

M20_GADD6253_07_SE_C20 Page 1152 Wednesday, January 12, 2011 10:00 PM

20.2 Binary Search Tree Operations 1153

Program 20-4

 1 // This program builds a binary tree with 5 nodes.

 2 // The DeleteNode function is used to remove two of them.

 3 #include <iostream>

 4 #include "IntBinaryTree.h"

 5 using namespace std;

 6

 7 int main()

 8 {

 9 IntBinaryTree tree;

 10

 11 // Insert some values into the tree.

 12 cout << "Inserting nodes.\n";

 13 tree.insertNode(5);

 14 tree.insertNode(8);

 15 tree.insertNode(3);

 16 tree.insertNode(12);

 17 tree.insertNode(9);

 18

 19 // Display the values.

 20 cout << "Here are the values in the tree:\n";

 21 tree.displayInOrder();

 22

 23 // Delete the value 8.

 24 cout << "Deleting 8...\n";

 25 tree.remove(8);

 26

 27 // Delete the value 12.

 28 cout << "Deleting 12...\n";

 29 tree.remove(12);

 30

 31 // Display the values.

 32 cout << "Now, here are the nodes:\n";

 33 tree.displayInOrder();

 34 return 0;

 35 }

Program Output

Inserting nodes.

Here are the values in the tree:

3

5

8

9

12

Deleting 8...

Deleting 12...

Now, here are the nodes:

3

5

9

M20_GADD6253_07_SE_C20 Page 1153 Wednesday, January 12, 2011 10:00 PM

1154 Chapter 20 Binary Trees

For your reference, the entire contents of IntBinaryTree le are shown below.

Contents of IntBinaryTree.cpp

 1 // Implementation file for the IntBinaryTree class

 2 #include <iostream>

 3 #include "IntBinaryTree.h"

 4 using namespace std;

 5

 6 //***

 7 // insert accepts a TreeNode pointer and a pointer to a node. *

 8 // The function inserts the node into the tree pointed to by *

 9 // the TreeNode pointer. This function is called recursively. *

 10 //***

 11

 12 void IntBinaryTree::insert(TreeNode *&nodePtr, TreeNode *&newNode)

 13 {

 14 if (nodePtr == NULL)

 15 nodePtr = newNode; // Insert the node.

 16 else if (newNode->value < nodePtr->value)

 17 insert(nodePtr->left, newNode); // Search the left branch.

 18 else

 19 insert(nodePtr->right, newNode); // Search the right branch.

 20 }

 21

 22 //**

 23 // insertNode creates a new node to hold num as its value, *

 24 // and passes it to the insert function. *

 25 //**

 26

 27 void IntBinaryTree::insertNode(int num)

 28 {

 29 TreeNode *newNode; // Pointer to a new node.

 30

 31 // Create a new node and store num in it.

 32 newNode = new TreeNode;

 33 newNode->value = num;

 34 newNode->left = newNode->right = NULL;

 35

 36 // Insert the node.

 37 insert(root, newNode);

 38 }

 39

 40 //***

 41 // destroySubTree is called by the destructor. It *

 42 // deletes all nodes in the tree. *

 43 //***

 44

 45 void IntBinaryTree::destroySubTree(TreeNode *nodePtr)

 46 {

 47 if (nodePtr)

 48 {

 49 if (nodePtr->left)

 50 destroySubTree(nodePtr->left);

M20_GADD6253_07_SE_C20 Page 1154 Wednesday, January 12, 2011 10:00 PM

20.2 Binary Search Tree Operations 1155

 51 if (nodePtr->right)

 52 destroySubTree(nodePtr->right);

 53 delete nodePtr;

 54 }

 55 }

 56

 57 //**

 58 // searchNode determines whether a value is present in *

 59 // the tree. If so, the function returns true. *

 60 // Otherwise, it returns false. *

 61 //**

 62

 63 bool IntBinaryTree::searchNode(int num)

 64 {

 65 TreeNode *nodePtr = root;

 66

 67 while (nodePtr)

 68 {

 69 if (nodePtr->value == num)

 70 return true;

 71 else if (num < nodePtr->value)

 72 nodePtr = nodePtr->left;

 73 else

 74 nodePtr = nodePtr->right;

 75 }

 76 return false;

 77 }

 78

 79 //**

 80 // remove calls deleteNode to delete the *

 81 // node whose value member is the same as num. *

 82 //**

 83

 84 void IntBinaryTree::remove(int num)

 85 {

 86 deleteNode(num, root);

 87 }

 88

 89

 90 //**

 91 // deleteNode deletes the node whose value *

 92 // member is the same as num. *

 93 //**

 94

 95 void IntBinaryTree::deleteNode(int num, TreeNode *&nodePtr)

 96 {

 97 if (num < nodePtr->value)

 98 deleteNode(num, nodePtr->left);

 99 else if (num > nodePtr->value)

100 deleteNode(num, nodePtr->right);

101 else

102 makeDeletion(nodePtr);

103 }

104

105

M20_GADD6253_07_SE_C20 Page 1155 Wednesday, January 12, 2011 10:00 PM

1156 Chapter 20 Binary Trees

106 //***

107 // makeDeletion takes a reference to a pointer to the node *

108 // that is to be deleted. The node is removed and the *

109 // branches of the tree below the node are reattached. *

110 //***

111

112 void IntBinaryTree::makeDeletion(TreeNode *&nodePtr)

113 {

114 // Define a temporary pointer to use in reattaching

115 // the left subtree.

116 TreeNode *tempNodePtr;

117

118 if (nodePtr == NULL)

119 cout << "Cannot delete empty node.\n";

120 else if (nodePtr->right == NULL)

121 {

122 tempNodePtr = nodePtr;

123 nodePtr = nodePtr->left; // Reattach the left child.

124 delete tempNodePtr;

125 }

126 else if (nodePtr->left == NULL)

127 {

128 tempNodePtr = nodePtr;

129 nodePtr = nodePtr->right; // Reattach the right child.

130 delete tempNodePtr;

131 }

132 // If the node has two children.

133 else

134 {

135 // Move one node to the right.

136 tempNodePtr = nodePtr->right;

137 // Go to the end left node.

138 while (tempNodePtr->left)

139 tempNodePtr = tempNodePtr->left;

140 // Reattach the left subtree.

141 tempNodePtr->left = nodePtr->left;

142 tempNodePtr = nodePtr;

143 // Reattach the right subtree.

144 nodePtr = nodePtr->right;

145 delete tempNodePtr;

146 }

147 }

148

149 //**

150 // The displayInOrder member function displays the values *

151 // in the subtree pointed to by nodePtr, via inorder traversal. *

152 //**

153

154 void IntBinaryTree::displayInOrder(TreeNode *nodePtr) const

155 {

156 if (nodePtr)

157 {

158 displayInOrder(nodePtr->left);

159 cout << nodePtr->value << endl;

160 displayInOrder(nodePtr->right);

161 }

162 }

M20_GADD6253_07_SE_C20 Page 1156 Wednesday, January 12, 2011 10:00 PM

20.3 Template Considerations for Binary Search Trees 1157

163

164 //**

165 // The displayPreOrder member function displays the values *

166 // in the subtree pointed to by nodePtr, via preorder traversal. *

167 //**

168

169 void IntBinaryTree::displayPreOrder(TreeNode *nodePtr) const

170 {

171 if (nodePtr)

172 {

173 cout << nodePtr->value << endl;

174 displayPreOrder(nodePtr->left);

175 displayPreOrder(nodePtr->right);

176 }

177 }

178

179 //**

180 // The displayPostOrder member function displays the values *

181 // in the subtree pointed to by nodePtr, via postorder traversal.*

182 //**

183

184 void IntBinaryTree::displayPostOrder(TreeNode *nodePtr) const

185 {

186 if (nodePtr)

187 {

188 displayPostOrder(nodePtr->left);

189 displayPostOrder(nodePtr->right);

190 cout << nodePtr->value << endl;

191 }

192 }

Checkpoint

 www.myprogramminglab.com

20.7 Describe the sequence of events in an inorder traversal.

20.8 Describe the sequence of events in a preorder traversal.

20.9 Describe the sequence of events in a postorder traversal.

20.10 Describe the steps taken in deleting a leaf node.

20.11 Describe the steps taken in deleting a node with one child.

20.12 Describe the steps taken in deleting a node with two children.

20.3 Template Considerations for Binary Search Trees

CONCEPT: Binary search trees may be implemented as templates, but any data types

used with them must support the <, >, and == operators.

When designing a binary tree template, remember that any data types stored in the binary

tree must support the <, >, and == operators. If you use the tree to store class objects,

these operators must be overridden.

M20_GADD6253_07_SE_C20 Page 1157 Wednesday, January 12, 2011 10:00 PM

1158 Chapter 20 Binary Trees

The following code shows an example of a binary tree template. Program 20-5 demon-

strates the template. It creates a binary tree that can hold strings, and then prompts the

user to enter a series of names that are inserted into the tree. The program then displays

the contents of the tree using inorder traversal.

Contents of BinaryTree.h

 1 #ifndef BINARYTREE_H

 2 #define BINARYTREE_H

 3 #include <iostream>

 4 using namespace std;

 5

 6 // Stack template

 7 template <class T>

 8 class BinaryTree

 9 {

 10 private:

 11 struct TreeNode

 12 {

 13 T value; // The value in the node

 14 TreeNode *left; // Pointer to left child node

 15 TreeNode *right; // Pointer to right child node

 16 };

 17

 18 TreeNode *root; // Pointer to the root node

 19

 20 // Private member functions

 21 void insert(TreeNode *&, TreeNode *&);

 22 void destroySubTree(TreeNode *);

 23 void deleteNode(T, TreeNode *&);

 24 void makeDeletion(TreeNode *&);

 25 void displayInOrder(TreeNode *) const;

 26 void displayPreOrder(TreeNode *) const;

 27 void displayPostOrder(TreeNode *) const;

 28

 29 public:

 30 // Constructor

 31 BinaryTree()

 32 { root = NULL; }

 33

 34 // Destructor

 35 ~BinaryTree()

 36 { destroySubTree(root); }

 37

 38 // Binary tree operations

 39 void insertNode(T);

 40 bool searchNode(T);

 41 void remove(T);

 42

 43 void displayInOrder() const

 44 { displayInOrder(root); }

 45

 46 void displayPreOrder() const

 47 { displayPreOrder(root); }

 48

M20_GADD6253_07_SE_C20 Page 1158 Wednesday, January 12, 2011 10:00 PM

20.3 Template Considerations for Binary Search Trees 1159

 49 void displayPostOrder() const

 50 { displayPostOrder(root); }

 51 };

 52

 53 //***

 54 // insert accepts a TreeNode pointer and a pointer to a node. *

 55 // The function inserts the node into the tree pointed to by *

 56 // the TreeNode pointer. This function is called recursively. *

 57 //***

 58 template <class T>

 59 void BinaryTree<T>::insert(TreeNode *&nodePtr, TreeNode *&newNode)

 60 {

 61 if (nodePtr == NULL)

 62 nodePtr = newNode; // Insert the node

 63 else if (newNode->value < nodePtr->value)

 64 insert(nodePtr->left, newNode); // Search the left branch

 65 else

 66 insert(nodePtr->right, newNode); // Search the right branch

 67 }

 68

 69 //**

 70 // insertNode creates a new node to hold num as its value, *

 71 // and passes it to the insert function. *

 72 //**

 73 template <class T>

 74 void BinaryTree<T>::insertNode(T item)

 75 {

 76 TreeNode *newNode; // Pointer to a new node

 77

 78 // Create a new node and store num in it.

 79 newNode = new TreeNode;

 80 newNode->value = item;

 81 newNode->left = newNode->right = NULL;

 82

 83 // Insert the node.

 84 insert(root, newNode);

 85 }

 86

 87 //***

 88 // destroySubTree is called by the destructor. It *

 89 // deletes all nodes in the tree. *

 90 //***

 91 template <class T>

 92 void BinaryTree<T>::destroySubTree(TreeNode *nodePtr)

 93 {

 94 if (nodePtr)

 95 {

 96 if (nodePtr->left)

 97 destroySubTree(nodePtr->left);

 98 if (nodePtr->right)

 99 destroySubTree(nodePtr->right);

100 delete nodePtr;

101 }

102 }

103

M20_GADD6253_07_SE_C20 Page 1159 Wednesday, January 12, 2011 10:00 PM

1160 Chapter 20 Binary Trees

104 //***

105 // searchNode determines if a value is present in *

106 // the tree. If so, the function returns true. *

107 // Otherwise, it returns false. *

108 //***

109 template <class T>

110 bool BinaryTree<T>::searchNode(T item)

111 {

112 TreeNode *nodePtr = root;

113

114 while (nodePtr)

115 {

116 if (nodePtr->value == item)

117 return true;

118 else if (item < nodePtr->value)

119 nodePtr = nodePtr->left;

120 else

121 nodePtr = nodePtr->right;

122 }

123 return false;

124 }

125

126 //**

127 // remove calls deleteNode to delete the *

128 // node whose value member is the same as num. *

129 //**

130 template <class T>

131 void BinaryTree<T>::remove(T item)

132 {

133 deleteNode(item, root);

134 }

135

136 //**

137 // deleteNode deletes the node whose value *

138 // member is the same as num. *

139 //**

140 template <class T>

141 void BinaryTree<T>::deleteNode(T item, TreeNode *&nodePtr)

142 {

143 if (item < nodePtr->value)

144 deleteNode(item, nodePtr->left);

145 else if (item > nodePtr->value)

146 deleteNode(item, nodePtr->right);

147 else

148 makeDeletion(nodePtr);

149 }

150

151 //***

152 // makeDeletion takes a reference to a pointer to the node *

153 // that is to be deleted. The node is removed and the *

154 // branches of the tree below the node are reattached. *

155 //***

156 template <class T>

157 void BinaryTree<T>::makeDeletion(TreeNode *&nodePtr)

158 {

M20_GADD6253_07_SE_C20 Page 1160 Wednesday, January 12, 2011 10:00 PM

20.3 Template Considerations for Binary Search Trees 1161

159 // Define a temporary pointer to use in reattaching

160 // the left subtree.

161 TreeNode *tempNodePtr;

162

163 if (nodePtr == NULL)

164 cout << "Cannot delete empty node.\n";

165 else if (nodePtr->right == NULL)

166 {

167 tempNodePtr = nodePtr;

168 nodePtr = nodePtr->left; // Reattach the left child

169 delete tempNodePtr;

170 }

171 else if (nodePtr->left == NULL)

172 {

173 tempNodePtr = nodePtr;

174 nodePtr = nodePtr->right; // Reattach the right child

175 delete tempNodePtr;

176 }

177 // If the node has two children.

178 else

179 {

180 // Move one node to the right.

181 tempNodePtr = nodePtr->right;

182 // Go to the end left node.

183 while (tempNodePtr->left)

184 tempNodePtr = tempNodePtr->left;

185 // Reattach the left subtree.

186 tempNodePtr->left = nodePtr->left;

187 tempNodePtr = nodePtr;

188 // Reattach the right subtree.

189 nodePtr = nodePtr->right;

190 delete tempNodePtr;

191 }

192 }

193

194 //**

195 // The displayInOrder member function displays the values *

196 // in the subtree pointed to by nodePtr, via inorder traversal. *

197 //**

198 template <class T>

199 void BinaryTree<T>::displayInOrder(TreeNode *nodePtr) const

200 {

201 if (nodePtr)

202 {

203 displayInOrder(nodePtr->left);

204 cout << nodePtr->value << endl;

205 displayInOrder(nodePtr->right);

206 }

207 }

208

209 //**

210 // The displayPreOrder member function displays the values *

211 // in the subtree pointed to by nodePtr, via preorder traversal. *

212 //**

213 template <class T>

214 void BinaryTree<T>::displayPreOrder(TreeNode *nodePtr) const

M20_GADD6253_07_SE_C20 Page 1161 Wednesday, January 12, 2011 10:00 PM

1162 Chapter 20 Binary Trees

215 {

216 if (nodePtr)

217 {

218 cout << nodePtr->value << endl;

219 displayPreOrder(nodePtr->left);

220 displayPreOrder(nodePtr->right);

221 }

222 }

223

224 //**

225 // The displayPostOrder member function displays the values *

226 // in the subtree pointed to by nodePtr, via postorder traversal.*

227 //**

228 template <class T>

229 void BinaryTree<T>::displayPostOrder(TreeNode *nodePtr) const

230 {

231 if (nodePtr)

232 {

233 displayPostOrder(nodePtr->left);

234 displayPostOrder(nodePtr->right);

235 cout << nodePtr->value << endl;

236 }

237 }

238 #endif

Program 20-5

 1 // This program demonstrates the BinaryTree class template.

 2 // It builds a binary tree with 5 nodes.

 3 #include <iostream>

 4 #include "BinaryTree.h"

 5 using namespace std;

 6

 7 const int NUM_NODES = 5;

 8

 9 int main()

 10 {

 11 string name;

 12

 13 // Create the binary tree.

 14 BinaryTree<string> tree;

 15

 16 // Insert some names.

 17 for (int count = 0; count < NUM_NODES; count++)

 18 {

 19 cout << "Enter a name: ";

 20 getline(cin, name);

 21 tree.insertNode(name);

 22 }

 23

 24 // Display the values.

 25 cout << "\nHere are the values in the tree:\n";

 26 tree.displayInOrder();

 27 return 0;

 28 }

M20_GADD6253_07_SE_C20 Page 1162 Wednesday, January 12, 2011 10:00 PM

20.3 Template Considerations for Binary Search Trees 1163

Review Questions and Exercises

Short Answer

1. Each node in a binary tree may point to how many other nodes?

2. How many predecessors may each node other than the root node have?

3. What is a leaf node?

4. What is a subtree?

5. What initially determines the shape of a binary tree?

6. What are the three methods of traversing a binary tree? What is the difference
between these methods?

Fill-in-the-Blank

7. The first node in a binary tree is called the __________.

8. A binary tree node s left and right pointers point to the node s __________.

9. A node with no children is called a(n) __________.

10. A(n) __________ is an entire branch of the tree, from one particular node down.

11. The three common types of traversal with a binary tree are __________, __________,
and __________.

Algorithm Workbench

12. Write a pseudocode algorithm for inserting a node in a tree.

13. Write a pseudocode algorithm for the inorder traversal.

14. Write a pseudocode algorithm for the preorder traversal.

15. Write a pseudocode algorithm for the postorder traversal.

16. Write a pseudocode algorithm for searching a tree for a specified value.

Program Output with Example Input Shown in Bold

Enter a name: David [Enter]
Enter a name: Geri [Enter]
Enter a name: Chris [Enter]
Enter a name: Samantha [Enter]
Enter a name: Anthony [Enter]

Here are the values in the tree:

Anthony

Chris

David

Geri

Samantha

Review Questions and Exercises

M20_GADD6253_07_SE_C20 Page 1163 Wednesday, January 12, 2011 10:00 PM

1164 Chapter 20 Binary Trees

17. Suppose the following values are inserted into a binary tree, in the order given:

12, 7, 9, 10, 22, 24, 30, 18, 3, 14, 20

Draw a diagram of the resulting binary tree.

18. How would the values in the tree you sketched for Question 17 be displayed in an
inorder traversal?

19. How would the values in the tree you sketched for Question 17 be displayed in a pre-
order traversal?

20. How would the values in the tree you sketched for Question 17 be displayed in a
postorder traversal?

True or False

21. T F Each node in a binary tree must have at least two children.

22. T F When a node is inserted into a tree, it must be inserted as a leaf node.

23. T F Values stored in the current node s left subtree are less than the value stored in

the current node.

24. T F The shape of a binary tree is determined by the order in which values are

inserted.

25. T F In inorder traversal, the node s data is processed rst, then the left and right

nodes are visited.

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges

online and get instant feedback.

1. Binary Tree Template

Write your own version of a class template that will create a binary tree that can hold

values of any data type. Demonstrate the class with a driver program.

2. Node Counter

Write a member function, for either the template you designed in Programming Chal-

lenge 1 or the IntBinaryTree class, that counts and returns the number of nodes in

the tree. Demonstrate the function in a driver program.

3. Leaf Counter

Write a member function, for either the template you designed in Programming Chal-

lenge 1 or the IntBinaryTree class, that counts and returns the number of leaf nodes

in the tree. Demonstrate the function in a driver program.

4. Tree Height

Write a member function, for either the template you designed in Programming Chal-

lenge 1 or the IntBinaryTree class, that returns the height of the tree. The height of

the tree is the number of levels it contains. For example, the tree shown in Figure 20-10

has three levels.

VideoNote

Solving the

Node Counter

Problem

M20_GADD6253_07_SE_C20 Page 1164 Wednesday, January 12, 2011 10:00 PM

Review Questions and Exercises 1165

Demonstrate the function in a driver program.

5. Tree Width

Write a member function, for either the template you designed in Programming Chal-

lenge 1 or the IntBinaryTree class, that returns the width of the tree. The width of

the tree is the largest number of nodes in the same level. Demonstrate the function in

a driver program.

6. Tree Assignment Operator and Copy Constructor

Design an overloaded assignment operator and a copy constructor for either the tem-

plate you designed in Programming Challenge 1 or the IntBinaryTree class. Demon-

strate them in a driver program.

7. Queue Converter

Write a program that stores a series of numbers in a binary tree. Then have the pro-

gram insert the values into a queue in ascending order. Dequeue the values and display

them on the screen to con rm that they were stored in the proper order.

8. Employee Tree

Design an EmployeeInfo class that holds the following employee information:

Employee ID Number: an integer

Employee Name: a string

Next, use the template you designed in Programming Challenge 1 to implement a

binary tree whose nodes hold an instance of the EmployeeInfo class. The nodes

should be sorted on the Employee ID number.

Figure 20-10

NULL

PointerPointer

PointerPointer PointerPointer

PointerPointer PointerPointer

NULL NULL NULL NULL

NULL

Programming Challenges

M20_GADD6253_07_SE_C20 Page 1165 Wednesday, January 12, 2011 10:00 PM

1166 Chapter 20 Binary Trees

Test the binary tree by inserting nodes with the following information.

Your program should allow the user to enter an ID number, then search the tree for

the number. If the number is found, it should display the employee s name. If the node

is not found, it should display a message indicating so.

Employee

ID Number Name

1021

1057

2487

3769

1017

1275

1899

4218

John Williams

Bill Witherspoon

Jennifer Twain

Sophia Lancaster

Debbie Reece

George McMullen

Ashley Smith

Josh Plemmons

M20_GADD6253_07_SE_C20 Page 1166 Wednesday, January 12, 2011 10:00 PM

1167

A
P

P
E

N
D

I
X

Getting Started with Alice

A

Alice is an innovative software system that allows you to create 3D animations and computer

games while learning fundamental programming concepts. With Alice you place graphical

objects such as people, animals, buildings, cars, and so on inside 3D virtual worlds. Then

you create programming statements that make the objects perform actions. Alice s drag-

and-drop program editor makes it easy to create animations with rich interactions between

objects.

This appendix serves as a quick reference for using Alice versions 2.0 or 2.2. If you need a
complete text that teaches programming using the Alice software, see Starting Out with
Alice: A Visual Introduction to Programming, also published by Addison-Wesley.

Downloading and Installing Alice
Alice is free software, available from Carnegie Mellon University. You can download the

latest version from http://www.alice.org. When you download Alice 2.2 (the recom-

mended version at the time this appendix was written) to your system, you get a le

contents of this le in the location where you want to install the software.

named Alice2.2.zip. There is no installation wizard with Alice; you simply extract the

When you extract the contents of Alice2.2.zip you will get a folder named Alice2.2. Inside

this folder you will nd an executable le named Alice.exe. Double-click this le to run Alice.

TIP: You will probably want to create a shortcut to the Alice.exe file on your desktop.

Right-click the file and then select Send To Desktop (create shortcut) from the menu.

To start Alice double-click the shortcut that appears on the desktop.

Using the Welcome to Alice! Dialog Box
When you start Alice the splash screen shown in Figure A-1 will display for a few seconds.

When the software is fully loaded you should see the Welcome to Alice! dialog box, as

shown in Figure A-2.

Z01_GADD6253_07_SE_APP1 Page 1167 Thursday, January 13, 2011 2:54 PM

1168

Appendix A Getting Started with Alice

Figure A-1 The Alice splash screen

Figure A-2 The Welcome to Alice! dialog box

NOTE: If you do not see the Welcome to Alice! dialog box on your system, then Alice

has been configured so it will not display the dialog box at startup, which might be the

case in a shared computer lab. You can display the dialog box by clicking File on the

menu bar, and then clicking the New World or Open World... menu items.

Note that at the bottom of the Welcome to Alice! dialog box there is a Show this dia-

log at start check box. Make sure this check box is checked so the dialog box will be

displayed each time you start Alice.

Z01_GADD6253_07_SE_APP1 Page 1168 Thursday, January 13, 2011 2:54 PM

Appendix A Getting Started with Alice

1169

Near the top of the Welcome to Alice! dialog box you will see a set of tabs labeled Tutorial,

Recent Worlds, Templates, Examples, and Open a world. The following are brief descrip-

tions of what you get when you click these tabs:

Tutorial Click this tab and you will see a set of four Alice worlds that work as tutorials.

These tutorial worlds guide you through the basic features of Alice. If you want to run the

tutorials, click the Start the Tutorial button to execute them in order, or select and open any

of the worlds individually.

Recent Worlds Click this tab and you will see thumbnail images of the worlds that were

most recently opened on your system. You can quickly open any world shown in this tab

by selecting its thumbnail image and then clicking the Open button. You will not see any

worlds listed here if you have not yet opened any worlds.

Templates Click this tab and you will see a set of templates that you can use to create a

new world. The templates are named dirt, grass, sand, snow, space, and water. Each tem-

plate gives you a ground surface and a sky color.

Examples Click this tab and you will see thumbnail images of example worlds that have

been created by the developers of Alice.

Open a world Click this tab and you will see a dialog box that allows you to open an

Alice world. With this tab you can browse your local system or any attached network drive

for Alice worlds. Note that Alice worlds are saved in les that end with the .a2w extension.

(The .a2w extension signi es that the le contains an Alice version 2.0 or 2.2 world.)

The Alice Environment

In Alice the screen that you work with is referred to as the Alice environment. The Alice

environment is divided into the following areas: the Toolbar, the World View Window, the

Object Tree, the Details Panel, the Method Editor, and the Events Editor. In addition, the

toolbar area provides a trashcan icon and one or more clipboard icons. The locations of

these different areas and icons are shown in Figure A-3. In the gure, SnowLove, one of

the example worlds, is opened. Brief descriptions of each area in the Alice environment

follow:

Toolbar The toolbar provides a Play button that plays your virtual world, an Undo button

that undoes the previous operation, and a Redo button that repeats the operation that was

most recently undone.

Trashcan Next to the buttons on the toolbar there is a trashcan icon. You delete items by

dragging them to the trashcan.

Clipboards The clipboard provides a place to store a copy of something. In Alice clip-

boards you can store copies of objects, instructions, methods, and events. To store a copy

of an item in a clipboard, you click and drag the item to the clipboard. When a clipboard

contains an item, it appears as if it has a white sheet of paper on it. In Figure A-3 the left-

most clipboard shows an example. To paste the item that is stored in a clipboard, you click

and drag the clipboard icon to the location where you want to paste the item. If you want

to empty a clipboard, you click and drag it to the trashcan.

Z01_GADD6253_07_SE_APP1 Page 1169 Thursday, January 13, 2011 2:54 PM

1170

Appendix A Getting Started with Alice

By default, Alice shows only one clipboard. To change the number of available clipboards

you click the Edit menu and then click Preferences. On the dialog box that appears, you

click the Seldom Used tab and then change the number that appears next to number of

clipboards.

World View Window The World View Window shows a view of your virtual world. Each

virtual world has a camera; the World View Window acts as the camera s view nder and

also provides controls for moving and rotating the camera.

Object Tree The Object Tree holds a list of all the objects in the world. Each object in the

world is represented by a tile, which is simply a small rectangular icon. Tiles are used exten-

sively in the Alice environment to represent numerous things.

Details Panel The Details Panel shows detailed information about an object that has been

selected in the World View Window or in the Object Tree.

Method Editor The Method Editor is where you create methods (a set of instructions that

causes some action to take place). You create methods by arranging tiles in the Method

Editor.

Events Editor An event is some action that takes place while the world is playing, such as

clicking the mouse or pressing a key. Alice is able to detect when various events take place.

You can use the Events Editor to specify an action that is to take place when a speci c event

occurs.

Figure A-3 Parts of the Alice environment

Object tree

Details panel

World View window Events Editor

Method Editor

Toolbar

Trashcan

Clipboards

Z01_GADD6253_07_SE_APP1 Page 1170 Thursday, January 13, 2011 2:54 PM

Appendix A Getting Started with Alice

1171

Playing a World
When you click the Play button, a separate World Running... window appears and the

world s animation will play out in that window. For example, Figure A-4 shows the Snow-

Love example world playing.

Figure A-4 The SnowLove world playing

Notice the toolbar at the top of the World Running... window. The following are brief

descriptions of the items that appear on the toolbar:

Speed Slider Control This controls the speed at which the world is played. When the slider

is set to 1×, the world plays at normal speed. Moving the slider to the right increases the

speed up to 10 times its normal speed.

Pause Button Clicking the Pause button causes the world to pause.

Play Button Once a world has been paused with the Pause button, you can click the

Play button to resume playing.

Restart Button Clicking the Restart button causes the world to start playing again.

Stop Button Clicking the Stop button causes the world to stop playing and closes the

World Running... window.

Take Picture Button Clicking the Take Picture button captures an image from the world

and saves it in a le. The dialog box that appears when you click the Take Picture button

reports the name and path of the le containing the image.

Z01_GADD6253_07_SE_APP1 Page 1171 Thursday, January 13, 2011 2:54 PM

1172

Appendix A Getting Started with Alice

Creating a New World and Adding Objects to It
To create a new world, you click File on the menu bar and then click the New World... menu

item. This displays the Welcome to Alice! dialog box, as shown in Figure A-2. (By default,

this dialog box is also displayed when you start Alice.) Make sure the Templates tab is

selected, as shown in Figure A-5.

The Templates tab shows a set of templates named dirt, grass, sand, snow, space, and water

that you can use to create a new world. When you select a template from this dialog box and

then click the Open button, Alice will create a ground surface and set the color of the sky.

For example, Figure A-6 shows a world that was created with the sand template.

Figure A-5 The Welcome to Alice! dialog box

Figure A-6 shows the Add Objects button just below the World View Window. When you

click this button the Alice environment changes to scene editor mode and opens a gallery, as

shown in Figure A-7. A gallery is an assortment of different types of objects and is organized

into various collections of objects such as animals, buildings, furniture, and people.

Alice provides two galleries: a local gallery and a Web gallery. The local gallery is stored on

your computer and is installed with the Alice software. It provides a good sampling of object

types and should be adequate for many of your projects. The Web gallery is maintained by

the creators of Alice and may be accessed if your computer is connected to the Internet. It

provides a much more extensive collection of object types than the local gallery.

Z01_GADD6253_07_SE_APP1 Page 1172 Thursday, January 13, 2011 2:54 PM

Appendix A Getting Started with Alice

1173

Figure A-6 A world created with the sand template

Click the Add Objects button

to add objects to the world.

Figure A-7 Alice in scene editor mode

Z01_GADD6253_07_SE_APP1 Page 1173 Thursday, January 13, 2011 2:54 PM

1174

Appendix A Getting Started with Alice

Figure A-7 points out a navigation bar that indicates which gallery and collection is cur-

rently displayed. Below the navigation bar are thumbnail images for the collections in the

gallery. To open a collection and see the object types it contains, you click the collection s

thumbnail image. For example, one of the collections is named People. It contains various

types of people objects, as shown in Figure A-8.

Figure A-8 Some of the object types in the People collection

One way to add an object to the world is to click the thumbnail for that object type. You

will then see an information window for the object. For example, if you click the thumbnail

for the Coach object type, you will see the information window shown, as shown in Figure

A-9. Click the Add instance to world button to add an object of this type to the world.

Figure A-9 Information window for the Coach object type

Another way to add an object to the world is to click and drag the thumbnail for the object

type into the World View Window. When you release the mouse button (with the mouse

pointer inside the World View Window) an object will be created.

After you add an object to a world, you should see a tile for the object in the Object Tree,

as shown in Figure A-10. Each object in a world has a name, and the object s tile will show

the name that Alice assigned to the object. You can rename the object by right-clicking its

tile and then selecting rename on the menu that appears.

Z01_GADD6253_07_SE_APP1 Page 1174 Thursday, January 13, 2011 2:54 PM

Appendix A Getting Started with Alice

1175

Figure A-10 An object is added to the world

An object is added to the world.

A tile representing

the object is added

to the Object Tree.

Moving the Camera in the Alice Environment
The three camera controls shown in Figure A-11 appear just below the World View Win-

dow. You use these controls to move the camera around in the world and point it in dif-

ferent directions. The control on the left moves the camera up, down, left, and right. The

control in the center moves the camera forward and backward, and rotates the camera left

and right. The control on the right tilts the camera up and down.

Notice that each of the controls shows a set of arrows. You manipulate these controls by

clicking and dragging the arrow that points in the direction that you want to move, rotate,

or tilt the camera. You can make the camera move faster by dragging the mouse pointer

away from the center of the camera control. The farther you drag the pointer away from the

center of the camera control, the faster the camera will move.

Figure A-11 Camera controls

This control moves the

camera forward and backward,

and rotates it left and right.

This control moves

the camera up, down,

left, and right.

This control tilts

the camera up

and down.

Z01_GADD6253_07_SE_APP1 Page 1175 Thursday, January 13, 2011 2:54 PM

1176

Appendix A Getting Started with Alice

Selecting Objects
To work with an object in the Alice environment, often you rst have to select the object.

The following are the ways to select an object:

 Click its tile in the Object Tree

 Click the object in the World View Window

When you select an object, a box appears around it in the World View Window, as shown

in Figure A-12. (On your screen the box will be yellow.) This bounding box indicates that

the object is selected. Also, the object s tile in the Object Tree will appear highlighted, as

shown in the gure.

Figure A-12 The coach object is selected

Object Subparts

Objects are commonly made of other objects, which are referred to as subparts. When a

plus sign appears next to an object tile in the Object Tree, it means that the object is made

of subparts. For example, look at the Object Tree shown in Figure A-12 and notice that a

plus sign appears next to the tile for the coach object. You can click the plus sign next to an

object to expand the tree and see the tiles for the subparts. The plus sign then turns into a

minus sign, which hides the inner objects when clicked.

Figure A-13 shows the Object Tree expanded to reveal that the coach object is composed of

numerous subparts. One of these subparts, the head, is selected.

Properties
Each object in an Alice world has properties, which are values that specify the object s char-

acteristics. Once you have placed an object in an Alice world, you can adjust its properties

until it has the characteristics you desire. To change an object s property you perform the

following steps:

 Select the object

 In the Details Panel select the properties tab, as shown in Figure A-14

 Change the value of the desired property (to change a property s value, click the

down-arrow that appears next to the property s value)

Z01_GADD6253_07_SE_APP1 Page 1176 Thursday, January 13, 2011 2:54 PM

Appendix A Getting Started with Alice

1177

Figure A-13 An object subpart selected

This subpart

is selected.

Figure A-14 Properties displayed in the Details Panel

Primitive Methods
A method is a set of instructions that causes some action to take place. In Alice all objects

have a common set of built-in methods for performing basic actions. These methods, which

are known as primitive methods, cause objects to move, turn, change size, and do other

fundamental operations.

While you are creating an Alice world you can immediately execute an object s primitive

methods by right-clicking the object in the World View Window or the object s tile in the

Object Tree. Then you select methods from the menu that appears. Another menu appears

showing a list of methods that you can immediately execute in the World View Window.

Figure A-15 shows an example of these menus. Table A-1 describes each of the primitive

methods shown on the menu.

Z01_GADD6253_07_SE_APP1 Page 1177 Thursday, January 13, 2011 2:54 PM

1178

Appendix A Getting Started with Alice

Figure A-15 Selecting a primitive method

Table A-1 Primitive methods

Method Name Description

move This method causes the object to move up, down, left, right, for-

ward, or backward. You specify the direction and distance that you

want the object to move.

turn This method causes the object to turn toward the left, right, forward,

or backward. You specify the amount you want the object to turn in

revolutions.

roll This method causes the object to roll toward the left or the right.

You specify the amount you want the object to roll in revolutions.

resize This method changes the object s size by a specified amount.

say This method causes a cartoon-like speech bubble containing a mes-

sage to be displayed, as if the object were saying the message.

think This method causes a cartoon-like thought bubble containing words

to be displayed, as if the object were thinking the words.

play sound This method plays a sound. You can specify one of the sounds that

Alice provides or you can import any MP3 or WAV file.

(continues)

Z01_GADD6253_07_SE_APP1 Page 1178 Thursday, January 13, 2011 2:54 PM

Appendix A Getting Started with Alice

1179

Table A-1 Primitive methods (continued)

Method Name Description

move to This method causes the object to move to another object. When the

method completes, both objects center points will be in the same

location.

move toward This method causes the object to move in the direction of another

object. You specify the distance to move in meters.

move away from This method causes the object to move away from another object.

You specify the distance to move in meters.

orient to This method orients the object in the same direction as another spec-

ified object. When this method executes the object will turn so its

up, right, and forward axes are aligned with the axes of the specified

object.

turn to face This method causes the object to turn so it is facing another object.

point at This method is similar to the turn to face method, except the

object will be tilted so its forward axis is aiming at the specified

object s center point.

set point of view to This method sets the object s point of view to that of another object.

It is commonly used with the camera to move it to the location of

another object, and give a view from that object s point of view.

set pose Alice allows you to position an object and its subparts in a certain

way and then capture that as a pose. This method causes the object

to assume a pose that was previously captured.

stand up This method makes the object stand up by aligning the object s up

axis with the world s up axis.

set color to This method sets the object s color property to a specified color,

making the object appear in that color.

set opacity to This method sets the object s opacity property, which determines the

object s transparency. You set this property to some value between 0

percent and 100 percent, where 0 is completely invisible and 100 is

completely opaque.

set vehicle to This method sets the object s vehicle property. The vehicle prop-

erty couples the object with another object. When the other object

moves, this object moves with it.

set skin texture to This method sets the object s skin texture property. The

skin texture property specifies a graphic image to be displayed on

the object.

set fillingStyle to The fillingStyle property determines how the object is displayed.

It has three settings: solid, wireframe, and points. The default set-

ting is solid, which causes the object to be displayed as a solid.

When the fillingStyle property is set to wireframe, the object

is displayed as a wire skeleton that you can see through. When the

fillingStyle property is set to points, the object is displayed as a

set of points.

Z01_GADD6253_07_SE_APP1 Page 1179 Thursday, January 13, 2011 2:54 PM

1180

Appendix A Getting Started with Alice

Most of the primitive methods require that you specify additional pieces of information. For

example, the move method causes the object to move, and it requires that you specify two

pieces of information: a direction and an amount. These pieces of information are known as

arguments pieces of information that a method requires in order for it to execute.

Deleting Objects
You can delete an object in an Alice world by performing any of the following operations:

 Right-click the object in the World View Window and then select delete from the

menu that appears

 Right-click the object s tile in the Object Tree and then select delete from the menu

that appears

 Click and drag the object s tile from the Object Tree to the trashcan

Modifying Objects in Scene Editor Mode
When you click the Add Objects button, which appears below the World View Window,

Alice goes into scene editor mode, in which you can use the mouse to modify the objects

in your Alice world. For example, you can use the mouse to move objects, resize objects,

rotate objects, and copy objects. Figure A-16 shows the location of the mouse mode but-

tons, which determine the action that can be performed with the mouse.

Figure A-16 Location of the mouse mode buttons

Mouse mode

buttons

Z01_GADD6253_07_SE_APP1 Page 1180 Thursday, January 13, 2011 2:54 PM

Appendix A Getting Started with Alice

1181

Figure A-17 shows the purposes of the buttons. The following are brief descriptions of each:

Move Freely When this button is selected the mouse can be used to move an object

freely in the world. Here are the actions that you can perform:

 To move an object horizontally within the world you simply click and drag it

 To move an object straight up or down, you hold down the s key while clicking

and dragging the object

 To rotate an object left or right, you hold down the key while clicking and

dragging the object

 To tumble an object (rotate it left, right, forward, backward, or any combination

of these directions), you hold down the and s keys while clicking and drag-

ging the object

Move Up and Down When this button is selected you can move an object straight

up or straight down by clicking and dragging the object.

Turn Left and Right When this button is selected you can rotate an object toward

the left or the right by clicking and dragging the object.

Turn Forward and Backward When this button is selected you can rotate an object

forward or backward by clicking and dragging the object.

Tumble When this button is selected you can tumble an object by clicking and drag-

ging the object. This means you can rotate the object right, left, forward, backward,

or in any combination of these directions.

Resize When this button is selected you can make an object larger or smaller by

clicking and dragging the object.

Copy When this button is selected you can make a copy of an object by clicking the

object.

Figure A-17 The purposes of the mouse mode buttons

Move

freely

Turn left

and right Tumble

Copy

Turn forward

and backward

Move up

and down

Resize
When this is checked

you can modify an

object that is a subpart

of another object.

Z01_GADD6253_07_SE_APP1 Page 1181 Thursday, January 13, 2011 2:54 PM

1182

Appendix A Getting Started with Alice

Notice that just below the buttons a check box labeled affect subparts appears. By default,

this is not checked. When it is not checked the modi cations that you make to an object

using the mouse mode buttons are applied to the entire object. However, if you check the

affect subparts check box, the modi cations are applied only to one of the object s sub-

parts.

Single View and Quad View Modes
When Alice is in scene editor mode, you can switch the display of the world between single

view mode and quad view mode. So far we have been using single view mode, which is the

default display mode. In single view mode you have one view of the world the World View

Window. In quad view mode you have four views of the world: the World View Window, a

view from the top, a view from the right, and a view from the front. Figure A-18 shows an

example of these views and points out the quad view button, which you click to switch to

quad view mode.

Figure A-18 Quad view

Click here to switch to quad view.

You can use the mouse to modify objects in any of the views. If you look carefully at the

mouse mode buttons while in quad view mode, you ll notice that the Move Up and Down

button no longer appears because the right and front viewing windows support up and

down movement. If you want to move an object up or down while in quad view mode, you

simply select the Move Objects Freely button and then move the object up or down in either

the right view or the front view.

You will also notice that two new buttons appear while in quad view mode: The Scroll

View button and the Zoom button . Often, when you switch to quad view mode

the objects in the world will not be fully visible in all of the views. To remedy this you can

use the Scroll View button to scroll the top, right, or front view. To use the button, follow

these steps:

Z01_GADD6253_07_SE_APP1 Page 1182 Thursday, January 13, 2011 2:54 PM

Appendix A Getting Started with Alice

1183

 1. Select the Scroll View button; the mouse pointer changes into a hand tool

 2. Move the mouse pointer into the view you wish to scroll

 3. Click and drag the view in the direction you wish to scroll

The Zoom button allows you to zoom into or out of the top, right, and front views. To use

it, follow these steps:

 1. Select the Zoom button; the mouse pointer changes into a zoom tool

 2. Move the mouse pointer into the desired view and position it over the point that you

wish to zoom into or zoom out from

 3. Zoom by clicking and dragging; if you want to zoom in, drag down or to the right, if

you want to zoom out, drag up or to the left

Writing Methods in Alice
Recall that a method is a set of instructions that causes some action to take place. If you

want an action to take place when an Alice world is played, you have to write a method.

Figure A-19 shows the location of the Method Editor in the Alice environment, where you

write the methods that perform actions in an Alice world.

Figure A-19 The Method Editor

Method Editor

Method name

Notice that a world.my first method tab appears at the top of the Method Editor in Figure

A-19. All methods have a name, and world.my first method is the name of the method

Z01_GADD6253_07_SE_APP1 Page 1183 Thursday, January 13, 2011 2:54 PM

1184

Appendix A Getting Started with Alice

that is currently open in the editor. When you create a new world Alice automatically cre-

ates an empty method named world.my first method. By default, this method is auto-

matically executed when you play the world.

In Figure A-19 notice that a group of tiles appears at the bottom of the Method Editor. Each

of these tiles is an instruction that you can place in the method. Table A-2 describes the

instructions represented by these tiles.

Table A-2 Alice instructions

Instruction Description

Do in order You place other instructions inside a Do in order instruction. The

instructions that you place inside a Do in order instruction are exe-

cuted in the order that they appear.

Do together You place other instructions inside a Do together instruction. The

instructions that you place inside a Do together instruction are exe-

cuted simultaneously.

If/Else The If/Else instruction tests a condition, which is anything that gives a

true or false value. If the value is true, then one set of instructions is exe-

cuted. If the value is false, then a different set of instructions is executed.

Loop The Loop instruction causes one or more other instructions to repeat a

specific number of times.

While The While instruction causes one or more other instructions to repeat as

long as a condition is true.

For all in order The For all in order instruction steps through the items in a list, one

item at a time, performing the same operation on each item.

For all together The For all together instruction performs the same operation on all

the items in a list simultaneously.

Wait The Wait instruction causes the method to pause for a specified number

of seconds.

print The print instruction displays a message in a special area at the bottom

of the World Running window.

// The // tile allows you to insert a comment into a method.

In Alice you place instructions in a method by dragging tiles into the Method Editor. For

example, if you want to place a Wait instruction in the method that you are currently writ-

ing, you simply click and drag the Wait tile into the Method Editor, as shown in Figure

A-20. When you drop the tile (by releasing the mouse button) the Wait instruction will be

created in the method.

In addition to using the instructions that you see at the bottom of the Method Editor,

you can also create instructions that execute an object s primitive methods. Once you have

added an object to a world, you can see tiles for all of the methods that the object can per-

form by doing the following:

Z01_GADD6253_07_SE_APP1 Page 1184 Thursday, January 13, 2011 2:54 PM

Appendix A Getting Started with Alice

1185

 1. Select the object

 2. In the Details Panel select the methods tab to display a set of tiles representing the

object s methods

Figure A-20 Dragging the Wait instruction into the Method Editor

For example, Figure A-21 shows an Alice world with an instance of the Hare class (which

is in the Animals collection). The object, which is named hare, is selected. The methods tab

is selected in the Details Panel, and a set of tiles for the hare object s primitive methods is

displayed.

Figure A-21 Methods displayed in the Details Panel

Select the

methods tab.

These tiles represent

the methods that the

object can perform.

To create an instruction that executes a primitive method in the method that you are cur-

rently writing, simply drag the primitive method s tile and drop it into the Method Editor.

Z01_GADD6253_07_SE_APP1 Page 1185 Thursday, January 13, 2011 2:54 PM

1186

Appendix A Getting Started with Alice

For example, Figure A-22 shows tile for the hare object s move method being dragged into

the Method Editor.

Most of the primitive methods require that you specify arguments. For example, when you

drop the tile for the move method into the Method Editor, a pop-up menu appears allowing

you to select a direction. The allowable directions are up, down, left, right, forward, and

backward. After you select a direction, another menu appears allowing you to select an

amount, which is the distance that the object moves. In Alice distances are always measured

in meters.

Figure A-23 shows an example of world.my first method after three instructions have

been created. When the world containing this method is played, the hare object will move

up 1 meter, then turn left 1 revolution, and then move down 1 meter.

Figure A-22 Dragging the hare.move method tile into the Method Editor

Figure A-23 Three instruction tiles

First, the hare moves up 1 meter.

Second, the hare turns left 1 revolution.

Third, the hare moves down 1 meter.

Z01_GADD6253_07_SE_APP1 Page 1186 Thursday, January 13, 2011 2:54 PM

Appendix A Getting Started with Alice

1187

Copying and Deleting Instructions
To make a copy of an instruction tile within the same method, you right-click the tile and

then select make copy from the menu that appears. To copy an instruction so that you can

paste it into a different method, you drag the instruction to the clipboard. Then you open

the method that you want to paste the instruction into, and click and drag the clipboard

icon to the location where you want to paste the instruction. To delete an instruction tile

that you have created in the Method Editor, you drag the tile to the trashcan.

Creating Methods
When you rst create an Alice world, a method named world.my first method is auto-

matically created in the world object. You are not limited to this one method in the world,

however. Follow these steps to create a new method in the world:

 1. Select the world in the Object Tree.

 2. In the Details Panel, under the methods tab, click the create new method button, as

shown in Figure A-24.

 3. A dialog box will appear asking for the new method s name. Enter a name in the dia-

log box and click the OK button. A tile for the new method will appear in the Details

Panel, above the create new method button. For example, the Details Panel in Figure

A-25 shows three world-level methods.

 4. Create the instructions for the method in the Method Editor.

Figure A-24 The create new method button

Click here to create

a new method.

Figure A-25 An example of a world with three world-level methods

World-level methods

Z01_GADD6253_07_SE_APP1 Page 1187 Thursday, January 13, 2011 2:54 PM

1188

Appendix A Getting Started with Alice

Once you have created the new method, you can call it from other methods by dragging

the new method s tile from the Details Panel into the Method Editor and dropping it at the

point where you wish to call the method.

You can also create your own custom methods in the objects that you place in your world.

In Alice the methods that are part of an object are referred to as class-level methods. If

an object doesn t provide all of the methods that you need, you can easily add your own

methods for that object. You write custom class-level methods in Alice by following these

steps:

 1. Create the desired object.

 2. Select the object.

 3. In the Details Panel, under the methods tab, click the create new method button.

 4. A dialog box will appear asking for the new method s name. Enter a name in the

dialog box and click the OK button. A tile for the new method will appear in the

Details Panel, above the create new method button.

 5. Create the instructions for the method in the Method Editor.

Once you have created the new method, you can call it from other methods in the usual

way: by dragging the new method s tile into the Method Editor and dropping it at the point

where you wish to call the method.

Renaming Methods
To rename a method, you simply right-click the method s tile and select Rename from the

menu that appears. After you do this, you will be able to edit the name that appears on the

method s tile directly.

Creating Variables and Parameters
A variable is a storage location that is represented by a name. Like traditional programming

languages, Alice allows you to use variables to store data. The following variable categories

are available in Alice:

Local Variables A local variable belongs to a specific method and can be used only

in the instructions in that method. When a method stops executing, its local variables

cease to exist in memory.

World-Level Variables A world-level variable belongs to the world object, and

exists as long as the world is playing.

Class-Level Variables A class-level variable belongs to a specific object, and exists

as long as the object exists. Class-level variables are like properties.

Parameter Variables A parameter variable is used to hold an argument that is passed

to a method when the method is called. Once you create a parameter variable in a

method, you must provide an argument for that parameter whenever you call the

method.

Before you can use a variable, you have to create it. To create a local variable or a param-

eter variable in a method, you open the method in the Method Editor and then you click

Z01_GADD6253_07_SE_APP1 Page 1188 Thursday, January 13, 2011 2:54 PM

Appendix A Getting Started with Alice

1189

the create new variable button or the create new parameter button. Figure A-26 shows the

locations of these buttons.

Figure A-26 The create new variable button

Click here to create a new local variable.

Click here to create a new parameter variable.

When you click either of these buttons, a dialog box appears requiring you to enter more

information about the variable. In the dialog box you enter the variable s name and select

the variable s type and initial value. Figure A-27 shows the Create New Local Variable

dialog box, which appears when you click the create new variable button. When you click

the create new parameter button, a dialog box that is virtually identical to the one in Figure

A-27 is displayed.

After you provide a name for the variable, select its type, specify its initial value, and click

the OK button, a tile for the variable is created in the method.

Figure A-27 The Create New Local Variable dialog box

The variable s name

The variable s type

The variable s initial value

To create a world-level variable you perform the following steps:

 1. Select the world object in the Object Tree.

 2. In the Details Panel select the properties tab.

Z01_GADD6253_07_SE_APP1 Page 1189 Thursday, January 13, 2011 2:54 PM

1190

Appendix A Getting Started with Alice

 3. Click the create new variable button, which appears at the top of the properties tab,

as shown in Figure A-28.

 4. Enter the variable s name, type, and initial value in the create new variable dialog box,

which is similar to the one shown in Figure A-27. When you click the dialog box s OK

button, a tile for the variable will be created in the Details Panel, under the properties

tab.

Figure A-28 Creating a world-level variable

Click here to create a

new world-level variable.

Select the world object.

To create a class-level variable in an object you perform the following steps:

 1. Select the object in the Object Tree.

 2. In the Details Panel select the properties tab.

 3. Click the create new variable button, which appears at the top of the properties tab,

as shown in Figure A-29.

 4. Enter the variable s name, type, and initial value in the create new variable dialog box,

which is similar to the one shown in Figure A-27. When you click the dialog box s OK

button, a tile for the variable will be created in the Details Panel, under the properties

tab.

Figure A-29 Creating a class-level variable

Click here to create a

new class-level variable.

Select the object.

Z01_GADD6253_07_SE_APP1 Page 1190 Thursday, January 13, 2011 2:54 PM

Appendix A Getting Started with Alice

1191

Variable Assignment
When you create a variable, you give it an initial value. The initial value will remain in the

variable until you store a different value in the variable. In an Alice method you can create

set instructions that store different values in the variable. A set instruction simply sets a

variable to a new value.

To create a set instruction for a variable, you drag the variable tile and drop it into the

Method Editor at the point where you want the set instruction to occur. A menu appears,

and you select set value. Another menu appears that allows you to specify the value you

wish to store in the variable. As a result, a set instruction is created.

Events
An event is an action that takes place while a program is running. When Alice worlds are

running, they are capable of detecting several different types of events. For example, an

event occurs when the user clicks an object with the mouse. An event also occurs when the

user types a key on the keyboard. Table A-3 describes all of the events that an Alice world

can detect while it is running.

Table A-3 Events that Alice can detect

noitpircseD tnevE

When the world starts This event occurs immediately when the world is

started. It happens only once, each time the world is

played.

When a key is typed When the user types a key on the keyboard, this event

occurs when the key is released.

When the mouse is clicked on something

This event occurs when the user clicks an object in

the world with the mouse.

While something is true When a condition that you have specified becomes

true, this event occurs as long as the condition

remains true.

When a variable changes This event occurs when a variable s value changes.

Let the mouse move <objects> This event allows the user to move an object in the

world by clicking and dragging it with the mouse.

Let the arrow keys move <subject> This event allows the user to move an object in the

world by typing the arrow keys on the keyboard.

Let the mouse move the camera This event allows the user to move the camera

through the world by clicking and dragging the

mouse.

Let the mouse orient the camera This event allows the user to change the camera s

orientation (the direction in which it is pointing) by

clicking and dragging the mouse.

Z01_GADD6253_07_SE_APP1 Page 1191 Thursday, January 13, 2011 2:54 PM

1192

Appendix A Getting Started with Alice

When any of the events listed in Table A-3 occur, your Alice world can perform an action in

response to that event, such as calling a method.

At the top right of the screen in the Alice environment, you see an area labeled Events,

as shown in Figure A-30. This area is called the Events Editor. When you create an Alice

world, a tile appears in the Events Editor that reads as follows:

When the world starts, do world.my first method

This tile speci es that when the world starts, the method world.my first method will be

executed. The left portion of the tile shows the name of an event, When the world starts,

and the right portion of the tile is a drop-down box that shows the name of the method that

will be executed when the event occurs. You can click the down arrow on the drop-down

box to select a different method. Any method that is selected in this tile will be automati-

cally executed when the world starts.

Figure A-30 The Events Editor

This specifies the

method that will execute

when the world starts.

Click here to create

a new event.

The process of responding to an event is commonly called handling the event. In order

for an Alice world to handle an event, a tile for that event must appear in the Events Edi-

tor. When a world is rst created, the only tile that appears in the Events Editor is for the

When the world starts event. If you want the world to handle any other events, you must

create a new tile for the event in the Events Editor. To create a new event tile, you click the

create new event button, as shown in Figure A-30. A menu of available events will appear

next. You select the event that you want to handle from this menu. A tile for the event will

then be created in the Events Editor.

Most event tiles require that you specify additional arguments, such as the method that you

want to execute in response to the event. A method that is executed in response to an event

is commonly referred to as an event handler. For example, the event tile that is shown in

Figure A-30 speci es that when the world starts, world.my first method is called. The

method world.my first method is the event handler.

Figure A-31 shows another example of an event tile. Assume that this tile appears in a world

that has an object named fridge (a refrigerator object). The event tile speci es that when

the mouse is clicked on the fridge object s fridgeDoor subpart, the fridgeDoor will turn

left 0.25 revolutions.

Z01_GADD6253_07_SE_APP1 Page 1192 Thursday, January 13, 2011 2:54 PM

Appendix A Getting Started with Alice

1193

Figure A-31 Example of an event tile

Z01_GADD6253_07_SE_APP1 Page 1193 Thursday, January 13, 2011 2:54 PM

Z01_GADD6253_07_SE_APP1 Page 1194 Thursday, January 13, 2011 2:54 PM

1195

A
P

P
E

N
D

I
X

Nonprintable ASCII Characters

 Dec Hex Oct Name of Character

0 0 0

NULL

1 1 1

SOTT

2 2 2

STX

3 3 3

ETY

4 4 4

EOT

5 5 5

ENQ

6 6 6

ACK

7 7 7

BELL

8 8 10

BKSPC

9 9 11

HZTAB

10 a 12

NEWLN

11 b 13

VTAB

12 c 14

FF

13 d 15

CR

14 e 16

SO

15 f 17

SI

16 10 20

DLE

17 11 21

DC1

18 12 22

DC2

19 13 23

DC3

20 14 24

DC4

21 15 25

NAK

22 16 26

SYN

23 17 27

ETB

24 18 30

CAN

25 19 31

EM

26 1a 32

SUB

27 1b 33

ESC

28 1c 34

FS

29 1d 35

GS

30 1e 36

RS

31 1f 37

US

127 7f 177

DEL

Printable ASCII Characters

Dec Hex Oct Character

32 20 40

(Space)

33 21 41

!

34 22 42

35 23 43

#

36 24 44

$

37 25 45

%

38 26 46

&

39 27 47

40 28 50

(

41 29 51

)

42 2a 52

*

43 2b 53

+

44 2c 54

,

45 2d 55

-

46 2e 56

.

47 2f 57

/

48 30 60

0

49 31 61

1

50 32 62

2

51 33 63

3

52 34 64

4

53 35 65

5

54 36 66

6

55 37 67

7

56 38 70

8

57 39 71

9

58 3a 72

:

59 3b 73

;

60 3c 74

<

61 3d 75

=

62 3e 76

>

63 3f 77

?

64 40 100

@

65 41 101

A

66 42 102

B

67 43 103

C

The ASCII Character Set

B

Z02_GADD6253_07_SE_APP2 Page 1195 Thursday, January 13, 2011 3:46 PM

1196

Appendix B The ASCII Character Set

68 44 104

D

69 45 105

E

70 46 106

F

71 47 107

G

72 48 110

H

73 49 111

I

74 4a 112

J

75 4b 113

K
76 4c 114 L
77 4d 115 M
78 4e 116 N
79 4f 117 O
80 50 120 P
81 51 121 Q
82 52 122 R
83 53 123 S
84 54 124 T
85 55 125 U
86 56 126 V
87 57 127 W
88 58 130 X
89 59 131 Y
90 5a 132 Z
91 5b 133 [
92 5c 134 \
93 5d 135]
94 5e 136 ^
95 5f 137 _
96 60 140 `
97 61 141 a

Printable ASCII Characters

Dec Hex Oct Character

98 62 142 b
99 63 143 c

100 64 144 d
101 65 145 e
102 66 146 f
103 67 147 g
104 68 150 h
105 69 151 i
106 6a 152 j
107 6b 153 k
108 6c 154 l
109 6d 155 m
110 6e 156 n
111 6f 157 o
112 70 160 p
113 71 161 q
114 72 162 r
115 73 163 s
116 74 164 t
117 75 165 u
118 76 166 v
119 77 167 w
120 78 170 x
121 79 171 y
122 7a 172 z
123 7b 173 {
124 7c 174 |
125 7d 175 }
126 7e 176 ~

Printable ASCII Characters

Dec Hex Oct Character

Z02_GADD6253_07_SE_APP2 Page 1196 Thursday, January 13, 2011 3:46 PM

1197

A
P

P
E

N
D

I
X

Operator Precedence
and Associativity

The operators are shown in order of precedence, from highest to lowest.

Operator Associativity

::

unary: left to right

binary: right to left

() [] -> .

left to right

++ + - ! ~ (type) * & sizeof

right to left

* / %

left to right

+ -

left to right

<< >>

left to right

< <= > >=

left to right

== !=

left to right

&

left to right

^

left to right

|

left to right

&&

left to right

||

left to right

?:

right to left

= += -= *= /= %= &= ^= |= <<= >>=

right to left

,

left to right

C

Z03_GADD6253_07_SE_APP3 Page 1197 Monday, January 17, 2011 2:39 PM

Z03_GADD6253_07_SE_APP3 Page 1198 Monday, January 17, 2011 2:39 PM

1199

Z17_GADD6253_07_SE_REF.fm Page 1199 Friday, January 14, 2011 4:31 PM

1200

C++ Quick Reference

Z17_GADD6253_07_SE_REF.fm Page 1200 Friday, January 14, 2011 4:31 PM

1201

Index

-

 (negation operator), 60, 92 94

-

 (subtraction operator), 61, 92 94

--,

 227 232

-=,

 108 110

->

 (object pointer), 724

->

 (structure pointer), 618 622

!,

 182, 187 189, 560

!=,

 150 152

" ",

 30

#,

 30

%,

 61, 63, 66 67, 93, 94

%=,

 108 110

&

 (address operator), 491 493

&

 (bitwise AND),

see

 Appendix J on
the book s companion Web site

&

 (reference variables), 351

&&,

 182 185, 188 189

(),

 30, 94, 201

*

 (indirection operator), 497 499

*

 (multiplication operator), 15, 61,
63, 92 95

*

 (pointer variable declaration), 496,
621 622

*=,

 108 110

.

 (dot operator), 598, 622, 718 719

/,

 61, 92 94

/* */,

 69 70

//,

 27, 30, 68 69

/=,

 108 110

::,

 716

;,

 15, 29, 30, 158, 258

?:,

 199 201

\\,

 35

\',

 35

\",

 35

\a,

 35

\b,

 35

\n,

 34 35

\r,

 35

\t,

 35

^,

see

 Appendix J on the book s
companion Web site

{,

 29, 30, 164, 165, 236 237

|,

see

 Appendix J on the book s
companion Web site

||,

 182, 185 186, 188 189

},

 30, 164, 165, 236 237

~

 (bitwise negation),

see

 Appendix J
on the book s companion

Web site

~

 (destructor), 750

+,

 61, 62, 92 94, 579

++,

 227 232

+=,

 108 110, 579

<,

 150 152

<>,

 30

<<

 (bitwise left shift),

see

 Appendix J on
the books companion Web site

<<

 (stream insertion), 31 32, 270, 579

<=,

 150 152

=

 (assignment operator), 15, 38 39,
58, 161 162, 237, 579

==,

 150 152, 161 162, 237

>,

 150 152

>=,

 150 152

>>

 (bitwise right shift),

see

 Appendix J on
the books companion Web site

>>

 (stream extraction), 86 87, 275,
277, 280, 579

[]

 (array subscript operator), 428
430, 579

A

abs

 library function, 127
abstract array data type case study,

770 774
abstract base classes, 921 925
abstract data type (ADT)

in STL, 983 984
and structures, 593 595

abstraction, 593
access speci ers

base class, 874 875
in class declarations, 712 713

accessors, 716 717
accumulator, 257 259
actual arguments, 313
actual parameters, 313

addition operator (+), 61, 62, 92 94,
579

address, memory, 5, 396, 491
address operator (

&

), 491 493
ADT,

see

 abstract data type
aggregation, 849 852

has-a relationship, 851
in UML diagrams, 852 853

algebraic expressions, 94, 95
algorithm, 8

exhaustive, 1130 1132
factorial, 1106 1109
QuickSort, 1125 1129
search, 451 464, 480 485
sorting, 464 485
STL, 984 986, 990 996

Alice software, 1167 1193
adding objects, 1172 1175
camera controls, 1175
copying/deleting instructions, 1187
creating methods, 1187 1188
creating variables/parameters,

1188 1190
creating world, 1172
deleting objects, 1180
downloading/installing, 1167
environment, 1169 1170
events, 1191 1193
modifying objects, in Scene Editor

mode, 1180 1182

Z18_GADD6253_07_SE_INDX Page 1201 Saturday, January 29, 2011 1:01 PM

1202

Index

Alice software

(continued)

playing world, 1171
primitive methods, 1177 1180
properties, 1176 1177
renaming methods, 1188
selecting objects, 1176
single view/quad view modes,

1182 1183
variable assignment, 1191
Welcome to Alice! dialog box,

1167 1169
writing methods, 1183 1186

ALU, 4

AND

&

 bitwise operator,

see

 Appendix J on
the books companion Web site

&&

 logical operator, 182 185,
188 189

anonymous enumerated type,
630 631

anonymous unions, 625 627

append

 member function,

string

class, 582

application software, 6, 7

arguments, 95 96, 313 317
arrays as, 405 414, 419 421
command-line,

see

 Appendix H on
the books companion Web site

default, 347 350
passing, with pointers, 572 573
structures as, 612 615

arithmetic and logic unit (ALU), 4
arithmetic assignment operators, 108
arithmetic expressions, 91 98
arithmetic operators, 60 67
array subscript operator (

[]

),
428 430, 579

arrays, 377 438, 451 485

accessing elements, 379 386
assigning one, to another,

396 397
averaging values in, 398
binary search, 454 457
bounds checking, 386 388
bubble sort, 465 468
C-strings in, 550 552
comparing, 401 402
Demetris Leadership Center case

study, 458 464, 472 480
described, 377 378
duplicating, 525 527

enum

 with, 631 633
as function arguments, 405 414,

419 421
highest and lowest values, 398 399
initialization, 389 394, 418 419,

608, 760
linear search, 451 454
linked lists vs., 1003 1004
memory requirements, 378 379

National Commerce Bank case
study, 424 426

of objects, 759 761
parallel, 402 403
partially lled, 399 401
and pointers, 500 504
printing contents of, 397
processing contents of, 394 402
search algorithms, 451 464,

480 485
selection sort, 469 472
sorting algorithms, 464 485
structure, 605 608
summing values in, 397 398,

421 423
three or more dimensions, 423
two-dimensional, 416 423
and

vectors,

 427 438,
480 485

arrow operator (

->),

 618 619, 621,
622, 724

ascending order, sorting in, 465

ASCII, 47, 195, 1195 1196

assign

 member function, string
class, 582

assignment

combined, 107 110
memberwise, 812 813
multiple, 107

assignment operator (

=

), 15, 38 39,
58, 161 162, 237, 579

assignment statement, 38 39, 58

associative containers, 427, 983, 984
associativity, 93 94, 150, 188 189,

1197

at

 member function

string class, 582
vector, 437, 989

atof library function, 563, 564
atoi library function, 563, 564
atol library function, 563, 564
attributes, 706
averages

in arrays, 398
calculating, 97 98

B

back member function, list, 1035
bad member function, le stream, 662
bad_alloc exception, 965 966

base case, recursion, 1106
base class, 870

abstract, 921 925
multiple, 928 932

base class access speci cation,
874 875, 882 883

base class functions, rede ning,
896 901

base class pointers, 915 917
BASIC, 10

begin member function

iterator, 989
string class, 582
vector, 989

bidirectional iterators, 984
binary digit (bit), 5, see also Appendix

J on the book s companion
Web site

binary les, 267, 674 679
binary numbers, 8, see also Appendix J on

the books companion Web site
binary operator, 60
binary search, 454 457

ef ciency, 457
recursive version, 1119 1121

binary trees, 1137 1163
applications of, 1139 1140
child nodes, 1137
creating, 1141 1142
deleting a node, 1148 1157
described, 1137 1138
inorder traversal, 1144 1147
inserting a node, 1142 1144
leaf nodes, 1137
NULL address, 1137
operations, 1140 1157
postorder traversal, 1144 1147
preorder traversal, 1144 1147
root node, 1137
search trees, 1139
searching for a value in, 1144 1147
subtrees, 1138
templates for, 1157 1163
traversing, 1144 1147
tree pointer, 1137

binary_search algorithm (STL),
984, 990 991

binding, 909
dynamic, 909
static, 909

bit, 5, see also Appendix J on the
book s companion Web site

bitwise operators, see Appendix J on the
book s companion Web site

block scope, 212
blocks, of code, 164, 211 214, 236 237
blueprints, classes as, 709 710
body

of function, 303
of loop, 233

bool, 56
and ags, 181
returning, from a function,

334 336
Boole, George, 56
Boolean expression, 56, 150
bounds checking, for arrays, 386 388
braces, 29, 30, 164, 165, 236 237
break statement, 204, 205, 285 286

Z18_GADD6253_07_SE_INDX Page 1202 Saturday, January 29, 2011 1:01 PM

Index 1203

bubble sort, 465 468
buffer, keyboard, 89
byte, 5

C

C#, 10
C programming language, 9 11,

105 106

C++ programming language, 10, 11,
27 76

arithmetic operators, 60 67
bool data type, 56
char data type, 47 51
comments, 68 70
cout object, 31 36
oating-point data types, 53 56

identi ers, 41 42
#include directive, 36 37
initialization, 58 59
integer data types, 42 47
named constants, 70 72
parts of program, 27 31
programming style, 72 74
scope, 59 60
sizeof operator, 57
standard and prestandard, 74 76
string class, 51 52
variables and literals, 37 40,

58 59
C-strings, 548 573

in arrays, 550 552
comparing, 558 561
concatenation, 553 556
copying, 554 556
described, 548 549
lenames as, 283

handling functions, 568 573
length of, 552 553
library functions, 552 562
and null terminators, 548 549
numeric conversion functions,

563 568
searching within, 556 558
and string literals, 549 550

calling a function, 95, 304 309,
328 331

capacity member function

string class, 582
vector, 437, 989

capitalization, of variable names, 42
case conversion, character, 545 547
case statement, 203 204

case study
abstract array data type, 770 774
Demetris Leadership Center,

458 464, 472 480
dollarFormat function,

584 585
General Crates, Inc., 132 136
Home Software Company,

584 585, 763 770

National Commerce Bank,
424 426

United Cause, 529 534
catch block, 949
catch key word, 949
CD, 6

central processing unit (CPU), 3, 4
char, 47 51
character case conversion, 545 547

tolower function, 545
toupper function, 545

character literals, 48 51
character testing, 541 545

isalnum function, 542
isalpha function, 542
isdigit function, 542
islower function, 542
isprint function, 542
ispunct function, 542
isspace function, 542
isupper function, 542

characters, 541 547
character literals, 48 51
comparing, 195 196
converting cases, 545 547
inputting, 122
and string objects, 120 126
whitespace, 120 121

cin, 18, 85 89
entering multiple values, 87 89
get member function, 123 124
getline member function,

121 122, 551, 566 567
ignore member function,

125 126, 566
inputting characters, 122
inputting characters with,

120 121
keyboard buffer, 89
width member function, see

Appendix L on the book s
companion Web site

circularly linked list, 1034
class implementation le, 730
class speci cation le, 729
class templates, 973 982

de ning objects of, 977 979
and inheritance, 979 982
linked list, 1028 1033
type parameter, 974

classes, 705 785, 799 857, 869 932
and abstract array data types,

770 774
abstract base, 921 925
access speci ers, 712 713
accessors, 716 717, 740 741
aggregation, 849 853
arguments to constructors,

742 750
arrays of class objects, 759 761

base, 870
as blueprint, 709 710
collaborations, 853 857
const member functions, 714,

717
constructor overloading, 754 757
constructors, 738 750, 884 895
conversion of class objects,

846 848
copy constructor, 813 818
and data hiding, 717
declaration statements, 712, see

also Appendix K on the
book s companion Web site

default constructor, 742, 749 751

de ning class objects, 717 727

derived, 870 871

described, 712

destructors, 750 753, 884 885

dot operator (.), 718 719

dynamically allocated objects,

724 727

nding, 777 785

forward declaration, 809
friend functions, 807 811
getter function, 716

has-a relationship, 851
hierarchies of, 901 907
Home Software Company case

study, 763 770
implementation le, 730
include guard, 730 731
inheritance, 869 877, 928 932
inline member functions, 735 737
instance and static members,

799 807
is-a relationship, 870 877, 918

member functions, de ning,
715 716

memberwise assignment, 812 813
multiple inheritance, 928 932
mutators, 716
objects vs., 708 710
operator overloading, 819 846
overloading member functions,

751
placement of public and private

members, 714 715
pointers, 724 727
polymorphism, 907 921
private member functions,

758 759
private members, 713 714,

728 729
problem domain, 778
and procedural/object-oriented

programming, 705 711
protected members and class

access, 878 884

Z18_GADD6253_07_SE_INDX Page 1203 Saturday, January 29, 2011 1:01 PM

1204 Index

classes (continued)
public member functions, 713 714
public members, 713 714
rede ning base class functions,

896 901
responsibilities of, 777 785
scope resolution operator (::), 716
setter function, 716
speci cation and implementation,

729 735
stale data, avoiding, 724
templates, 973 984
this pointer, 823 824
and UML, 774 777
virtual functions, 909 913
whole-part relationship, 851

clear member function
le stream objects, 662
string class, 582
vector, 434 435, 437, 990

close member function, le stream
objects, 270

closing a le, 269 270
cmath header le, 96, 127

COBOL, 10
code reuse, 302
coercion, 101
collaborations, class, 853 857

columns, of arrays, 416, 417, 422 423
combined assignment operators,

107 110
coming into scope, 213

command-line arguments, see
Appendix H on the book s
companion Web site

comments, 27, 68 70
//, 68 69
/* */, 69 70
multi-line, 69 70
single line, 68 69

compact disc (CD), 6

compare member function, string
class, 583

compiler, 11, 12, 652
compound operators, 108
computer games, 265
concatenation, 126, 553 556
conditional expressions, 199 201
conditional loops, 247
conditional operator, 199 201
conditionally-executed code,

155 156, 162 165, 233
conditions, testing, 173 175
console, 31, 86
console output, 31
const, 513 515, 517

as array parameter, 410
copy constructors, 816 818
member functions, 714, 717

constant pointers, 516 517
constant reference parameters, 633

constants
global, 340 342
named, 70 72
pointers to, 513 515, 517
constructors, 738 750
arguments passed to, 742 750
in base and derived classes,

884 895
copy, 813 818
default, 742, 749 751
default arguments with, 748 749
overloading, 754 757

containers, 983
associative, 427, 983, 984
sequence, 427, 983
STL, 427

continue statement, 286 288

control unit, 4
conversion

data type, 100 101
object, 846 848
string/numeric, 563 568
by type casting, 103 106

cookies, 265
copy constructors, 813 818

const parameters in, 816 818
default, 818
and function parameters, 818

copy member function, string

class, 583
cos library function, 127
count algorithm (STL), 985,

992 993
count-controlled loops, 247, 255 256
counters, 241 242
cout, 18, 29, 31 36

fixed manipulator with,
116 118

left manipulator with, 118 119
precision member function, see

Appendix L on the book s
companion Web site

right manipulator with, 118 119
setf member function, see

Appendix L on the book s
companion Web site

setprecision manipulator
with, 114 116, 119

setw manipulator with, 112 113,
119

showpoint manipulator with,
118, 119

unsetf member function, see
Appendix L on the book s
companion Web site

width member function, see
Appendix L on the book s
companion Web site

CPU, 3, 4
CRC cards, 856 857
cstdlib header le, 129, 361, 563

cstring header le, 552
ctime header le, 129

D

data hiding, 706 707, 717
data types, 42 57

abstract, 593 595
bool, 56
char, 47 51
coercion, 101
conversion, 100 101, 103 106
demotion, 101
double, 53 55
enumerated, 627 637
float, 53 56
oating-point, 53 56

generic, 967
int, 43 44
integer, 42 46
long, 43 44
long double, 53 54
numeric, 42 43
primitive, 594
promotion, 101
ranking, 100 101
short, 43 44
size of, determining, 57
type casting, 103 106
unsigned int, 43 44
unsigned long, 43 44
unsigned short, 43 44

database management systems, 651

debugging
desk-checking, 21
hand-tracing, 130 132
stubs and drivers, 363 365

decimal point, digits displayed after,
114 118

decision making, 149 214

blocks and scope, 211 214
checking numeric ranges, 189
comparing characters and strings,

195 198
conditional execution, 162 165
conditional operator, 199 201
ags, 181 182
if/else if statements,

176 180
if/else statements, 166 168
if statements, 154 165
logical operators, 182 189
menus, 190 193
nested if statements, 169 175
relational operators, 149 153
switch statement, 202 209
validating user input, 193 194

decision structure, 154

Z18_GADD6253_07_SE_INDX Page 1204 Saturday, January 29, 2011 1:01 PM

Index 1205

declaration, 17
decode, 4
decrement operator (--), 227 232

in mathematical expressions, 231
post x and pre x modes, 228 231
in relational expressions, 231 232

default arguments, 347 350, 748 749
default constructors, 742, 749 751
default copy constructor, 818
default statement, 203 204
#define directive, 75 76, 731
de nitions, variable, 17, 37 38, 59,

211 213
delete operator, 520
Demetris Leadership Center case

study, 458 464, 472 480
demotion, data type, 101
depth of recursion, 1103
deque (STL type), 983, 1093 1094

front member function, 1093
pop_front member function,

1093
push_back member function,

1093
dequeue operation, 1073 1076
dereferencing, of pointers, 497
derived class, 870
descending order, sorting in, 465
designing programs, 18 22
desk-checking, 21
destructors, 750 753

base and derived classes, in,
884 895

virtual, 918 921
digital versatile disc (DVD), 6
digits, after decimal point, 114 118
direct access les, 267
direct recursion, 1112
directive, preprocessor, 28, 36
disk drive, 5 6
divide and conquer approach,

301 302
division

integer, 61, 63, 66 67, 101
remainder of, 61
by zero, 167, 947 948

division operator (/), 61, 92 94
do-while loop, 242 246, 262

with menus, 244 246
as posttest loop, 242 244

dollarFormat function case study,
584 585

dot operator (.), 598, 622, 718 719
double, 53 55
double precision, 53 54
doubly linked list, 1034
drivers, 363 365
dummy parameter, 832
DVD, 6

dynamic binding, 909
dynamic memory allocation, 518 522

bad_alloc exception, 965 966
objects, 724 727, 742, 753
for structures, 620 621

dynamic queues, 1073, 1085 1092
dynamic stacks, 1044, 1060 1070

E

E notation, 53, 54
EBCDIC, 47
editor, text, 11 12

ef ciency
binary search, 457
linear search, 454

elements (array)
accessing, 379 386
described, 378
processing, 394 402
removing, from vectors,

433 434
elements (language), 13 15
else

in if/else statement, 167
trailing, 177 179

empty member function
list, 1035
string class, 583
vector, 435 437, 990

encapsulation, 706
end member function

iterator, 989
list, 1035
string class, 583
vector, 990

end of a le, detecting, 279 281
end-of- le marker, 654
#endif directive, 730 731
endl, 33
enqueue operation, 1073 1076
enum, 627 637

anonymous, 630 631
with arrays, 631 633
assigning, to int variables, 629
assigning integers to enum

variables, 628 629
comparing enumerators, 629 630
declaration and de nition, 637
de ning, 628 629
math operators with, 631
outputting values with, 633 635
and scope, 636
specifying values, 635 636

enumerated data types, 627 637, see

also enum
enumerators, 628 630, 636
eof member function, le stream, 662
equal-to operator (==), 150 152,

161 162, 237
erase member function

list, 1035
string class, 583
vector, 990

error testing, les, 281 283, 662 664
errors

le open, 281 283
logical, 21
off-by-one, 388
recovering from, 958 960
syntax, 11
and trailing else, 178 179

escape sequences, 34 36
\\, 35
\', 35
\", 35
\a, 35
\b, 35
\n, 34 35
\r, 35
\t, 35
newline, 34

exceptions, 519, 947 966

bad_alloc, 965 966
catch block, 949
dynamic memory allocation, 519
exceptions handler, 948
extracting data from, 960 964
handling, 949 951
memory allocation error, 965 966
multiple, handling, 954 958
new operator, 519
not catching, 951
object-oriented handling, 951 954
recovering from errors, 958 960
rethrowing, 964 965
throw key word, 948
throw point, 948
throwing, 948
try block, 949
try/catch construct, 949 951
unwinding the stack, 964

exception handler, 948
exclusive OR, bitwise, see Appendix J on

the book s companion Web site
executable code, 11 12
executable le, 11
execute, 4
exhaustive algorithms, 1130 1132
exit() library function, 360 362
exit code, 361
EXIT_FAILURE constant, 361
EXIT_SUCCESS constant, 361

exp library function, 127
exponents, 95 97
expressions, 85 136, 91

algebraic, 94, 95
arithmetic, 91 98
Boolean, 56, 150
C-style and prestandard C++

forms, 105 106

Z18_GADD6253_07_SE_INDX Page 1205 Saturday, January 29, 2011 1:01 PM

1206 Index

expressions (continued)

characters and string objects,
120 126

cin object, 85 89
conditional, 199 201
formatting output, 111 119
and hand tracing programs,

130 136
initialization, 248, 252 256
mathematical, 91 98, 231
and mathematical library

functions, 127 130
multiple and combined

assignment, 107 110
over ow and under ow,

102 103
relational, 150, 231 232
test, 248
type casting, 103 105
type conversion, 100 101
update, 248, 252 256
of while loop, 233

F

factorial algorithm, 1106 1109
fail member function, le stream,

662

fallthrough capability, of switch
statement, 205 207

false values, 150, 152 153, 160 161
fetch, 4
fetch/decode/execute cycle, 4
Fibonacci numbers, 1114 1116
eld, bit, see Appendix J on the book s

companion Web site
eld width, 112

FIFO (rst-in rst out), 1073
le access ags, 653
ios::app, 653
ios::ate, 653
ios::badbit, 662
ios::binary, 653
ios::eofbit, 662
ios::failbit, 662
ios::goodbit, 662
ios::hardfail, 662
ios::in, 653
ios::out, 653
ios::trunc, 653

le buffer, 269
le open errors, 281 283
le operations, 651 695

append mode, 653
binary les, 674 679
described, 651 652
end-of- le marker, 654
fstream data type, 652 656
member functions for reading and

writing, 665 671
open modes of ifstream and

ofstream, 656

opening les for input and output,
691 695

opening les with de nition
statements, 657

opening multiple les, 672 674
random-access les, 683 691
reading a character, 669 670
reading a line, 666
records with structures, 679 683
rewinding, 690 691
writing a character, 670 671

le stream objects, 268
closing, 269 270
creating, 268 269
member functions, 665 671, see

also Appendix L on the
book s companion Web site

passing to functions, 660 661
lename extensions, 267 268
lenames

and le stream objects, 267 268
user-speci ed, 283 284

les, see also speci c types

closing, 269 270
for data storage, 265 274
detecting end of, 279 281

le open errors, 281 283
input/output program, 268
opening, and creating le objects,

268 269
processing, with loops, 278 281
read position, 275 276
reading from, 265 268, 275 278,

384 385
user-speci ed lenames, 283 284
writing from, 385 386
writing to, 265, 266, 270 274

fill member function, 262
lters, 672
find algorithm (STL), 985, 994 995
find member function, string

class, 583
nding classes, 777 785
rst-in rst out (FIFO), 1073
fixed manipulator, 116 118, 658
xed-point notation, 116 117
ags, 181 182
ash memory, 6
float, 53 56

oating-point data types, 53 56
comparing, 159 160
and integer variables, 55 56

oating-point literals, 54
oating-point notation, 114 116, 118

oppy disk drive, 6
owcharts, 20, see also Appendix D on

the book s companion Web site
fmod library function, 127
for loops, 247 256, 262

and arrays, 382

initialization expression, 248,
252 256

omitting expressions of, 254 256
as pretest loop, 251
test expression, 248
update expression, 248, 252 256
user-controlled, 252 253
while and do-while vs.,

250 251
for_each algorithm (STL), 985,

995 996
formal arguments, 313
formatting output, 111 119, 658 659
FORTRAN, 10
forward declaration, 809
forward iterators, 984
friend class, 811
friend functions, 807 811
friend key word, 807
front member function

deque, 1093
list, 1035
vector, 990

fstream header le, 268
fstream objects, 653
function arguments, 95 96

le stream objects as, 660 661
structures as, 612 615

function call statements, 304
function declarations, 311
function header, 303
function parameters

pointers as, 509 517
reference variables as, 350 354

function prototypes, 311 312
function signature, 357
function templates, 966 973

with multiple types, 970 971
overloading with, 971 972
using operators in, 970

functions, 29, 301 365

bool value, returning, 334 336
calling, 95, 304 309, 328 331
default arguments, 347 350, 748
de ning, 303 304
exit(), 360 362
friend, 807 811
generic, 966
inline, 735 737
local and global variables, 327,

336 346
main, 29, 304
member, 706
modular programming, 301 302
overloading, 356 360
overriding, 918
passing, by reference, 509
passing data by value, 318 319
pointers, returning, 522 527
pure virtual, 921 925

Z18_GADD6253_07_SE_INDX Page 1206 Saturday, January 29, 2011 1:01 PM

Index 1207

recursive, 1101 1105
rede ning base class, 896 901
reference variables as parameters,

350 354
return statement, 324 325, 327
sending data into, 313 317
static local variables, 344 346
static member, 804 807
string handling, 568 573
structures, returning, 615 617
stubs and drivers, 363 365
value-returning, 326 336
virtual, 909 913, 921 925
void, 303 304

G

g++ command, 11
games, computer, 265
GCD (greatest common divisor),

1113 1114
General Crates, Inc. case study,

132 136
generalization, inheritance and,

869 870
generic data types, 967
generic functions, 966
get member function

cin, 123 124
le streams, 669 670

getline member function
cin, 121 122, 551, 566 567
le streams, 666 669

getter functions, 716
global constants, 340 342
global variables, 338 340, 343, see

also Appendix K on the
book s companion Web site

good member function, le stream,
662

greater-than operator (>), 150 152
greater-than or equal-to operator

(>=), 150 152
greatest common divisor (GCD),

1113 1114

H

hand-tracing, 130 132
handler, exception, 948
Hanoi, Towers of, 1122 1125

hardware, 3 6
CPU, 3, 4
input devices, 3, 6
main memory, 3, 5
output devices, 3, 6
secondary storage, 3, 5 6

has-a relationship, 851
header

function, 303
loop, 233, 248

header le, 28, see also Appendix I on
the book s companion Web site

cmath, 96, 127
cstdlib, 129, 361, 563
cstring, 552
ctime, 129
fstream, 268
iomanip, 118
iostream, 28, 36 37
prestandard style, 74
string, 51, 574

hexadecimal literals, 46
hiding data, 706 707, 717
hierarchies, class, 901 907
hierarchy chart, 20
high-level languages, 9
Hoare, C.A.R., 1125
Home Software Company case study,

584 585, 763 770

I

IDE, 12
identi ers, 41 42

capitalization, 42
legal, 42

if/else if statement, 176 180
nested decision structures vs.,

179 180
trailing else, 177 179

if/else statement, 166 168
if statement, 154 165

conditionally-executed code,
155 156, 162 165

expanding, 162 165
oating-point comparisons,

159 160
nested, 169 175, 179 180
programming style, 159
semicolon in, 158

#ifndef directive, 730 731
ifstream objects, 268, 656

>> with, 275
close member function, 270
open member function, 269

ignore member function, cin,
125 126, 566

image editors, 265
implementation le, class, 730
implicit sizing, of arrays, 393 394
#include directive, 28, 36 37, 730
include le directory, 733
include guard, 730 731
increment operator (++), 227 232

in mathematical expressions, 231
post x and pre x modes, 228 231
in relational expressions, 231 232

indentation, 72 73, 159, 237
indirect recursion, 1112
indirection operator (*), 497 499

in nite loop, 236
inheritance, 869 877

base class, 870

class hierarchies, 901 907
and class templates, 977 979
constructors and destructors,

884 895
derived class, 870 871

is-a relationship, 870 877
multiple, 928 932
rede ning functions, 896 901

initialization, 59
array, 389 394, 418 419, 608,

760
partial array, 392 393
pointers, 506
structure, 602 604
structure array, 608
variable, 59
vector, 428

initialization expression, for loop,
248, 252 256

initialization list, 390
inline expansion, 737
inline member functions, 735 737
inorder traversal, binary trees,

1144 1147
input, 17 18

array contents, 381 384
with cin, 85 89
reading, into string objects, 576

input devices, 6
input les, 266
input iterators, 984
input validation

and decision making, 193 194
and while loop, 239 241

input output stream library, 36
insert member function

list, 1035
string class, 583
vector, 990

instances
of classes, 717 727
of structures, 598
of variables, 799 801

instantiation, 717
int, 43 44, 629
integer data types, 42 46
integer division, 61, 63, 66 67, 101
integer literals, 45 46
IntegerList class, 770 774
integrated development environment

(IDE), 12
iomanip header le, 118
ios::app access ag, 653
ios::ate access ag, 653

ios::badbit status ag, 662
ios::binary access ag, 653, 675
ios::eofbit status ag, 662
ios::failbit status ag, 662

ios::goodbit status ag, 662

Z18_GADD6253_07_SE_INDX Page 1207 Saturday, January 29, 2011 1:01 PM

1208 Index

ios::hardfail status ag, 662
ios::in access ag, 653
ios::out access ag, 653

iostream header le, 28, 36 37
ios::trunc access ag, 653
is-a relationship, 870 877, 918
isalnum library function, 542
isalpha library function, 542
isdigit library function, 542
islower library function, 542
isprint library function, 542
ispunct library function, 542
isspace library function, 542
isupper library function, 542
iteration, loop, 234
iterators, 983

[] operator, 987 989
begin member function, 989
end member function, 989

itoa library function, 563 565

J

Java, 10
JavaScript, 10

K

key words, 14 15, 41 42
keyboard buffer, 89
keyboard input, with cin, 85 89

L

language elements, 13 15
last-in- rst-out (LIFO), 1043
leaving scope, 213

left manipulator, 118 119
legacy code, 550
length, of C-strings, 552 553
length member function, string

class, 580 581, 583
less-than operator (<), 150 152
less-than or equal-to operator (<=),

150 152
library, runtime, 11
library functions, 95, see also

Appendix I on the book s
companion Web site

abs, 127
atof, 563, 564
atoi, 563, 564
atol, 563, 564
for C-strings, 552 562
cos, 127
exit, 360 361
exp, 127
fmod, 127
isalnum, 542
isalpha, 542
isdigit, 542
islower, 542
isprint, 542
ispunct, 542
isspace, 542
isupper, 542

itoa, 563 565
log, 127
log10, 127
mathematical, 127 130
pow, 95 97, 128
rand, 129 130
sin, 127
sqrt, 127 128
srand, 129
strcat, 553 556, 561
strcmp, 558 562
strcpy, 554 556, 562
strlen, 552 553, 561
strncat, 562
strncpy, 562
strstr, 556 558, 562
tan, 127
time, 129
tolower, 545
toupper, 545

lifetime, of variables, 338
LIFO (last-in- rst-out), 1043
linear search

algorithm for, 451 454
ef ciency, 454

lines, 15 16
linked lists, 1003 1036

appending a node, 1006 1012
arrays and vectors vs.,

1003 1004
circularly-linked, 1034
class as node type, 1028 1033
composition of, 1004
counting nodes, 1117 1118
declarations, 1004 1005
deleting a node, 1018 1021
described, 1003
destroying, 1021
displaying nodes in reverse,

1118 1119
doubly-linked, 1034
inserting a node, 1013 1017
list head, 1004
NULL address, 1004
operations, 1005 1021
recursion with, 1116 1119
self-referential data structure,

1005
singly-linked, 1034
template for, 1022 1027
traversing, 1012 1013
variations of, 1034 1036

linker, 11, 12
Linux, 11
list (STL type), 983, 1035 1036

back member function, 1035
empty member function, 1035
end member function, 1035
erase member function, 1035
front member function, 1035
insert member function, 1035
merge member function, 1035

pop_back member function,
1035

pop_front member function,
1035

push_back member function,
1035

push_front member function,
1035

reverse member function, 1036
size member function, 1036
swap member function, 1036
unique member function, 1036

list head, linked list, 1004
literals, 39 40

character, 48 51
double, 54 55
float, 54 55
oating-point, 54

hexadecimal, 46
integer, 45 46
long integer, 45 46
octal, 46
string, 29, 39 40, 49 51, 549 550

local scope, 212
local variables, 327, 336 338

lifetime of, 338
with same name as global, 343
static, 344 346

log library function, 127
log10 library function, 127
logical errors, 21
logical operators, 182 189

! (NOT), 182, 187 189, 560
&& (AND), 182 185, 188 189
|| (OR), 182, 185 186, 188 189
associativity, 188 189
and numeric ranges, 189
precedence, 188 189
short-circuit evaluation, 183, 185

long, 43 44
long double, 53 54

long integer literal, 45 46
loop header, 233, 248
loops, 227 288

and arrays, 382
breaking and continuing, 285 288
conditional, 247
control variable, 235
count-controlled, 247, 255 256
counters, 241 242
described, 232
do-while, 242 246, 262
and les, 265 284
for, 247 256, 262
and increment/decrement

operators, 227 232
in nite, 236
input validation with, 239 241
nested, 262 264, 286
posttest, 242 244
pretest, 235, 251
processing les with, 278 281

Z18_GADD6253_07_SE_INDX Page 1208 Saturday, January 29, 2011 1:01 PM

Index 1209

programming style, 237 238
running total, 257 259
selecting, 261 262
sentinels, 260 262
user-controlled, 244, 252 253
while, 232 241, 262

low-level languages, 9
lowercase conversion, character,

545 547
lvalue, 58

M

machine language, 8
main function, 29, 304
main memory, 5

managed C++, see Appendix G on the
book s companion Web site

manipulator, stream, 33
mantissa, 53
map (STL type), 984
mathematical expressions, 91 98, 231
mathematical library functions,

127 130
mathematical operators, with enum,

631
max_element algorithm (STL), 985,

992 994
member functions, 706

binding, 909
of cin, 123
dynamic binding, 909
with le streams, see Appendix L on

the book s companion Web site
fill, 262
overriding, 918
rede ning, 896 901, 918
static, 804 807
static binding, 909
of string objects, 126
this pointer, 823 824
virtual, 909 913

members, of structures, 596,
598 602, 621 622

memberwise assignment, 812 813
memory

for arrays, 378 379
ash, 6

main, 5
random-access, 5, 16

memory address, 5, 396, 491
memory allocation, dynamic, see

dynamic memory allocation
menu-driven programs, 190
menus, 190 193, 207 209, 244 246,

320 322
merge member function, list,

1035
message, 23
methods, 707
microprocessors, 4

min_element algorithm (STL), 985,
992 994

modular programming, 301 302
modular programs, 320
modulus operator (%), 61, 63, 66 67,

93, 94
multi- le programs, see Appendix K on

the book s companion Web site
multi-line comments, 69 70
multimap (STL type), 984
multiple assignment, 107

multiple inheritance, 928 932
multiplication operator (*), 15, 61,

62, 92 95
multiset (STL type), 984
mutators, 716

N

named constants, 70 72
names

of functions, 303
of variables, 16, 41 42, 213 214,

343
namespaces, 28, see also Appendix F on

the book s companion Web site
National Commerce Bank case study,

424 426
negation operator (-), 60, 92 94
negative numbers, in binary, see

Appendix J on the book s
companion Web site

nested blocks, 213 214
nested if statements, 169 175,

179 180
nested loops, 262 264, 286
nested structures, 608 611
.NET Framework, see Appendix G on

the book s companion Web site
new operator, 518 522
newline, printing, 33 34
newline escape sequence, 34
nodes

appending, 1006 1012
of binary trees, 1137, 1142 1144,

1148 1157
class as node type, 1028 1033
counting, 1117 1118
deleting, 1018 1021, 1148 1157
displaying, in reverse, 1118 1119
inserting, 1013 1017, 1142 1144
of linked lists, 1003, 1006 1021,

1028 1033, 1117 1119
not equal-to operator (!=), 150 152

NOT (!) operator, 182, 187 189, 560
null character, 49, 548
null pointer, 520
null statement, 158
null terminator, 49, 548 549

numbers, random, 129 130

numeric data
checking ranges of, 189
integer data types for, 42 43
from text les, 277 278

O

object aggregation, 849 852
object code, 11, 12
object conversion, 846 848

object le, 11
object-oriented design

aggregation, 849 852
class collaborations, 853 857
classes, nding, 777 785
CRC cards, 856 857
generalization and specialization,

869 870
inheritance, 869 877
problem domain, 778
responsibilities, identifying,

783 785
UML, 774 777, 852 853

object-oriented programming (OOP),
22, 23, 705 711

object reusability, 708
objects, 706

array of, 759 761
attributes, 706
class vs., 708 710
data hiding, 706 707
dynamically allocated, 724 727,

742, 753
encapsulation, 706
methods, 707
pointers, 724 727
state, 721

octal literals, 46

off-by-one errors, 388
off position, 5
ofstream objects, 268, 656

<< used with, 270
close member function, 270
open member function, 269

on position, 5
one-dimensional arrays, 416
OOP, 22, 23, 705 711
open member function, le stream

objects, 269
opening les, 268 269
operands, 58
operating systems, 7
operator overloading, 819 846

[] operator, 840 846
>> and << operators, 836 840
= operator, 819 823
general issues, 825 826
math operators, 826 831
post x ++ operator, 832 833
pre x ++ operator, 831
relational operators, 834 836

Z18_GADD6253_07_SE_INDX Page 1209 Saturday, January 29, 2011 1:01 PM

1210 Index

operators, 14, 15
- (negation), 60, 92 94
- (subtraction), 61, 92 94
--, 227 232
-=, 108 110
-> (object pointer), 724
-> (structure pointer), 618 619,

621, 622
!, 182, 187 189, 560
!=, 150 152
%, 61, 63, 66 67, 93, 94
%=, 108 110
& (address), 491 493
&&, 182 185, 188 189
* (indirection), 497 499
* (multiplication), 15, 61, 62,

92 95
* (pointer variable declaration),

496, 621 622
*=, 108 110
. (dot operator), 598, 622,

718 719
/, 61, 92 94
/=, 108 110
?: (conditional), 199 201
||, 182, 185 186, 188 189
+, 61, 62, 92 94, 579
++, 227 232
+=, 108 110, 579
<, 150 152
<<, 31 32, 270, 579
<=, 150 152
=, 15, 38 39, 58, 161 162, 237,

579
==, 150 152, 161 162, 237
>, 150 152
>=, 150 152
>>, 86 87, 275, 277, 280,

579
[] operator, 428 430, 579
arithmetic, 60 67
associativity, 93 94, 150,

188 189, 1197
binary, 60
bitwise, see Appendix J on the

book s companion Web site
combined assignment, 107 110
conditional, 199 201
delete, 520
logical, 182 189
new, 518 522
overloading, 819 846
precedence of, 92 93, 188 189,

1197
relational, see relational

operators
scope resolution (::), 716
sizeof, 57
string class, 126, 579
ternary, 60, 199
unary, 60

OR
^ bitwise exclusive, see Appendix J on

the books companion Web site
| bitwise operator, see Appendix J on

the book s companion Web site
|| logical operator, 182,

185 186, 188 189
output, 18

array contents, 381 384
with enum, 633 635
formatting, 111 119, 658 659

output devices, 6
output les, 265
output iterators, 984
over ow, 102 103
overhead, 1106
overloading functions, 356 360

constructors, 754 757
member functions, 751
templates, 971 972

overriding, 918

P

parallel arrays, 402 403
parameter lists, 303
parameters, 313, 316 317

array, 410
constant reference, 633
pointers as, 509 517
reference variables as, 350 354,

509
parentheses, 30, 94, 201
partially lled arrays, 399 401
Pascal, 10
passing by reference, 350 354, 509
passing by value, 318 319, 633
passing to functions

arrays, 405 414
with pointers, 572 573
two-dimensional arrays,

419 421
percentage, 63 64
percentage discounts, 64 65
pointers, 491 534

address operator (&), 491 493
arithmetic with, 504 505
and arrays, 500 504
base class, 915 917
comparing, 507 509
constant, 516 517
to constants, 513 515, 517
creating and using, 493 500
dynamic memory allocation,

518 522
as function parameters, 509 517
initializing, 506
to objects, 724 727
passing C-string arguments with,

572 573
returning, from a function,

522 527

structure pointer operator,
618 619, 621, 622

to structures, 618 621
structures containing, 683
United Cause case study, 529 534

polymorphism, 907 921
abstract base classes, 921 925
base class pointers, 915 917
dynamic binding, 909
overriding, 918
pure virtual function, 921 925
and references or pointers, 913

915
static binding, 909
virtual destructors, 918 921
virtual functions, 909 913,

921 925
pop operation (stacks), 1044 1045
pop_back member function

list, 1035
vector, 433 434, 437, 986

pop_front member function
deque, 1093
list, 1035

portability, of C++, 11
post x mode, 228 231
postorder traversal, binary trees,

1144 1147
posttest loop, 242 244
pow function, 95 97, 128
power, raising a number to, 95 97
precedence, operator, 92 93,

188 189, 1197
precision, 114
precision member function,

cout, see Appendix L on the
book s companion Web site

pre x, template, 967, 973 974
pre x mode, 228 231
preorder traversal, binary trees,

1144 1147
preprocessor, 11, 12
preprocessor directive, 28, 36

prestandard C++
standard vs., 74 76
type cast expressions, 105 106

pretest loops, 235, 251
priming read, 240
primitive data types, 594
private member functions, 758 759
private members, class, 713 715,

728 729
problem domain, 778
procedural programming, 22 23,

705 706
processing, 18
programmability, of computers, 1 2
programmer-de ned data types, 427
programmer-de ned identi ers, 14, 15
programmers, 2

Z18_GADD6253_07_SE_INDX Page 1210 Saturday, January 29, 2011 1:01 PM

Index 1211

programming, 1 23
computer systems, 3 7
input, processing, and output,

17 18
procedural and object-oriented,

22 23
process of, 18 22
program elements, 13 17
programability of computers, 1 2
programs and progamming

languages, 8 12
programming languages, 8 11, see

also speci c languages

high-level, 9
low-level, 9

programming process, 18 22
programming style, 72 73

and if statements, 159
and nested decision structures,

172 173
and while loops, 237 238

programs
described, 1, 8 9
elements, 13 17

promotion, data type, 101
prompt, 86
protected members, 878 884
prototypes, function, 311 312

pseudocode, 20 21
public member functions, 713 714
public members, class, 713 715
punctuation, 14, 15

pure virtual function, 921 925
push operation (stacks), 1044
push_back member function

deque, 1093
list, 1035
vector, 430 432, 438, 986

push_front member function,
list, 1035

put member function, le streams,
670 671

Python, 10

Q

queue (STL type), 1094 1095
queues, 1073 1095

applications of, 1073
array-based, 1076 1080
crawling problem with array,

1075 1076
dequeuing, 1073 1076
described, 1073
dynamic, 1073, 1085 1092
empty, detecting, 1076
enqueuing, 1073 1076
rst-in rst-out, 1073

full, detecting, 1076
linked list-based, 1085 1088
operations, 1073 1076

static, 1073, 1076 1084
STL queue and dequeue

containers, 1092 1095
QuickSort algorithm, 1125 1129

R

RAM, 5, 16
rand library function, 129 130
random-access les, 267, 683 691

random-access iterators, 984
random-access memory (RAM), 5, 16
random numbers, 129 130

limiting the range of, 130
seeding, 129
time function with, 129

random_shuffle algorithm (STL),
986, 990 991

ranges, numeric, 189
ranking, of data types, 100 101
read, priming, 240
read member function, le stream

objects, 676 677
read position, of les, 275 276
reading data, from le, 266
records, 679 683
recursion, 1101 1133

base case, 1106
binary search, 1119 1121
counting characters, 1110 1112
depth of, 1103
direct, 1112
exhaustive algorithms, 1130 1132
factorial algorithm, 1106 1109
Fibonacci numbers, 1114 1116
greatest common divisor (GCD),

1113 1114
indirect, 1112
in nite, 1102
iteration vs., 1132 1133
linked list operations, 1116 1119
problem solving with, 1106 1112
QuickSort algorithm, 1125 1129
recursive functions, 1101 1105
recursively de ned problems,

1114 1116
Towers of Hanoi, 1122 1125

recursive case, 1106
rede ning base class functions,

896 901, 918

reference, passing by, 350 354, 509
reference parameters, constant, 633
reference variables

as parameters, 350 354, 509
pointers vs., 494 495

reinterpret_cast, 677
relational expressions, 150, 231 232
relational operators, 149 153

and characters, 195 196
and pointers, 507 509
and string class, 196 198, 597

relationships
has-a, 851
is-a, 870 877, 918

whole-part, 851
remainder, of division, 61
replace member function, string

class, 583
reserved words, 14 15
resize member function

string class, 583
vector, 438, 990

responsibilities, identifying, 783 785
rethrowing an exception, 964 965
return statement, 30, 324 325, 327
return type, of functions, 303
returning

bool value from functions,
334 336

pointers from functions, 522 527
structures from functions,

615 617
values from functions, 326 336

reusability, object, 708
reuse, code, 302
reverse member function

list, 1036
vector, 438, 990

rewinding a le, 690 691
right-justi ed outputs, 112
right manipulator, 118 119
rows, of arrays, 416, 417, 421 422
Ruby, 10
running, of programs, 4
running total, 257 259
runtime library, 11
rvalue, 58

S

scienti c notation, 53, 54
scope, 59 60, 211 213

block, 212
coming into, 213
leaving, 213
local, 212

scope resolution operator (::), 716
search algorithm, 451 464, 480 485

binary search, 454 457,
1119 1121

Demetris Leadership Center case
study, 458 464

linear search, 451 454
for STL vector, 480 485

search trees, binary, 1139
secondary storage, 5 6
seekg member function, le stream

objects, 683 688
seekp member function, le stream

objects, 683 688
selection sort, 469 472
self-referential data structure, 1005

Z18_GADD6253_07_SE_INDX Page 1211 Saturday, January 29, 2011 1:01 PM

1212 Index

semicolon, 15, 30, 158, 258
sentinels, 260 262
sequence containers, 427, 983

sequence structure, 154
sequential le access, 267, 683
sequential search, 451
set (STL type), 984
setf member function, cout, see

Appendix L on the book s
companion Web site

setprecision manipulator,
114 116, 119, 658

setter functions, 716
setw manipulator, 112 113, 119,

659
shadowing, of variables, 343, 349
short, 43 44
short-circuit evaluation, 183, 185
showpoint manipulator, 118, 119
signature, function, 357
signi cant digits, 114
sin library function, 127
single line comments, 68 69
single precision, 53 54
singly-linked list, 1034

size declarators, of arrays, 378, 380
size member function

list, 1036
string class, 583
vector, 432 433, 986

sizeof operator, 57
sizing, of arrays, 392 393

software, 2, 6 7
application, 6, 7
system, 6 7

software developers, 2
software development tools, 7
software engineering, 22
sort algorithm (STL), 986, 990 991
sorting, of strings, 560 561, 576 578
sorting algorithm, 464 485

bubble sort, 465 468
Demetris Leadership Center case

study, 472 480
QuickSort, 1125 1129
selection sort, 469 472
for STL vector, 480 485

source code, 11, 12
source le, 11
specialization, inheritance and,

869 870
specialized templates, 982
speci cation le, class, 729
spreadsheets, 265, 651

sqrt library function, 127 128
srand library function, 129
stack (STL type), 1071 1072, 1083

stacks, 1043 1072
applications of, 1044
array-based, 1044 1051
cafeteria plates, 1043 1044
described, 1043 1044
dynamic, 1044, 1060 1070
isEmpty operation, 1045
isFull operation, 1045
LIFO, 1043
linked list-based, 1060 1065
for math, 1051 1054
operations, 1044 1045,

1051 1054
pop, 1044 1045
push, 1044
static, 1044 1051, 1054 1060
STL stack container, 1071 1072
unwinding, 964

stale data, 724
standard C++, prestandard and,

74 76

Standard Template Library (STL),
427, 983 996

abstract data types, 983 984
algorithms, 984 986, 990 996
associative containers, 983, 984
binary_search algorithm, 984,

990 991
count algorithm, 985, 992 993
deque, 983, 1093 1094
find algorithm, 985, 994 995
for_each algorithm, 985,

995 996
iterators, 983, 987 989
list, 983, 1035 1036
map, 984
max_element algorithm, 985,

992 994
min_element algorithm, 985,

992 994
multimap, 984
multiset, 984
queue, 1094 1095
random_shuffle algorithm,

986, 990 991
sequence containers, 983
set, 984
sort algorithm, 986, 990 991
stack, 1071 1072
vector, 427 438, 480 485,

983, 986 987
starting size, vector, 428
state, object, 721
statements, 15 16

static binding, 909
static key word, 801
static local variables, 344 346
static member functions, 804 807

static member variables, 800 804

static queues, 1073, 1076 1084
static stacks, 1044 1051, 1054 1060
static_cast, 103 106

STL, see Standard Template Library
storage, secondary, 5 6
strcat library function, 553 556,

561
strcmp library function, 558 562
strcpy library function, 554 556,

562
stream insertion operator, 31 32, 270,

579
stream manipulator, 33
stream object, 31
string class, 574 585, 711

append member function, 582
assign member function, 582
at member function, 582
begin member function, 582
capacity member function, 582
clear member function, 582
compare member function, 583
comparing and sorting, 576 578
constructors, 754
copy member function, 583
data member function, 583
de ning string objects, 574 575,

578 580
described, 51 52
empty member function, 583
end member function, 583
erase member function, 583
find member function, 583
Home Software Company case

study, 584 585
input, reading into a string object,

576
insert member function, 583
length member function,

580 581, 583
member functions, 580 583
operators, 579
replace member function, 583
resize member function, 583
size member function, 583
substr member function, 583
swap member function, 583
using, 51 52

string constant, 29
string header le, 51, 574

string literals, 29, 39 40, 49 51,
549 550

string objects, 51
and characters, 120 126
comparing, 196 198
de ning, 574 575, 578 580
member functions and operators,

126
reading input into, 576

Z18_GADD6253_07_SE_INDX Page 1212 Saturday, January 29, 2011 1:01 PM

Index 1213

strings, see also C-strings
functions for handling, 568 573
numeric conversion functions,

563 568
sorting, 560 561

strlen library function, 552 553,
561

strncat library function, 562
strncpy library function, 562
strstr library function, 556 558,

562
struct, 595, see also structures
structure pointer operator (->),

618 622
structure variables, 596 597, 602
structures, 593 637

and abstract data types, 593
595

accessing structure members,
598 602

arrays of, 605 608
combining data into, 595 598
containing pointers, 683
and enumerated data types,

627 637
as function arguments,

612 615
initializing, 602 604
nested, 608 611
pointers as members of,

621 622
pointers to, 618 621
records, creating with, 679 683
returning, from a function,

615 617
self-referential, 1005
and unions, 623 627

stubs, 363

style, programming, see
programming style

subscript, of array element, 379,
380

substr member function, string
class, 583

subtraction operator (-), 61, 92 94
sums, of array values, 397 398,

421 423
swap member function

list, 1036
string class, 583
vector, 438

switch statement, 202 209
break, 204, 205
case, 203 204
default, 203 204
fallthrough capability, 205 207
with menus, 207 209

syntax, 14
syntax errors, 11
system software, 6 7

T

tags, of structures, 596
tan library function, 127
tellg member function, le stream

objects, 688 690
tellp member function, le stream

objects, 688 690
template pre x, 967, 973 974
templates

binary trees, 1157 1163
class, 973 982
de ning, 972 973
dynamic queue, 1089 1092
dynamic stack, 1065 1070
function, 966 973
linked list, 1022 1027
pre xes, 967, 973 974
specialized, 982
static queue, 1081 1084
static stack, 1054 1060
type parameter, 967

ternary operator, 60, 199
test expression (for loop), 248
text editor, 11 12
text les

described, 267
numeric data from, 277 278

this pointer, 823 824
throw key word, 948, 964
throw point, 948
throwing an exception, 519, 948
time library function, 129
tolower library function, 545
top-down design, 20
top member function, stack,

1083
toupper library function, 545
Towers of Hanoi, 1122 1125
trailing else, 177 179
trailing zeroes, displaying, 118
traversing

binary tree, 1144 1147
linked list, 1012 1013

true values, 150, 152 153,
160 161

truncation, 55
truth, 152 153, 160 161
try block, 949
try/catch construct, 949 951
try key word, 949
two-dimensional arrays, 416 423

initializing, 418 419
passing, to functions, 419 421
summing elements of,

421 423
type cast expression, 103
type casting, 103 106
type coercion, 101
type parameters, 967, 974

U

UML, see Uni ed Modeling
Language

unary operator, 60

under ow, 102 103
Uni ed Modeling Language (UML),

774 777, 852, see also
Appendix E on the book s
companion Web site

access speci cation, showing,
775 776

aggregation, showing, 852 853
class diagram, 774 777
constructors, showing, 777
data type notation, 776
destructors, showing, 777
parameter notation, 776

unions, 623 627

anonymous, 625 627
structures vs., 623

unique member function, list, 1036
United Cause case study, 529 534
unsetf member function, cout,

see Appendix L on the
book s companion Web site

unsigned int, 43 44
unsigned long, 43 44
unsigned short, 43 44
unwinding the stack, 964
update expression (for loop), 248,

252 256
uppercase conversion, character,

545 547
USB drives, 6
user-controlled loops, 244, 252 253
user-speci ed lenames, 283 284
using namespace statement, 28,

74, see also Appendix F on
the book s companion Web
site

utility programs, 7

V

validation, input, 193 194, 239 241
value, passing by, 318 319, 633
value-returning functions, 326 336

variable declaration, 16
variable de nitions, 17, 37 38, 59,

211 213
variables, 16 17, 37 39

accumulator, 257 259
counter, 241 242
ag, 181 182

global, 338 340, 343
initialization, 59
instance, 799 801
legal names, 42
lifetime of, 338
local, 327, 336 338, 343
loop control, 235

Z18_GADD6253_07_SE_INDX Page 1213 Saturday, January 29, 2011 1:01 PM

1214 Index

variables (continued)
names, 16, 41 42
over ow and under ow, 102 103
pointer, see pointers
reference, 350 354, 494 495, 509
with same names, 213 214, 343
scope, 59 60, 211 213
static member, 800 804
structure, 596 597, 602

vector, 427 438, 480 485, 983,
986 987

[] operator, 986
at member function, 437, 989
back member function, 989
begin member function, 989
capacity member function, 437,

989
clear member function, 434

435, 437, 990
compared to linked list, 1003

1004
de ning, 427 428
empty member function, 435

437, 990

end member function, 990
erase member function, 990
front member function, 990
insert member function, 990
pop_back member function,

433 434, 437, 986
push_back member function,

430 432, 438, 986
removing elements from, 433 434
resize member function, 438,

990
reverse member function, 438,

990
searching and sorting, 480 485
size member function, 432 433,

986
storing and retrieving values in,

428 432
swap member function, 438

virtual destructors, 918 921
virtual functions

and polymorphism, 909 913
pure, 921 925

Visual Basic, 10

void functions, 303 304
volatile memory, RAM as, 5

W

Web browsers, 265
while loops, 232 241, 262

input validation with, 239 241
logic of, 233 235
as pretest loop, 235
programming style, 237 238

whitespace characters, 120 121
whole-part relationship, 851

width member function, cout and
cin, see Appendix L on the
book s companion Web site

word processors, 265, 651

write member function, le stream
objects, 675

writing data, to le, 265

Z

zero(es)
division by, 167
trailing, 118

Z18_GADD6253_07_SE_INDX Page 1214 Saturday, January 29, 2011 1:01 PM

	Starting Out With C++
	Contents at a Glance
	Contents
	Preface
	1: Introduction to Computers and Programming
	2: Introduction to C++
	3: Expressions and Interactivity
	4: Making Decisions
	5: Loops and Files
	6: Functions
	7: Arrays
	8: Searching and Sorting Arrays
	9: Pointers
	10: Characters, C-Strings, and More About the string Class
	11: Structured Data
	12: Advanced File Operations
	13: Introduction to Classes
	14: More About Classes
	15: Inheritance, Polymorphism, and Virtual Functions
	16: Exceptions, Templates, and the Standard Template Library (STL)
	17: Linked Lists
	18: Stacks and Queues
	19: Recursion
	20: Binary Trees
	A: Getting Started with Alice
	B: The ASCII Character Set
	C: Operator Precedence and Associativity
	C++ Quick Reference
	Index

